![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1530854
¼¼°èÀÇ ÀÚµ¿ ǰÁú °ü¸® ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, À¯Çüº°, ÀýÂ÷º°, Àü°³ ¸ðµåº°, ǰÁú ÁöÇ¥º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼® ¿¹Ãø(-2030³â)Automated Quality Control Market Forecasts to 2030 - Global Analysis By Component, Type, Procedure, Deployment Mode, Quality Metric, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿ ǰÁú °ü¸®´Â ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ÀÚµ¿ ǰÁú °ü¸®´Â Á¦Á¶ °øÁ¤¿¡¼ Á¦Ç°ÀÇ Ç°ÁúÀ» °Ë»ç, Å×½ºÆ® ¹× º¸ÁõÇϱâ À§ÇÑ ±â¼ú ¹× ÀÚµ¿È ½Ã½ºÅÛÀÇ »ç¿ëÀ» ÀǹÌÇÕ´Ï´Ù. AI, ¸Ó½Å·¯´×, ·Îº¿ °øÇаú °°Àº ÷´Ü ±â¼úÀ» »ç¿ëÇÏ¿© »ç¶÷ÀÇ ¼Õ ¾øÀÌ Á¦Ç°ÀÇ Ç°ÁúÀ» °Ë»çÇÏ°í º¸ÁõÇÕ´Ï´Ù. Á¦Á¶ °øÁ¤ÀÇ È¿À²¼º, Á¤È®¼º, Àϰü¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÚµ¿ ǰÁú °ü¸® ½ÃÀåÀº °íǰÁú Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÚµ¿È ±â¼ú ¹ßÀü, ÀÚµ¿Â÷, ÀüÀÚ Á¦Ç°, ÀÇ·á µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ÀÎÀ§Àû ½Ç¼ö¿Í ¿î¿µ ºñ¿ë Àý°¨ÀÇ Çʿ伺À¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¸ÅŲÁö, ¼¼°è, ÀνºÆ¼Æ©Æ®ÀÇ ½Ã»ê¿¡ µû¸£¸é, ÀÚµ¿È ±â¼úÀº 2030³â±îÁö ¼¼°èÀÇ »ý»ê¼ºÀÇ ¼ºÀåÀ» ¸Å³â 0.8-1.4% Çâ»ó½ÃÄÑ Å« °æÁ¦ È¿°ú¸¦ °¡Á®¿Ã °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
°íǰÁú Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä
°¢ ¾÷°èÀÇ °íǰÁú Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡´Â ÀÚµ¿ÈµÈ ǰÁú °ü¸® ½Ã½ºÅÛÀÇ µµÀÔÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ÀϰüµÈ Á¦Ç° ǰÁúÀ» º¸ÀåÇÏ°í ºÒ·®Ç°À» ÁÙÀÌ°í ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» µµÀÔÇß½À´Ï´Ù. ÀÚµ¿È ½Ã½ºÅÛÀº ¼öµ¿ °Ë»ç¿¡ ºñÇØ º¸´Ù Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö Àִ ǰÁú °Ë»ç¸¦ Á¦°øÇϹǷΠ±â¾÷Àº Àüü Á¦Ç°ÀÇ Ç°ÁúÀ» Çâ»ó½ÃŰ°í °í°´ ¸¸Á·µµ¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.
