½ÃÀ庸°í¼­
»óǰÄÚµå
1489448

ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, Â÷Á¾º°, Åë½Å ÇÁ·ÎÅäÄݺ°, ÀÚÀ²ÁÖÇà ·¹º§º°, Â÷·® Ŭ·¡½ºº°, ÆÇ¸Åä³Îº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Automotive Hypervisor Market Forecasts to 2030 - Global Analysis By Type, Vehicle Type, Communication Protocol, Level of Autonomous Driving, Vehicle Class, Sales Channel, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀåÀº 2023³â¿¡ 2¾ï 1,370¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç, 2030³â¿¡´Â 10¾ï 1,920¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ´ÜÀÏ Çϵå¿þ¾î Ç÷§Æû¿¡¼­ ¿©·¯ °³ÀÇ µ¶¸³ÀûÀÎ ÀÚµ¿Â÷ ¼ÒÇÁÆ®¿þ¾î ¿ëµµ°ú ¿î¿µÃ¼Á¦¸¦ µ¿½Ã¿¡ ±¸µ¿ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀÔ´Ï´Ù. ó¸® ´É·Â, ¸Þ¸ð¸®, ÁÖº¯±â±â µî ÀÚ¿øÀ» ºÐ¸®ÇÏ¿© °ü¸®ÇÔÀ¸·Î½á ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ¿îÀü º¸Á¶ ½Ã½ºÅÛ, Â÷·® Á¦¾î µî ´Ù¾çÇÑ Â÷·® ±â´ÉÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÀÛµ¿À» ½ÇÇöÇÏ°í ¾ÈÀü¼º°ú ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.

McKinsey & Company¿¡ µû¸£¸é ÀÚµ¿Â÷ ¼ÒÇÁÆ®¿þ¾î ¹× ÀüÀÚÁ¦Ç° ½ÃÀåÀº ¿¬Æò±Õ 7%ÀÇ ¼ºÀå·üÀ» º¸À̸ç 2030³â 4,690¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷ÀÇ ¾ÈÀü°ú º¸¾È¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü

ÀÚµ¿Â÷ÀÇ ¾ÈÀü ¹× º¸¾È ±â´É °­È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ´ÜÀÏ Çϵå¿þ¾î Ç÷§Æû¿¡¼­ ¿©·¯ ¿î¿µÃ¼Á¦¸¦ ¾ÈÀüÇÏ°Ô ºÐ¸®ÇÏ¿© ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© Áß¿äÇÑ ±â´É°ú Áß¿äÇÏÁö ¾ÊÀº ±â´ÉÀÇ ºÐ¸®¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¸®´Â ½Ã½ºÅÛ ¿À·ù¸¦ ¹æÁöÇϰí ÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ ¾ÈÀü°ú ½Å·Ú¼ºÀ» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼ÒºñÀÚµéÀÌ ÀÚµ¿Â÷ ¾ÈÀü°ú º¸¾ÈÀÇ Á߿伺À» ´õ¿í ÀνÄÇÏ°Ô µÇ¸é¼­ ÀÚµ¿Â÷ ½Ã½ºÅÛÀÇ ¾ÈÀüÇÑ °¡»óÈ­ ¹× ÆÄƼ¼Å´×À» °¡´ÉÇÏ°Ô ÇÏ´Â ÇÏÀÌÆÛ¹ÙÀÌÀú ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºñ¿ë¿¡ ´ëÇÑ ¿ì·Á

