½ÃÀ庸°í¼­
»óǰÄÚµå
1551287

Á¶Á÷°øÇÐ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Tissue Engineering Market Forecasts to 2030 - Global Analysis By Product (Scaffolds, Cell Culture, Hydrogels, 3D Bioprinting and Other Products), Material Type, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀåÀº 2024³â¿¡ 51¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 17.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 134¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

Á¶Á÷°øÇÐÀº »ý¹°Çаú °øÇÐÀÇ ¿ø¸®¸¦ °áÇÕÇÏ¿© ¼Õ»óµÈ Á¶Á÷À̳ª Àå±âÀÇ ±â´ÉÀ» ȸº¹, À¯Áö, °³¼±Çϱâ À§ÇØ »ý¹°ÇÐÀû ´ëü¹°À» ¸¸µå´Â ´ÙÇÐÁ¦Àû ºÐ¾ßÀÔ´Ï´Ù. ÀÌ °úÁ¤¿¡¼­ ¼¼Æ÷, ½ºÄ³Æúµå, »ýÈ­ÇÐÀû ¿äÀÎÀ» »ç¿ëÇÏ¿© ÀÇ·á¿ëÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ´Â »ýÁ¸ °¡´ÉÇÑ Á¶Á÷ ±¸Á¶¹°À» °³¹ßÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Á¶Á÷°øÇÐÀº ÇǺÎ, ¿¬°ñ, Àå±â ¼öº¹ µî ´Ù¾çÇÑ ±â¼ú°ú ÀÀ¿ëÀ» Æ÷ÇÔÇϸç Àç»ýÀÇÇп¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù.

Áö³­ 5¿ù ¹ßÇ¥µÈ 'ô¼ö¼Õ»ó ¿©¼ºÀÇ ¼½½´¾ó¸®Æ¼¿Í ¿¬¾Ö °æÇè: ÀεµÀÇ »óȲÀ» ÅëÇØ »ìÆìº» °Í'À̶ó´Â Á¦¸ñÀÇ ¿¬±¸¿¡ µû¸£¸é Àü ¼¼°è¿¡¼­ ¿¬°£ ¾à 25¸¸-50¸¸ ¸íÀÌ Ã´¼ö¼Õ»ó(SCI)À» °æÇèÇÏ´Â °ÍÀ¸·Î Ãß»êµË´Ï´Ù.

³ô¾ÆÁö´Â Àç»ýÀÇ·áÀÇ ´ÏÁî

Àç»ýÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Àç»ýÀÇ·á ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ¸¸¼ºÁúȯ, Àå±â ºÎÀü ¹× Á¶Á÷ ¼Õ»óÀÇ À¯º´·ü Áõ°¡´Â Á¶Á÷ °øÇÐÀÌ Á¦°øÇÒ ¼ö ÀÖ´Â Àç»ý Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¶Á÷°øÇÐÀº ¼¼Æ÷¿Í ½ºÄ³Æúµå¸¦ »ç¿ëÇÏ¿© »ý¹°ÇÐÀû ´ëü¹°À» °³¹ßÇÔÀ¸·Î½á Á¶Á÷ÀÇ ±â´ÉÀ» ȸº¹, À¯Áö ¹× °³¼±ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÀÌ ´ÙÇÐÁ¦Àû ºÐ¾ß´Â »ý¹°Çаú °øÇÐÀÇ ¿ø¸®¸¦ °áÇÕÇÏ¿© ÇǺÎ, ¿¬°ñ, Àå±â ¼öº¹°ú °°Àº ÀÇ·á ÀÀ¿ëÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¶Á÷ ±¸Á¶¹°À» »ý¼ºÇÕ´Ï´Ù.

Á¦Á¶ È®À强

Á¦Á¶ È®À强Àº ½ÃÀå¿¡ Å« µµÀüÀÌ µÇ°í ½ÃÀå ¼ºÀ强¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Á¶Á÷°øÇÐ Á¦Ç°À» ´ë±Ô¸ð·Î Á¦Á¶ÇÏ´Â º¹À⼺Àº Á¾Á¾ ǰÁú°ú ¼º´ÉÀÇ ÆíÂ÷·Î À̾îÁ® ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú ½ÃÀå ÁøÀÔÀ» °¡·Î¸·´Â ¿äÀÎÀÌ µË´Ï´Ù. ±× °á°ú, ±â¼ú Çõ½ÅÀÇ ¼Óµµ°¡ ´À·ÁÁö°í, ÇコÄÉ¾î ½ÃÀå¿¡¼­ Á¶Á÷°øÇÐ ¼Ö·ç¼ÇÀÇ °¡¿ë¼ºÀÌ Àü¹ÝÀûÀ¸·Î °¨¼ÒÇÏ¿© ȯÀÚ °á°ú¿Í Ä¡·á ¿É¼Ç¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

