½ÃÀ庸°í¼­
»óǰÄÚµå
1511264

¼¼°èÀÇ Àü±âÀÚµ¿Â÷(EV)¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå ¿¹Ãø(-2030³â) : Â÷Á¾º°, ¹èÅ͸® À¯Çüº°, ¼ÒÀ纰, ¼¿ Æ÷¸Ë À¯Çüº°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº°

Electric Vehicle Battery Housing Market Forecasts to 2030 - Global Analysis By Vehicle Type, Battery Type, Material Type, Cell Format Type, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Àü±âÀÚµ¿Â÷(EV)¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀåÀº 2024³â 130¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 11.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 257¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

EV¿ë ¹èÅ͸® ÇÏ¿ì¡Àº Àü±âÀÚµ¿Â÷ÀÇ ¹èÅ͸® ÆÑÀ» ¼ö¿ëÇÏ´Â ±¸Á¶¹° ¶Ç´Â ÀÎŬ·ÎÀúÀÔ´Ï´Ù. ÀÌ ÇÏ¿ì¡Àº ¿ÜºÎ ¿ä¼Ò·ÎºÎÅÍ ¹èÅ͸® ¼¿À» º¸È£Çϰí, ±¸Á¶Àû ÁöÁö·ÂÀ» Á¦°øÇϸç, »ç°í³ª Ãæ°Ý¿¡ ´ëÇÑ ¾ÈÀü¼ºÀ» º¸ÀåÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¹èÅ͸® ÇÏ¿ì¡Àº ÀϹÝÀûÀ¸·Î ¾Ë·ç¹Ì´½, °­Ã¶, º¹ÇÕÀç·á¿Í °°Àº °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ Àç·á·Î ¸¸µé¾îÁý´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ¼¿¿¡ ÃÖÀûÀÇ ¿Âµµ¸¦ À¯ÁöÇÏ°í °ú¿­À» ¹æÁöÇϱâ À§ÇØ ³Ã°¢ ½Ã½ºÅÛ ¹× ´Ü¿­Àç¿Í °°Àº ¿­ °ü¸® ±â´ÉÀ» ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù.

±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV) Àç°í°¡ °¡Àå ¸¹Àº ³ª¶ó´Â Áß±¹À̸ç, À¯·´°ú ¹Ì±¹ÀÌ ±× µÚ¸¦ ÀÕ°í ÀÖÀ¸¸ç, 2020³â Áß±¹¿¡´Â 350¸¸ ´ë¿¡ °¡±î¿î ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)¸¦ º¸À¯Çϰí ÀÖÀ¸¸ç, 2021³â¿¡´Â 620¸¸ ´ë¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. ÃßÁ¤µÇ°í ÀÖ½À´Ï´Ù.

EV ¼ö¿ä Áõ°¡

Àü ¼¼°èÀûÀ¸·Î Àü±âÂ÷ º¸±ÞÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀ» ÁÖ¿ä ¿äÀÎÀ¸·Î ½ÃÀåÀº ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó EV¿ë È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¹èÅ͸® ÇϿ졿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ȯ°æ ¹®Á¦, Á¤ºÎ Àμ¾Æ¼ºê, ¹èÅ͸® ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀÇ À¯¸ÁÇÑ ¼ºÀå ±Ëµµ¸¦ º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

¿ø·á ¼ö±ÞÀÌ ¾î·Æ½À´Ï´Ù.

ÀÌ ½ÃÀåÀº ¿øÀÚÀç °¡¿ë¼ºÀÌ Á¦ÇÑÀûÀ̶ó´Â Å« ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, Àü±âÂ÷ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄ̰ú °°Àº ÀÚ¿ø¿¡ ´ëÇÑ ¾Ð·ÂÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Èñ¼Ò¼ºÀº »ý»ê·®¿¡ ¿µÇâÀ» ¹ÌÄ¥ »Ó¸¸ ¾Æ´Ï¶ó ºñ¿ëÀ» »ó½Â½ÃÄÑ Àü±âÂ÷ º¸±ÞÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ ¹®Á¦¸¦ ¿ÏÈ­Çϰí EV »ê¾÷ÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» º¸ÀåÇϱâ À§ÇØ ´ëü Àç·á¿Í ÀçȰ¿ë ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