ÇÏÀÌÆÛ¹ÙÀÌÀú ±â¼úÀ» ÀÚµ¿Â÷¿¡ ÅëÇÕÇÏ·Á¸é ¼ÒÇÁÆ®¿þ¾î °³¹ß, Å×½ºÆ® ¹× °ËÁõ¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¼­·Î ´Ù¸¥ ÀüÀÚÁ¦¾îÀåºñ(ECU)¿Í ¼ÒÇÁÆ®¿þ¾î ½ºÅà °£¿¡ ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼ÇÀÇ È£È¯¼º°ú ¼º´ÉÀ» º¸ÀåÇØ¾ß Çϸç, ÀÌ´Â Àü¹ÝÀûÀÎ ºñ¿ë Áõ°¡·Î À̾îÁý´Ï´Ù. ¶ÇÇÑ Àü¹® Áö½ÄÀÇ Çʿ伺°ú ÇÏÀÌÆÛ¹ÙÀÌÀú ÅëÇÕÀÇ º¹À⼺Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ ºñ¿ë ºÎ´ãÀ» ´õ¿í Áõ°¡½ÃÄÑ ºñ¿ë¿¡ ¹Î°¨ÇÑ ½ÃÀå ºÎ¹®¿¡¼­ ÇÏÀÌÆÛ¹ÙÀÌÀú ±â¼ú äÅÃÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

»ó¿ëÂ÷±îÁö È®´ë

»ó¿ëÂ÷ ºÎ¹®ÀÇ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ Ãß¼¼´Â ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡ Å« ±âȸ¸¦ °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. Æ®·°, ¹ö½º, È­¹°Â÷ µî »ó¿ëÂ÷¿¡´Â ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), ÅÚ·¹¸Åƽ½º, Ä¿³ØÆ¼µå ¼­ºñ½º µî ´Ù¾çÇÑ Ã·´Ü ±â¼úÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú ±â¼úÀº ÀÌ·¯ÇÑ ±â´ÉµéÀ» ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÅëÇÕÇÏ¿© ¿©·¯ ECU¸¦ ÅëÇÕÇϰí Àüü ½Ã½ºÅÛÀÇ º¹À⼺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼ÇÀÌ »ó¿ëÂ÷ ºÎ¹®À¸·Î È®´ëµÇ¸é »õ·Î¿î ½ÃÀå ±âȸ¸¦ ¿­¾î ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¿ì·Á

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã °ü·Ã ¿ì·Á

ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡¼­´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦°¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¿©·¯ ¼ÒÇÁÆ®¿þ¾î ¿ëµµÀ» µ¿½Ã¿¡ °ü¸®Çϱ⠶§¹®¿¡ ¹Î°¨ÇÑ Â÷·® µ¥ÀÌÅͰ¡ ³ëÃâµÇ°Å³ª À¯ÃâµÉ À§ÇèÀÌ ÀÖ½À´Ï´Ù. °³ÀÎÁ¤º¸¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º, À§Ä¡ ÃßÀû, µ¥ÀÌÅÍ À¯Ãâ µîÀÇ ¹®Á¦´Â ¼ÒºñÀÚÀÇ ½Å·Ú¿Í ±ÔÁ¦ Áؼö¸¦ ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. °ø±Þ¸Á È¥¶õ°ú ¼ÒºñÀÚ ¼ö¿ä °¨¼Ò·Î ÀÎÇÑ ÀÚµ¿Â÷ »ê¾÷ Àü¹ÝÀÇ µÐÈ­´Â ´Ü±âÀûÀ¸·Î ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¹«¼± ¾÷µ¥ÀÌÆ® ¹× ¿ø°Ý Áø´Ü°ú °°Àº ÀÚµ¿Â÷ÀÇ µðÁöÅÐ ±â¼ú°ú ¿ø°Ý ¼­ºñ½º äÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ È¸º¹µÇ°í, ÀÚµ¿Â÷ ¾÷°è°¡ Àå¾Ö¿¡ °­ÇÏ°í ¹Ì·¡ÁöÇâÀûÀÎ Â÷·® ¾ÆÅ°ÅØÃ³ ±¸Ãà¿¡ ÁýÁßÇÔ¿¡ µû¶ó ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú¿¡ ´ëÇÑ ¼ö¿ä´Â ȸº¹µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ½Â¿ëÂ÷ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ½Â¿ëÂ÷ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ» Çü¼ºÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Â¿ëÂ÷´Â ÀÚµ¿Â÷ ½ÃÀåÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ), ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, Ä¿³ØÆ¼µå ±â´ÉÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ´ÜÀÏ ECU¿¡¼­ ¿©·¯ ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀ» ¾ÈÀüÇÏ°Ô ºÐ¸®ÇÏ¿© ½ÇÇàÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Àüü Çϵå¿þ¾îÀÇ º¹À⼺°ú ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÈÀü, Æí¾ÈÇÔ, ÆíÀǼºÀÌ °­È­µÈ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿Í ÇÔ²² ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡¼­ ½Â¿ëÂ÷ ºÎ¹®ÀÇ ¼ºÀåÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿ÏÀü ÀÚÀ²ÁÖÇà Â÷·®Àº ÀÚÀ²ÁÖÇà ±â´É°ú °ü·ÃµÈ º¹ÀâÇÑ ¾Ë°í¸®Áò°ú µ¥ÀÌÅÍ Ã³¸®¸¦ ó¸®Çϱâ À§ÇØ °íµµ·Î Á¤±³ÇÏ°í ¾ÈÀüÇÑ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ÀÚÀ²ÁÖÇà ¼ÒÇÁÆ®¿þ¾îÀÇ ¾ÈÀüÇÑ ½Ç½Ã°£ ½ÇÇàÀ» °¡´ÉÇÏ°Ô Çϰí, ÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀΰøÁö´É, ¼¾¼­ ±â¼ú, Â÷·® Ä¿³ØÆ¼ºñƼÀÇ ¹ßÀüÀ¸·Î ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷ÀÇ °³¹ß°ú µµÀÔÀº ÇâÈÄ ¼ö³â°£ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±× °á°ú, ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷ ºÎ¹®Àº ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡¼­ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