ÀÇ·áºñ ÁöÃâ Áõ°¡

¼ö¼ú ħ½À¼º °¨¼Ò¿Í ȸº¹ ½Ã°£ ´ÜÃà µîÀÇ ÀåÁ¡À¸·Î ÀÎÇØ Á¶Á÷ ½ºÄ¿ÆúµåÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â Àå±âºÎÀü, ÅðÇ༺ Áúȯ, ¿Ü»ó µîÀÇ Áõ»ó¿¡ ´ëÇÑ Çõ½ÅÀûÀÎ Ä¡·á¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ ºñ¿ë È¿À²ÀûÀ̰í Àå±âÀûÀÎ ¼Ö·ç¼ÇÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó ½ÃÀåÀº ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î Á¶Á÷°øÇÐ ¹× Àç»ý ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

³ôÀº Ä¡·áºñ

¹ÙÀÌ¿À¼ÒÀç, ¼ºÀåÀÎÀÚ, »ý¼¼Æ÷, ºñ°è, ±â´É¼º ¸ÅÆ®¸¯½º µî ÷´Ü ±â¼úÀÌ »ç¿ëµÇ¹Ç·Î Á¶Á÷°øÇÐ Ä¡·á´Â ȯÀڵ鿡°Ô °í°¡ÀÇ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. ÀÌ ¶§¹®¿¡ ƯÈ÷ Àα¸´Â ¸¹Áö¸¸ ÀÇ·á ¿¹»êÀÌ ºÎÁ·ÇÑ °³¹ßµµ»ó±¹¿¡¼­´Â Á¢±Ù¼º°ú µµÀÔÀÌ Á¦ÇÑÀûÀÔ´Ï´Ù. ³ôÀº Ä¡·á ºñ¿ëÀ¸·Î ÀÎÇÑ °æÁ¦Àû À庮À» ±Øº¹ÇÏ´Â °ÍÀº ½ÃÀåÀÌ ÀáÀç·ÂÀ» ¹ßÈÖÇÏ°í ´õ ¸¹Àº ȯÀÚ Áý´Ü¿¡ Àç»ý ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â Àç»ý Ä¡·á ¿¬±¸¸¦ °¡¼ÓÈ­ÇÏ°í ¹ÙÀÌ·¯½º·Î ÀÎÇÑ ½É°¢ÇÑ Á¶Á÷ ¼Õ»ó¿¡ ´ëÇÑ ÇØ°áÃ¥ °³¹ß¿¡ ´ëÇÑ ³ë·ÂÀ» °­È­ÇÔÀ¸·Î½á ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Àü¿°º´Àº ÷´Ü Á¶Á÷ º¹±¸ ±â¼úÀÇ Çʿ伺À» °­Á¶ÇÏ°í °ü·Ã ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª µ¿½Ã¿¡ °ø±Þ¸Á°ú ÀÓ»ó½ÃÇèÀÇ Áß´ÜÀ» ÃÊ·¡Çß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÆÒµ¥¹ÍÀº Á¶Á÷°øÇÐ ±â¼ú Çõ½Å¿¡ ´ëÇÑ ½Ã±Þ¼ºÀ» ³ôÀÌ´Â ÇÑÆí, »ý»ê ¹× °³¹ß ÀÏÁ¤¿¡ ´ëÇÑ µµÀü°úÁ¦¸¦ Á¦½ÃÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ½ºÄ¿Æúµå ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºñ°è´Â ¿¹Ãø ±â°£ Áß ÃÖ´ë ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶¹°Àº õ¿¬ Á¶Á÷ÀÇ ¼¼Æ÷ ¿Ü ¸ÅÆ®¸¯½º¸¦ ¸ð¹æÇϵµ·Ï ¼³°èµÈ ÇÕ¼º ¶Ç´Â »ý¹°ÇÐÀû À¯·¡ ¹°Áú·Î ¸¸µé¾îÁú ¼ö ÀÖ½À´Ï´Ù. ½ºÄ³Æúµå´Â ¼¼Æ÷ÀÇ Áõ½Ä°ú ºÐÈ­¸¦ ÃËÁøÇÏ¿© »À, ¿¬°ñ, ÇǺΠµî ´Ù¾çÇÑ Á¶Á÷ÀÇ Àç»ýÀ» ÃËÁøÇϸç, 3D ÇÁ¸°ÆÃ ¹× ÇÏÀ̵å·Î°Ö°ú °°Àº ±â¼ú Çõ½ÅÀº ½ºÄ³Æúµå ¼³°è¸¦ °­È­ÇÏ¿© Àç»ýÀÇ·áÀÇ º¹ÀâÇÑ Á¶Á÷ º¹±¸ ¹× Àç»ý ¿ä±¸¿¡ ´ëÇÑ º¸´Ù È¿°úÀûÀÌ°í ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Å»¼¼Æ÷È­ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Å»¼¼Æ÷È­ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº ¼¼Æ÷ÀÇ Á¢Âø°ú ¼ºÀåÀ» Áö¿øÇϰí Á¶Á÷ Àç»ýÀ» ÃËÁøÇÏ´Â ½ºÄ³ÆúµùÀ» »ý¼ºÇÕ´Ï´Ù. Å»¼¼Æ÷È­µÈ ½ºÄ³Æúµå´Â õ¿¬ »ýÈ­ÇÐÀû ´Ü¼­¿Í ±â°èÀû Ư¼ºÀ» À¯ÁöÇϸç, ȯÀÚ °íÀ¯ÀÇ ¼¼Æ÷·Î Àç¼¼Æ÷È­µÉ ¶§ ´õ ³ªÀº ÅëÇÕ¼º°ú ±â´É¼ºÀ» ÃËÁøÇÏ´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¼º°øÀûÀÎ Á¶Á÷ º¹±¸ÀÇ °¡´É¼ºÀ» ³ô¿© Àç»ýÀÇÇÐ ¹× Àå±â À̽ÄÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ÁÖ¿ä ±â¾÷ÀÇ ÅºÅºÇÑ ÀÔÁö¿Í Á¶Á÷°øÇÐ ±â¼ú Çõ½ÅÀ» Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥À¸·Î ÀÎÇØ ¾ÐµµÀûÀÎ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ³ôÀº ¼öÁØÀÇ ÀÇ·á ÀÎÇÁ¶ó¿Í ³ôÀº ÀÇ·áºñ ÁöÃâÀº ÅðÇ༺ Áúȯ°ú ºÎ»óÀ¸·Î °íÅë¹Þ´Â ¸¹Àº ȯÀÚµéÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Çõ½ÅÀûÀÎ Á¶Á÷°øÇÐ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ÇコÄÉ¾î ¼ö¿ä Áõ°¡, Àç»ý ÀÇÇÐÀÇ ¹ßÀü, ¸¸¼ºÁúȯÀÇ À¯º´·ü Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ÁÖ¿ä ¾÷üµéÀº Á¶Á÷ Àç»ýÀ» °­È­ÇÏ´Â »õ·Î¿î ±â¼ú°ú ¹æ¹ý¿¡ ÅõÀÚÇϰí Á¶Á÷ ƯÀÌÀû Àç·á °³¹ß°ú °°Àº °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ³ëÀÎ Àα¸ Áõ°¡¿Í ÀÇ·á ÀÎÇÁ¶ó¸¦ °³¼±Çϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀº ÀÌ ¿ªµ¿ÀûÀÎ Áö¿ª ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ÀÇ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : Á¦Ç°º°

  • ½ºÄ³Æúµå
  • ¼¼Æ÷¹è¾ç
  • ÇÏÀ̵å·Î°Ö
  • 3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ
  • ±âŸ Á¦Ç°

Á¦6Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : Àç·á À¯Çüº°

  • ÇÕ¼º ¼ÒÀç
  • »ý¹° Àç·á
  • º¹ÇÕÀç·á
  • ¹ÙÀÌ¿À¼¼¶ó¹Í

Á¦7Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : ±â¼úº°

  • Àü°è ¹æ»ç
  • µ¿°á º¸Á¸
  • Å»¼¼Æ÷È­
  • À¯ÀüÀÚ ÆíÁý
  • Àç»ýÀÇ·á
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : ¿ëµµº°

  • Á¤Çü¿Ü°ú
  • ½Å°æÇÐ
  • ½ÉÀåÇ÷°ü
  • ÇÇºÎ¿Í ¿ÜÇÇ
  • Ä¡°ú
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • º´¿ø¡¤Å¬¸®´Ð
  • ¿¬±¸¼Ò
  • Çмú±â°ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ Á¶Á÷°øÇÐ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Athersys Inc.
  • Osiris Therapeutics Inc.
  • Cytori Therapeutics Inc.
  • Vericel Corporation
  • Regenative Labs LLC
  • MiMedx Group Inc.
  • TissueTech Inc.
  • Stryker Corporation
  • Celgene Corporation
  • Medtronic plc
  • Amgen Inc.
  • Thermo Fisher Scientific Inc.
  • Corning Inc.
  • Glycosan BioSystems Inc.
  • Centrica Inc.
  • Arthrex Inc.
KSA 24.10.04