¾ÈÀü ±â´É °³¼±ÀÇ Çʿ伺

½ÃÀåÀÌ È®´ëµÊ¿¡ µû¶ó ÀáÀçÀûÀÎ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ¹èÅ͸® ÀÎŬ·ÎÀúÀÇ ¾ÈÀü ±â´ÉÀ» °­È­ÇØ¾ß ÇÕ´Ï´Ù. ÷´Ü ¿­ °ü¸® ½Ã½ºÅÛ, °ß°íÇÑ ±¸Á¶ ¼³°è, Áö´ÉÇü ¸ð´ÏÅ͸µ ±â¼ú µîÀÇ Çõ½ÅÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´É °­È­´Â ¿­ ÆøÁÖ ¹× È­Àç À§ÇèÀ¸·ÎºÎÅÍ º¸È£ÇÒ »Ó¸¸ ¾Æ´Ï¶ó »ç°í ¹ß»ý ½Ã ±¸Á¶Àû ¹«°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ÆäÀÏ ¼¼ÀÌÇÁ ¸ÞÄ¿´ÏÁò°ú ½Å¼ÓÇÑ ºñ»ó ´ëÀÀ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¿© ¾ÈÀü ±âÁØÀ» ´õ¿í °­È­ÇÏ°í ¼ÒºñÀÚ¿Í ±ÔÁ¦ ´ç±¹ÀÇ ½Å·Úµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

¹èÅ͸® ÇÏ¿ì¡ÀÇ ³ôÀº ºñ¿ë

½ÃÀåÀº ³ôÀº ¹èÅ͸® ÇÏ¿ì¡ ºñ¿ëÀ̶ó´Â Å« ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ ºñ¿ë ¿ä¼Ò´Â Àü±âÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ °¡°Ý °æÀï·Â¿¡ ¿µÇâÀ» ¹ÌÃÄ º¸±ÞÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÌ ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ °æ·® ¼ÒÀç, °£¼ÒÈ­µÈ »ý»ê °øÁ¤, Áö¼Ó °¡´ÉÇÑ °üÇà°ú °°Àº Çõ½ÅÀûÀÎ ÇØ°áÃ¥À» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ÇÏ¿ì¡ÀÇ ³ôÀº ºñ¿ëÀ» ±Øº¹ÇÏ´Â °ÍÀº ÀÚµ¿Â÷ »ê¾÷¿¡¼­ EVÀÇ °æÀï·Â°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19´Â Àü±âÀÚµ¿Â÷(EV)¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸Á È¥¶õ, ¼ÒºñÀÚ ¼ö¿ä °¨¼Ò, »ý»ê Áß´Ü µîÀÌ ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ¿©·¯ °¡Áö ¾î·Á¿ò ¼Ó¿¡¼­µµ Áö¼Ó °¡´ÉÇÑ ±³Åë¼ö´ÜÀ¸·ÎÀÇ ÀüȯÀÌ µÎµå·¯Áö¸é¼­ Àü±âÂ÷¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. Á¤ºÎÀÇ °æ±â ºÎ¾çÃ¥°ú Àμ¾Æ¼ºê´Â Àü±âÂ÷ ºÎ¹®À» ´õ¿í ÃËÁøÇß½À´Ï´Ù. Ãʱâ ÁÂÀý¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº ȸº¹·Â°ú ÀûÀÀ·ÂÀ» º¸¿©ÁáÀ¸¸ç, ÆÒµ¥¹Í ÀÌÈÄ Àü±âÂ÷ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ¹èÅ͸® ±â¼ú ¹× Á¦Á¶ °øÁ¤ÀÇ Çõ½ÅÀÌ ÃËÁøµÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½Â¿ëÂ÷ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½Â¿ëÂ÷ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ȯ°æ º¸È£¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í Àü±â À̵¿¼ºÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºêÀ¸·Î Àü±â ½Â¿ëÂ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â Àü±âÀÚµ¿Â÷(EV)¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ÷´Ü ¹èÅ͸® ±â¼ú¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²ÀûÀÎ ÇÏ¿ì¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº Àü±â ½Â¿ëÂ÷ ¼ÒÀ¯ÀÚÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ¾ÈÀü ±âÁØ °­È­, ¿¡³ÊÁö È¿À² ÃÖÀûÈ­, ½º¸¶Æ® ±â´É ÅëÇÕ¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â Æú¸®¸Ó ºÐ¾ßÀÔ´Ï´Ù.