ÀÚµ¿Â÷ »ê¾÷ÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÷´Ü Â÷·® ±â¼ú äÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶ °ÅÁ¡À̸ç, ÀÚµ¿Â÷¿¡ ÷´Ü ±â¼úÀ» µµÀÔÇÏ´Â µ¥ ¾ÕÀå¼­°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Àü±âÀÚµ¿Â÷, ÀÚÀ²ÁÖÇà, Ä¿³ØÆ¼µåÄ« ¼­ºñ½º¿¡ ÁýÁßÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡´Â ´ë±Ô¸ðÀÇ ¼ºÀå ÁßÀÎ ¼ÒºñÀÚÃþÀÌ Á¸ÀçÇϸç, Á¤ºÎ Áö¿ø Á¤Ã¥µµ ½ÃÀå ¿ìÀ§¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ Áß ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀåÀÌ ±Þ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¿¬±¸°³¹ß(R&D)¿¡ ´ëÇÑ ÁÖ¿ä ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÷´Ü ÀÚµ¿Â÷ ±â¼ú äÅÃÀÌ ºü¸£°Ô Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª Á¤ºÎµéÀº ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Â÷·® Åë½Å ¹× µ¥ÀÌÅÍ Ã³¸® ±â´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â ½º¸¶Æ® ½ÃƼ ¹× Áö´ÉÇü ±³Åë ½Ã½ºÅÛ °³¹ßÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áß»êÃþ È®´ë¿Í °¡Ã³ºÐ ¼Òµæ Áõ°¡´Â °í±Þ ±â´ÉÀ» °®Ãá ÇÁ¸®¹Ì¾ö ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ µû¸¥ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : À¯Çüº°

  • ¼­·Ð
  • À¯Çü 1
  • À¯Çü 2

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Â÷Á¾º°

  • ¼­·Ð
  • ½Â¿ëÂ÷
  • ¼ÒÇü »ó¿ëÂ÷
  • ´ëÇü »ó¿ëÂ÷

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Åë½Å ÇÁ·ÎÅäÄݺ°

  • ¼­·Ð
  • ÄÁÆ®·Ñ·¯ ¿¡¾î¸®¾î ³×Æ®¿öÅ©(CAN)
  • ÀÌ´õ³Ý
  • Ç÷º½º·¹ÀÌ
  • ·ÎÄà »óÈ£ Á¢¼Ó ³×Æ®¿öÅ©(LIN)
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ÀÚÀ²ÁÖÇà ·¹º§º°