¾öû³ ÅõÀÚ
ÀÚµ¿ÈµÈ ǰÁú °ü¸® ½Ã½ºÅÛÀÇ µµÀÔ¿¡´Â Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¸¹Àº ±â¾÷, ƯÈ÷ Áß¼Ò±â¾÷ÀÇ °æ¿ì ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ¸¹Àº ÀÚ¿øÀ» ÇÒ´çÇÏ´Â °ÍÀº ¾î·Æ½À´Ï´Ù. Ãʱ⠺ñ¿ëÀÌ ³ô±â ¶§¹®¿¡ ÀÚµ¿ ǰÁú °ü¸® ¼Ö·ç¼ÇÀ» äÅÃÇϰíÀÚ ÇÏ´Â Á¦Á¶¾÷üµµ ÀÖ¾î Æ¯Á¤ ºÎ¹® ½ÃÀå ¼ºÀå °¡´É¼ºÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
Industry 4.0 ÅëÇÕ
ÁøÇà ÁßÀÎ Àδõ½ºÆ®¸® 4.0 Çõ¸íÀº ÀÚµ¿È ǰÁú °ü¸® ½ÃÀå¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. Á¦Á¶¾÷ü°¡ ½º¸¶Æ® ÆÑÅ丮 °³³ä°ú µðÁöÅÐ º¯È¯À» ¼ö¿ëÇÔ¿¡ µû¶ó ´Ù¸¥ ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ¿¬°áÇÒ ¼ö ÀÖ´Â ÅëÇÕ Ç°Áú °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÅëÇÕÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, ¿¹Ãø À¯Áö º¸¼ö ¹× Áö¼ÓÀûÀÎ ÇÁ·Î¼¼½º °³¼±À» °¡´ÉÇÏ°Ô Çϸç Àüü Á¦Á¶ ¹ë·ùüÀÎÀÇ È¿À²¼º°ú »ý»ê¼º Çâ»óÀ» ÃËÁøÇÕ´Ï´Ù.
»çÀ̹ö º¸¾È À§Çè
ÀÚµ¿ ǰÁú °ü¸® ½Ã½ºÅÛÀº ÀÎÅÍÄ¿³ØÆ®°¡ ÁøÇàµÇ°í µðÁöÅÐ ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾È À§ÇèÀÌ Áõ°¡ÇÏ´Â µ¥ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. IoT ÀåÄ¡ ¹× Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç°ú ÅëÇÕµÈ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº »çÀ̹ö °ø°Ý, µ¥ÀÌÅÍ Ä§ÇØ ¹× ±âŸ º¸¾È À§Çù¿¡ Ãë¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ç°í´Â ¾÷¹« Áß´Ü, ±â¹Ð µ¥ÀÌÅÍ À¯Ãâ, »ó´çÇÑ ±ÝÀüÀû ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖÀ¸¸ç ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ´çÃÊ Á¦Á¶¾÷¹«¿Í °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ ½ÃÀå ¼ºÀåÀ» µÐȽÃÄ×½À´Ï´Ù. ±×·¯³ª »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó Á¦Ç°ÀÇ ¾ÈÀü¼ºÀ» È®º¸ÇÏ°í ¾÷¹« È¿À²À» À¯ÁöÇϱâ À§ÇØ ÀÚµ¿È¿Í ǰÁú °ü¸®°¡ Áß¿äÇØÁ³½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ƯÈ÷ ÇコÄɾ ÀÏ·ºÆ®·Î´Ð½º µîÀÇ ºÐ¾ß¿¡¼ ÀÚµ¿ ǰÁú °ü¸® ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ °¡¼ÓȵǾú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸ÁÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Çϵå¿þ¾î´Â ÀÚµ¿ ǰÁú °ü¸® ½Ã½ºÅÛÀÇ ¹éº»ÀÔ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ÀÌÁ¡Àº ´Ù¾çÇÑ »ê¾÷¿¡¼ Á¤È®ÇÑ Ç°Áú °Ë»ç¸¦ ¼öÇàÇÏ´Â °íµµÀÇ °íÁ¤¹Ð Çϵå¿þ¾î¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ä±¸¿¡ ÀÇÇØ ÃÊ·¡µË´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â ǰÁú °ü¸® ´É·ÂÀ» °ÈÇϰí ÁøÈÇÏ´Â ¾÷°è Ç¥ÁØÀ» ¼ö¿ëÇϱâ À§ÇØ Á¤±³ÇÑ Çϵå¿þ¾î ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ ºÎ¹®ÀÇ È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ŭ¶ó¿ìµå ±â¹ÝÀÇ ÀÚµ¿ ǰÁú °ü¸® ¼Ö·ç¼ÇÀº È®À强, À¯¿¬¼º ¹× ºñ¿ë È¿À²¼ºÀ¸·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ¾×¼¼½º, ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ±âŸ Ŭ¶ó¿ìµå ±â¹Ý Á¦Á¶ ½Ã½ºÅÛ°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Á¦Á¶¾÷¿¡¼ÀÇ Å¬¶ó¿ìµå ±â¼ú äÅà Ȯ´ë¿Í µ¥ÀÌÅÍ ÁÖµµÀÇ Ç°Áú °ü¸®¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡°¡ ÀÌ ºÎ¹®ÀÇ ±Þ¼ºÀåÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÀÚµ¿ ǰÁú °ü¸® ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿ ǰÁú °ü¸® ½ÃÀå¿¡¼ ºÏ¹ÌÀÇ ÀÌÁ¡Àº ÷´Ü Á¦Á¶ ºÎ¹®, ÀÚµ¿È ±â¼úÀÇ ³ôÀº ä¿ë·ü, ¾÷°è Àü¹Ý¿¡ °ÉÄ£ ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ±â¼ú Çõ½Å¿¡ ÁßÁ¡À» µÎ°í ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç, ½º¸¶Æ® Á¦Á¶ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ÅõÀÚ°¡ Å« ½ÃÀå Á¡À¯À²¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº »ê¾÷ÈÀÇ ÁøÀü, ÀÚµ¿È µµÀÔ Áõ°¡, Á¦Á¶ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ÀÇÇØ ÀÚµ¿ ǰÁú °ü¸® ½ÃÀå¿¡¼ À¯¸®ÇÑ ¼ºÀåÀ» ±â·ÏÇÒ Àü¸ÁÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ±¹°¡µéÀÌ Á¦Á¶¾÷ È®´ë¿Í Á¦Ç° ǰÁú Çâ»ó¿¡ ÁÖ·ÂÇÏ¿© ÀÌ ¼ºÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼ÒºñÀÚ ½ÃÀåÀÇ ¼ºÀåµµ º¸´Ù °íǰÁúÀÇ Á¦Ç°À» ¿ä±¸Çϰí ÀÖÀ¸¸ç, AQC ½Ã½ºÅÛÀÇ Ã¤¿ëÀ» ´õ¿í ÃËÁøÇϰí, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)À» È®½ÇÈ÷ Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Automated Quality Control is growing at a CAGR of 7.8% during the forecast period. Automated quality control refers to the use of technology and automated systems to inspect, test, and ensure product quality in manufacturing processes. It uses advanced technologies like AI, machine learning, and robotics to inspect and ensure product quality without human intervention. It enhances efficiency, accuracy, and consistency in manufacturing processes. The automated quality control market is expanding due to rising demand for high-quality products, advancements in automation technologies, and the need to reduce human error and operational costs across various industries such as automotive, electronics, and healthcare.
According to McKinsey Global Institute estimates, automation technologies could increase global productivity growth by 0.8 to 1.4 percent annually by 2030, leading to significant economic benefits.
Demand for high-quality products
The increasing consumer demand for high-quality products across industries is driving the adoption of automated quality control systems. Manufacturers are implementing these solutions to ensure consistent product quality, reduce defects, and meet stringent quality standards. Automated systems provide more accurate and reliable quality checks compared to manual inspections, enabling companies to improve their overall product quality and maintain customer satisfaction.
Significant investments
The implementation of automated quality control systems often requires substantial upfront investments in hardware, software, and infrastructure. Many companies, especially small and medium-sized enterprises, may find it challenging to allocate significant resources for these systems. The high initial costs can deter some manufacturers from adopting automated quality control solutions, limiting market growth potential in certain segments.
Industry 4.0 integration
The ongoing Industry 4.0 revolution presents a significant opportunity for the automated quality control market. As manufacturers embrace smart factory concepts and digital transformation, there is increasing demand for integrated quality control solutions that can seamlessly connect with other systems. This integration enables real-time data analysis, predictive maintenance, and continuous process improvement, driving efficiency and productivity gains across the manufacturing value chain.
Cybersecurity risks
Automated quality control systems are becoming more interconnected and reliant on digital technologies, they face increased cybersecurity risks. These systems, integrated with IoT devices and cloud-based solutions, can be vulnerable to cyberattacks, data breaches, and other security threats. Such incidents can lead to operational disruptions, the loss of sensitive data, and significant financial losses, which will negatively impact the market.