Æú¸®¸Ó ºÐ¾ß´Â °æ·®¼º, ³»±¸¼º ¹× ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®ÇÁ·ÎÇÊ·»(PP), Æú¸®¿¡Æ¿·»(PE), Æú¸®Ä«º¸³×ÀÌÆ®(PC)¿Í °°Àº Æú¸®¸Ó´Â ÀϹÝÀûÀ¸·Î ¹èÅ͸® ÇϿ졿¡ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ³»¿­¼º ¹× ³»È­ÇмºÀÌ ¿ì¼öÇÏ¿© EV ¹èÅ͸®ÀÇ ¾ÈÀü°ú ¼ö¸íÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, °íºÐÀÚ º¹ÇÕÀç·áÀÇ ¹ßÀüÀ¸·Î ±¸Á¶Àû ¹«°á¼ºÀÌ °­È­µÇ°í ¹«°Ô°¡ °¡º­¿öÁ® ±Þ¼ºÀåÇÏ´Â Àü±âÂ÷ »ê¾÷¿¡¼­ ´õ¿í ¸¹ÀÌ Ã¤Åõǰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

ºÏ¹Ì´Â Àü±âÀÚµ¿Â÷ÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀº Á¤ºÎÀÇ Àå·ÁÃ¥, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É, ¹èÅ͸® ±â¼úÀÇ ±â¼úÀû Áøº¸¿¡ ÈûÀÔ¾î ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ¹èÅ͸® ÇÏ¿ì¡ ¼³°è ¹× Àç·á¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº Àü±âÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ ¼º´É°ú ÁÖÇà°Å¸®¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ÇÏ¿ì¡À» °³¹ßÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â ¾Ë·ç¹Ì´½, °­Ã¶, º¹ÇÕÀç·á µî ´Ù¾çÇÑ Àç·á°¡ Æ÷ÇԵ˴ϴÙ. Â÷·® ¼º´É°ú ÁÖÇà°Å¸®¸¦ Çâ»ó½Ã۱â À§ÇØ °æ·® ¼ÒÀç°¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¹è±â°¡½º ¹× ÀÚµ¿Â÷ ¾ÈÀü°ú °ü·ÃµÈ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ª½Ã ¹èÅ͸® ÇÏ¿ì¡À» Æ÷ÇÔÇÑ Àü±âÂ÷ ¹× ±× ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â Á¤Ã¥ ¹× Àμ¾Æ¼ºê¸¦ ÅëÇØ Àü±â ¸ðºô¸®Æ¼ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : Â÷Á¾º°

  • Àü±âÀÚµ¿Â÷
  • ÇÏÀ̺긮µå/Ç÷¯±×ÀÎ ÇÏÀ̺긮µå EV
  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ¸®Æ¬ÀÌ¿Â(Li-ion) ¹èÅ͸®
  • ´ÏÄ̼ö¼Ò(NiMH) ¹èÅ͸®
  • °íü ¹èÅ͸®

Á¦7Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : Àç·á À¯Çüº°

  • ¾Ë·ç¹Ì´½
  • ½ºÆ¿
  • º¹ÇÕÀç·á
  • Æú¸®¸Ó
  • À¯¸®¼¶À¯ °­È­ Æú¸®¸Ó
  • ź¼Ò¼¶À¯ °­È­ Æú¸®¸Ó
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : ¼¼¸£Æ÷¸ÀƮŸÀÔº°

  • Cylindrical Cell
  • Prismatic Cell
  • Pouch Cell

Á¦9Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : ±â¼úº°

  • ±âÁ¸ ¹èÅ͸® ÇÏ¿ì¡
  • ÷´Ü ¿­°ü¸® ½Ã½ºÅÛ
  • ¸ðµâ½Ä ¹èÅ͸® ÇÏ¿ì¡ ¼³°è
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ¼±¹Ú
  • »ê¾÷±â°è
  • ±âŸ

Á¦11Àå ¼¼°èÀÇ EV¿ë ¹èÅ͸® ÇÏ¿ì¡ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Tesla, Inc.
  • Panasonic Corporation
  • LG Chem
  • Samsung SDI
  • Hitachi Chemical Co., Ltd.
  • Johnson Controls International plc
  • Toshiba Corporation
  • Envision AESC Group
  • Gestamp Automocion S.A.
  • Electrovaya Inc.
  • EnerSys
  • C&D Technologies
  • Ecobat Technologies
  • Exide Technologies
  • TATA AutoComp Systems Limited
  • Magna
  • Northvolt AB
  • SGL Carbon
LSH 24.07.19

According to Stratistics MRC, the Global Electric Vehicle Battery Housing Market is accounted for $13.0 billion in 2024 and is expected to reach $25.7 billion by 2030 growing at a CAGR of 11.9% during the forecast period. Electric vehicle (EV) battery housing is the structure or enclosure that houses the battery pack in an electric vehicle. This housing is designed to protect the battery cells from external elements, provide structural support, and ensure safety in case of accidents or impacts. The battery housing is typically made of lightweight yet durable materials such as aluminum, steel, or composite materials. It must also incorporate features for thermal management, such as cooling systems or insulation, to maintain the optimal temperature for the battery cells and prevent overheating.