  • ¼­·Ð
  • ¹ÝÀÚÀ²ÁÖÇàÂ÷
  • ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Â÷·® Ŭ·¡½ºº°

  • ¼­·Ð
  • Àú°¡°ÝÂ÷
  • Áß°¡°ÝÂ÷
  • °í±ÞÂ÷

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ÆÇ¸Åä³Îº°

  • ¼­·Ð
  • OEM
  • ¾ÖÇÁÅ͸¶ÄÏ

Á¦11Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)
  • ÀÚÀ²ÁÖÇàÂ÷(AV)
  • µðÁöÅÐ ÄÛÇÍ ½Ã½ºÅÛ
  • Â÷·®¿ë ÀÎÆ÷Å×ÀÎ¸ÕÆ®(IVI)
  • Â÷·® ÅÚ·¹¸Åƽ½º
  • ±âŸ

Á¦12Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Aptiv PLC
  • Blackberry
  • Continental AG
  • DENSO Corporation
  • Elektrobit Automotive GmbH
  • Green Hills Software
  • NVIDIA Corporation
  • NXP Semiconductors
  • OpenSynergy GmbH
  • Renesas Electronics Corporation
  • Robert Bosch
  • Sasken Technologies Ltd.
  • Siemens EDA
  • STMicroelectronics NV
  • Texas Instruments
  • Visteon
  • Wind River Systems, Inc.
  • Xilinx Inc.
KSA 24.06.10

According to Stratistics MRC, the Global Automotive Hypervisor Market is accounted for $213.7 million in 2023 and is expected to reach $1019.2 million by 2030 growing at a CAGR of 25% during the forecast period. An automotive hypervisor is a software platform that enables the simultaneous operation of multiple independent automotive software applications or operating systems on a single hardware platform. It isolates and manages resources such as processing power, memory, and peripherals, ensuring secure and efficient operation of various vehicle functions, including infotainment, driver assistance systems, and vehicle control, enhancing safety and performance.

According to McKinsey & Company, the automotive software and electronics market is expected to grow at a compound annual growth rate of 7 percent, reaching $469 billion by 2030.

Market Dynamics:

Driver:

Rising need for safety and security in vehicles

The increasing demand for enhanced safety and security features in vehicles is a key driver for the automotive hypervisor market. Hypervisors enable the secure and isolated execution of multiple operating systems on a single hardware platform, ensuring the separation of critical functions from non-critical ones. This isolation helps prevent system failures and enhances the overall safety and reliability of the vehicle. As consumers become more aware of the importance of vehicle safety and security, the demand for hypervisor-based solutions that enable secure virtualization and partitioning of automotive systems is expected to rise.

Restraint:

Cost concerns

Integrating hypervisor technology into vehicles requires significant investment in software development, testing, and validation. Automotive manufacturers need to ensure the compatibility and performance of hypervisor solutions across different electronic control units (ECUs) and software stacks, which add to the overall cost. Additionally, the need for specialized expertise and the complexity of hypervisor integration can further increase the cost burden for automakers, potentially limiting the adoption of hypervisor technology in cost-sensitive market segments.

Opportunity:

Expansion into commercial vehicles

The growing trend of digitalization and automation in the commercial vehicle sector presents significant opportunities for the automotive hypervisor market. Commercial vehicles, such as trucks, buses, and fleet vehicles, are increasingly adopting advanced driver assistance systems (ADAS), telematics, and connected services. Hypervisor technology can enable the secure and efficient integration of these functionalities, allowing for the consolidation of multiple ECUs and reducing the overall system complexity. The expansion of hypervisor solutions into the commercial vehicle segment opens up new market opportunities and can drive the growth of the automotive hypervisor market.