The COVID-19 pandemic initially disrupted manufacturing operations and supply chains, slowing market growth. However, as industries recovered, there was increased emphasis on automation and quality control to ensure product safety and maintain operational efficiency. This accelerated the adoption of automated quality control solutions, particularly in sectors like healthcare and electronics.
The hardware segment is expected to be the largest during the forecast period
During the forecast period, the hardware segment is expected to dominate the market. Hardware is the backbone of automated quality control systems. This segment's dominance is driven by the continuous need for advanced, high-precision hardware to perform accurate quality inspections across various industries. Moreover, manufacturers are investing in sophisticated hardware solutions to enhance their quality control capabilities and meet evolving industry standards, which are boosting the segment's expansion.
The cloud-based segment is expected to have the highest CAGR during the forecast period
During the forecast period, the cloud-based segment is projected to experience the highest CAGR. Cloud-based automated quality control solutions are gaining traction due to their scalability, flexibility, and cost-effectiveness. These systems enable real-time data access, remote monitoring, and seamless integration with other cloud-based manufacturing systems. The growing adoption of cloud technologies in manufacturing and the increasing need for data-driven quality control are driving the rapid growth of this segment.
North America is expected to dominate the automated quality control market during the forecast period. North America's dominance in the automated quality control market is attributed to its advanced manufacturing sector, high adoption of automation technologies, and stringent quality standards across industries. The region's focus on innovation, the presence of major market players, and investments in smart manufacturing initiatives contribute to its significant market share.
The Asia Pacific region is poised to register lucrative growth in the automated quality control market, driven by increasing industrialization, rising adoption of automation, and significant investments in manufacturing infrastructure. Countries like China, Japan, South Korea, and India are leading this growth with their expanding manufacturing sectors and focus on improving product quality. The region's growing consumer market also demands higher-quality products, further propelling the adoption of AQC systems and ensuring a high CAGR for Asia Pacific.
Key players in the market
Some of the key players in Automated Quality Control market include Siemens AG, ABB Ltd., Honeywell International Inc., Schneider Electric SE, Emerson Electric Co., Rockwell Automation, Inc., Yokogawa Electric Corporation, FANUC Corporation, Mitsubishi Electric Corporation, Omron Corporation, Keyence Corporation, Cognex Corporation, ISRA VISION AG, Teledyne Technologies Incorporated, Hexagon AB, FARO Technologies, Inc., Nikon Metrology NV, and Carl Zeiss AG.
In June 2024, Honeywell announced the launch of its Battery Manufacturing Excellence Platform (Battery MXP), an artificial intelligence (AI)-powered software solution designed to optimize the operation of gigafactories from day one by improving battery cell yields and expediting facility startups for manufacturers. With traditional standalone solutions, battery manufacturers' material scrap rates can be as high as 30% at steady state and even higher during the facility startup processii. This practice can lead to millions of dollars of wasted energy and material while a gigafactory slowly scales to a more efficient and profitable production over several years.
In April 2024, Rockwell Automation, Inc. the world's largest company dedicated to industrial automation and digital transformation, has announced it is working with Microsoft on three significant technology innovations that will be on display at Hannover Messe, 22-26 April. "Rockwell's partnership with Microsoft is a shared vision of creating and delivering the best solutions to empower the future of industrial operations," said Nicole Denil, global vice president, market access, Rockwell Automation.
In September 2023, Schneider Electric adopts Cognex vision system to improve inspection processes and quality control. The vision system proposed by Cognex allows for the complete assembly inspection of each component of any product by analysing the product references. Schneider's new vision system was developed by Esox using Cognex's VisionPro software which allows for a multi-display of images. Esox's vision station consists of two cameras, five LED light sources, and a laser beam. The first high-resolution camera (1600x1200 pixels) inspects the underneath part of the piece and checks the code inscribed on the contacts. While the second camera inspects the upper part of the piece. Images acquired during the inspection process are recorded in the inspection database.