According to the International Energy Agency, China is leading with the highest battery electric vehicles (BEVs) stock followed by Europe and the United States. In 2020, it was estimated that nearly 3.5 million Battery Electric Vehicles (BEVs) were stocked in China, which reached 6.2 million in 2021.

Market Dynamics:

Driver:

Increasing demand for electric vehicles (EVs)

The market is witnessing a significant surge in demand, driven primarily by the increasing adoption of electric vehicles (EVs) globally. As the automotive industry shifts towards sustainable solutions, the need for efficient and durable battery housings for EVs has escalated. This trend is fueled by environmental concerns, government incentives, and technological advancements in battery technology, indicating a promising growth trajectory for the market during the forecast period.

Restraint:

Limited availability of raw materials

The market faces a significant challenge due to the limited availability of raw materials. As demand for EVs rises, the pressure on resources like lithium, cobalt, and nickel intensifies. This scarcity not only impacts production volumes but also drives up costs, potentially hindering the widespread adoption of EVs. Manufacturers are exploring alternative materials and recycling methods to mitigate this challenge and ensure sustainable growth in the EV industry.

Opportunity:

Need for improved safety features

The growing market necessitates enhanced safety features in battery housing to mitigate potential risks. Innovations such as advanced thermal management systems, robust structural designs, and intelligent monitoring technologies are crucial. These enhancements not only safeguard against thermal runaway and fire hazards but also ensure structural integrity during accidents. Moreover, integrating fail-safe mechanisms and rapid emergency response systems can further bolster safety standards, instilling confidence among consumers and regulators alike.

Threat:

High cost of battery housing

The market faces a significant challenge due to the high cost of battery housing. This cost factor impacts the overall affordability of electric vehicles, hindering their widespread adoption. Manufacturers are actively seeking innovative solutions such as lightweight materials, streamlined production processes, and sustainable practices to mitigate this challenge. Overcoming the high cost of battery housing is crucial for enhancing the competitiveness and sustainability of EVs in the automotive industry.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the Electric Vehicle (EV) Battery Housing market. Supply chain disruptions, reduced consumer demand, and production halts affected the market adversely. However, amidst challenges, there was a notable shift towards sustainable transportation, driving interest in EVs. Governments' stimulus packages and incentives further boosted the EV sector. Despite initial setbacks, the market witnessed resilience and adaptation, fostering innovations in battery technology and manufacturing processes to meet growing EV demands post-pandemic.

The passenger cars segment is expected to be the largest during the forecast period

The passenger cars segment is expected to be the largest during the forecast period. With growing environmental awareness and government initiatives promoting electric mobility, demand for electric passenger cars has surged. This has directly impacted the EV battery housing market, driving innovations in lightweight, durable, and cost-effective housing solutions to accommodate advanced battery technologies. Manufacturers are focusing on enhancing safety standards, optimizing energy efficiency, and integrating smart features to meet the evolving needs of electric passenger car owners.

The polymers segment is expected to have the highest CAGR during the forecast period

The polymers segment is expected to have the highest CAGR during the forecast period due to their lightweight, durable, and cost-effective properties. Polymers like polypropylene (PP), polyethylene (PE), and polycarbonate (PC) are commonly used for battery housings. These materials offer excellent thermal and chemical resistance, ensuring the safety and longevity of EV batteries. Moreover, advancements in polymer composites are enhancing structural integrity and reducing weight, further driving their adoption in the burgeoning EV industry.

Region with largest share:

North America is projected to hold the largest market share during the forecast period due to the increasing adoption of electric vehicles in the region. The market has been growing steadily, driven by government incentives, environmental concerns, and technological advancements in battery technologies. The market is witnessing continuous innovations in battery housing design and materials. Manufacturers are focusing on developing lightweight yet durable housings that can improve the overall performance and range of electric vehicles.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period. The market encompasses various materials such as aluminum, steel, and composite materials. Lightweight materials are preferred to enhance vehicle performance and range. Stringent regulations related to emissions and vehicle safety are also driving the demand for EVs and their components, including battery housings. Governments are promoting the adoption of electric mobility through policies and incentives.