Threat:

Data privacy concerns

Data privacy concerns pose a significant threat in the automotive hypervisor market. As hypervisors manage multiple software applications simultaneously, there's a risk of sensitive vehicle data being exposed or compromised. Issues such as unauthorized access to personal information, location tracking, and data breaches can undermine consumer trust and regulatory compliance.

Covid-19 Impact:

The COVID-19 pandemic has had a mixed impact on the automotive hypervisor market. The overall slowdown in the automotive industry due to supply chain disruptions and reduced consumer demand has affected market growth in the short term. However, the pandemic has also accelerated the adoption of digital technologies and remote services in vehicles, such as over-the-air updates and remote diagnostics. As the automotive industry recovers and focuses on building resilient and future-proof vehicle architectures, the demand for automotive hypervisors is expected to rebound.

The passenger cars segment is expected to be the largest during the forecast period

The passenger cars segment is expected to be the largest during the forecast period. Passenger cars constitute a significant portion of the automotive market, and the increasing adoption of advanced driver assistance systems (ADAS), infotainment systems, and connected features in these vehicles drives the demand for automotive hypervisors. Hypervisors enable the secure and isolated execution of multiple software functions on a single ECU, reducing the overall hardware complexity and cost. The growing consumer preference for vehicles with enhanced safety, comfort, and convenience features, coupled with stringent safety regulations, is expected to fuel the growth of the passenger cars segment in the automotive hypervisor market.

The fully autonomous vehicles segment is expected to have the highest CAGR during the forecast period

The fully autonomous vehicles segment is expected to have the highest CAGR during the forecast period. Fully autonomous vehicles require a highly sophisticated and secure computing architecture to handle the complex algorithms and data processing involved in self-driving functionalities. Automotive hypervisors play a critical role in enabling the secure and real-time execution of autonomous driving software, ensuring the safety and reliability of the vehicle. The development and deployment of fully autonomous vehicles are expected to accelerate in the coming years, driven by advancements in artificial intelligence, sensor technologies, and vehicle connectivity. As a result, the fully autonomous vehicles segment is projected to experience the highest growth rate in the automotive hypervisor market.

Region with largest share:

The Asia Pacific region, with its rapidly growing automotive industry and increasing adoption of advanced vehicle technologies, is expected to hold the largest share in the automotive hypervisor market. Countries like China, Japan, and South Korea are major automotive manufacturing hubs and are at the forefront of implementing cutting-edge technologies in vehicles. The region's focus on electric vehicles, autonomous driving, and connected car services is driving the demand for secure and efficient hypervisor solutions. Additionally, the presence of a large and growing consumer base in the Asia Pacific region, along with supportive government initiatives, contributes to the market's dominance.

Region with highest CAGR:

The Asia Pacific region anticipates rapid growth in the automotive hypervisor market during the forecast period. The region's increasing investments in research and development, coupled with the rapid adoption of advanced automotive technologies, are key factors driving this growth. Governments in the region are promoting the development of smart cities and intelligent transportation systems, which require secure and reliable vehicle communication and data processing capabilities. Moreover, the expanding middle class and rising disposable incomes in the Asia-Pacific region are fueling the demand for premium vehicles with advanced features, further accelerating the growth of the automotive hypervisor market.

Key players in the market

Some of the key players in Automotive Hypervisor Market include Aptiv PLC, Blackberry, Continental AG, DENSO Corporation, Elektrobit Automotive GmbH, Green Hills Software, NVIDIA Corporation, NXP Semiconductors, OpenSynergy GmbH, Renesas Electronics Corporation, Robert Bosch, Sasken Technologies Ltd., Siemens EDA, STMicroelectronics NV, Texas Instruments, Visteon, Wind River Systems, Inc. and Xilinx Inc.

Key Developments:

In January 2024, BlackBerry Limited announced general availability of its new QNX(R) Software Development Platform (SDP) 8.0. Combined with the next generation QNX(R) OS 8.0, the platform delivers a scalable, high-performance real-time operating system available for today's embedded computing industry.

In September 2023, Green Hills Software, the worldwide leader in embedded safety and security, today announced its support for the i.MX 9 applications processors series from NXP(R) Semiconductors, creating an integrated platform based on Green Hills Software's safe and secure foundational software, including safety-certified real-time operating systems (RTOS), virtualization services, and safety-qualified C/C++ development tools. The platform enables developers to efficiently create and confidently deploy safe and secure software across a wide range of applications in automotive, industrial and IoT systems.

Types Covered:

  • Type 1
  • Type 2

Vehicle Types Covered:

  • Passenger Cars
  • Light Commercial Vehicles
  • Heavy Commercial Vehicles

Communication Protocols Covered:

  • Controller Area Network (CAN)
  • Ethernet
  • FlexRay
  • Local Interconnect Network (LIN)
  • Other Communication Protocols

Level of Autonomous Driving Covered:

  • Semi-Autonomous Vehicles
  • Fully Autonomous Vehicles

Vehicle Class Covered:

  • Economy Vehicles
  • Mid-Priced Vehicles
  • Luxury Vehicles

Sales Channels Covered:

  • Original Equipment Manufacturer (OEM)
  • Aftermarket

Applications Covered:

  • Advanced Driver-Assistance Systems (ADAS)
  • Autonomous Vehicles (AVs)
  • Digital Cockpit Systems
  • In-Vehicle Infotainment (IVI)
  • Vehicle Telematics
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Hypervisor Market, By Type

  • 5.1 Introduction
  • 5.2 Type 1
  • 5.3 Type 2

6 Global Automotive Hypervisor Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Cars
  • 6.3 Light Commercial Vehicles
  • 6.4 Heavy Commercial Vehicles

7 Global Automotive Hypervisor Market, By Communication Protocol

  • 7.1 Introduction
  • 7.2 Controller Area Network (CAN)
  • 7.3 Ethernet
  • 7.4 FlexRay
  • 7.5 Local Interconnect Network (LIN)
  • 7.6 Other Communication Protocols

8 Global Automotive Hypervisor Market, By Level of Autonomous Driving

  • 8.1 Introduction
  • 8.2 Semi-Autonomous Vehicles
  • 8.3 Fully Autonomous Vehicles

9 Global Automotive Hypervisor Market, By Vehicle Class

  • 9.1 Introduction
  • 9.2 Economy Vehicles
  • 9.3 Mid-Priced Vehicles
  • 9.4 Luxury Vehicles

10 Global Automotive Hypervisor Market, By Sales Channel

  • 10.1 Introduction
  • 10.2 Original Equipment Manufacturer (OEM)
  • 10.3 Aftermarket

11 Global Automotive Hypervisor Market, By Application

  • 11.1 Introduction
  • 11.2 Advanced Driver-Assistance Systems (ADAS)
  • 11.3 Autonomous Vehicles (AVs)
  • 11.4 Digital Cockpit Systems
  • 11.5 In-Vehicle Infotainment (IVI)
  • 11.6 Vehicle Telematics
  • 11.7 Other Applications

12 Global Automotive Hypervisor Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Aptiv PLC
  • 14.2 Blackberry
  • 14.3 Continental AG
  • 14.4 DENSO Corporation
  • 14.5 Elektrobit Automotive GmbH
  • 14.6 Green Hills Software
  • 14.7 NVIDIA Corporation
  • 14.8 NXP Semiconductors
  • 14.9 OpenSynergy GmbH
  • 14.10 Renesas Electronics Corporation
  • 14.11 Robert Bosch
  • 14.12 Sasken Technologies Ltd.
  • 14.13 Siemens EDA
  • 14.14 STMicroelectronics NV
  • 14.15 Texas Instruments
  • 14.16 Visteon
  • 14.17 Wind River Systems, Inc.
  • 14.18 Xilinx Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