Key players in the market

Some of the key players in Electric Vehicle Battery Housing market include Tesla, Inc., Panasonic Corporation, LG Chem, Samsung SDI, Hitachi Chemical Co., Ltd., Johnson Controls International plc, Toshiba Corporation, Envision AESC Group, Gestamp Automocion S.A. , Electrovaya Inc., EnerSys, C&D Technologies, Ecobat Technologies, Exide Technologies, TATA AutoComp Systems Limited, Magna , Northvolt AB and SGL Carbon.

Key Developments:

In January 2024, E-Works Mobility signed a technology partnership with SGL Carbon to supply battery cases made of glass fibre-reinforced plastic. The e-car manufacturer is replacing its currently used aluminum battery boxes with boxes made of glass fibre-reinforced plastic from SGL Carbon.

In July 2023, Magna announced that the company would invest USD 790 million to build the first two supplier facilities at Ford's BlueOval City supplier park in Stanton, Tennessee, and a stamping and assembly facility in Lawrenceburg, Tennessee.

In January 2023 , Gestamp Automocion S.A. (Gestamp) announced its fourth hot stamping line in India and presented for the second time its range of products and innovations for new mobility at the Indian Auto Expo 2023.

Vehicle Types Covered:

  • Electric Vehicle
  • Hybrid & Plug-In Hybrid EV
  • Passenger Cars
  • Commercial Vehicles
  • Other Vehicle Types

Battery Types Covered:

  • Lithium-ion (Li-ion) Batteries
  • Nickel-metal hydride (NiMH) Batteries
  • Solid-State Batteries

Material Types Covered:

  • Aluminum
  • Steel
  • Composite materials
  • Polymers
  • Glass Fiber-Reinforced Polymer
  • Carbon Fiber Reinforced Polymer
  • Other Material Types

Cell Format Types Covered:

  • Cylindrical Cell
  • Prismatic Cell
  • Pouch Cell

Technologies Covered:

  • Conventional Battery Housings
  • Advanced Thermal Management Systems
  • Modular Battery Housing Designs
  • Other Technologies

End Users Covered:

  • Aerospace and Defense
  • Marine
  • Industrial Machinery
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle Battery Housing Market, By Vehicle Type

  • 5.1 Introduction
  • 5.2 Electric Vehicle
  • 5.3 Hybrid & Plug-In Hybrid EV
  • 5.4 Passenger Cars
  • 5.5 Commercial Vehicles
  • 5.6 Other Vehicle Types

6 Global Electric Vehicle Battery Housing Market, By Battery Type

  • 6.1 Introduction
  • 6.2 Lithium-ion (Li-ion) Batteries
  • 6.3 Nickel-metal hydride (NiMH) Batteries
  • 6.4 Solid-State Batteries

7 Global Electric Vehicle Battery Housing Market, By Material Type

  • 7.1 Introduction
  • 7.2 Aluminum
  • 7.3 Steel
  • 7.4 Composite materials
  • 7.5 Polymers
  • 7.6 Glass Fiber-Reinforced Polymer
  • 7.7 Carbon Fiber Reinforced Polymer
  • 7.8 Other Material Types

8 Global Electric Vehicle Battery Housing Market, By Cell Format Type

  • 8.1 Introduction
  • 8.2 Cylindrical Cell
  • 8.3 Prismatic Cell
  • 8.4 Pouch Cell

9 Global Electric Vehicle Battery Housing Market, By Technology

  • 9.1 Introduction
  • 9.2 Conventional Battery Housings
  • 9.3 Advanced Thermal Management Systems
  • 9.4 Modular Battery Housing Designs
  • 9.5 Other Technologies

10 Global Electric Vehicle Battery Housing Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace and Defense
  • 10.3 Marine
  • 10.4 Industrial Machinery
  • 10.5 Other End Users

11 Global Electric Vehicle Battery Housing Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Tesla, Inc.
  • 13.2 Panasonic Corporation
  • 13.3 LG Chem
  • 13.4 Samsung SDI
  • 13.5 Hitachi Chemical Co., Ltd.
  • 13.6 Johnson Controls International plc
  • 13.7 Toshiba Corporation
  • 13.8 Envision AESC Group
  • 13.9 Gestamp Automocion S.A.
  • 13.10 Electrovaya Inc.
  • 13.11 EnerSys
  • 13.12 C&D Technologies
  • 13.13 Ecobat Technologies
  • 13.14 Exide Technologies
  • 13.15 TATA AutoComp Systems Limited
  • 13.16 Magna
  • 13.17 Northvolt AB
  • 13.18 SGL Carbon
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