According to Stratistics MRC, the Global Tissue Engineering Market is accounted for $5.1 billion in 2024 and is expected to reach $13.4 billion by 2030 growing at a CAGR of 17.3% during the forecast period. Tissue engineering is a multidisciplinary field that combines principles from biology and engineering to create biological substitutes aimed at restoring, maintaining, or improving the function of damaged tissues or organs. This process often involves using cells, scaffolds, and biochemical factors to develop viable tissue constructs for medical applications. Tissue engineering encompasses a variety of techniques and applications, including the repair of skin, cartilage, and organs, and plays a crucial role in regenerative medicine

According to a research study titled "Sexuality and relationship experiences of women with spinal cord injury: reflections from an Indian context", published in May 2022, it is estimated that approximately 250,000-500,000 people worldwide experience a spinal cord injury (SCI) annually.

Market Dynamics:

Driver:

Growing need for regenerative medicines

The growing need for regenerative medicines is a key driver of the market. Increasing prevalence of chronic diseases, organ failures, and tissue damage is fueling demand for regenerative therapies that tissue engineering can provide. Tissue engineering aims to restore, maintain, or improve tissue function by developing biological substitutes using cells, scaffolds. This multidisciplinary field combines principles from biology and engineering to create viable tissue constructs for medical applications like skin, cartilage, and organ repair.

Restraint:

Manufacturing scalability

Manufacturing scalability poses significant challenges in the market, negatively affecting its growth potential. The complexity of producing tissue-engineered products at scale often leads to inconsistencies in quality and performance, which can hinder regulatory approval and market entry. This results in a slower pace of innovation and reduces the overall availability of tissue-engineered solutions in the healthcare market, impacting patient outcomes and treatment options.

Opportunity:

Rising healthcare expenditure

The adoption of tissue scaffolds is also on the rise due to their benefits like reduced surgical invasiveness and faster recovery times. This investment addresses the growing demand for innovative treatments for conditions like organ failure, degenerative diseases, and traumatic injuries. As healthcare systems prioritize cost-effective, long-term solutions, the market sees accelerated growth. These factors collectively contribute to the expanding market for tissue engineering and regeneration solutions.

Threat:

High treatment cost

The advanced technologies used, including biomaterials, growth factors, living cells, scaffolds, and functional matrices, make tissue engineering treatments expensive for patients. This limits accessibility and adoption, especially in developing regions with large populations but limited healthcare budgets. Overcoming the financial barriers posed by high treatment costs will be crucial for the market to reach its full potential and provide regenerative solutions to a wider patient population.

Covid-19 Impact:

COVID-19 has impacted the market by accelerating research into regenerative therapies and enhancing focus on developing solutions for severe tissue damage caused by the virus. The pandemic has highlighted the need for advanced tissue repair technologies and driven investments in related research. However, it also caused disruptions in supply chains and clinical trials. Overall, the pandemic has increased urgency for innovations in tissue engineering while presenting challenges in production and development timelines.

The scaffolds segment is expected to be the largest during the forecast period

The scaffolds is expected to be the largest during the forecast period. These structures can be made from synthetic or biologically derived materials, designed to mimic the extracellular matrix of natural tissues. Scaffolds facilitate the regeneration of various tissues, including bone, cartilage, and skin, by promoting cell proliferation and differentiation. Innovations such as 3D printing and hydrogels are enhancing scaffold design, enabling more effective and tailored solutions for complex tissue repair and regeneration needs in regenerative medicine.

The decellularized segment is expected to have the highest CAGR during the forecast period

The decellularized segment is expected to have the highest CAGR during the forecast period. This technique creates scaffolds that can support cell attachment and growth, facilitating tissue regeneration. Decellularized scaffolds are advantageous as they retain natural biochemical cues and mechanical properties, promoting better integration and functionality when recellularized with patient-specific cells. This approach enhances the potential for successful tissue repair and has applications in various fields, including regenerative medicine and organ transplantation.

Region with largest share:

North America is projected to hold the largest market share during the forecast period. The region holds a dominant market share, driven by a robust presence of leading companies, and favorable government policies supporting innovation in tissue engineering. The region's advanced healthcare infrastructure and high spending further enhance the adoption of innovative tissue engineering solutions, addressing the needs of a large patient population suffering from degenerative conditions and injuries.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period driven by rising healthcare demands, advancements in regenerative medicine, and an increasing prevalence of chronic diseases. Key players in the region are investing in new technologies and methodologies to enhance tissue regeneration, addressing challenges such as the development of tissue-specific materials. The increasing geriatric population and government initiatives to improve healthcare infrastructure further support market expansion in this dynamic region.

Key players in the market

Some of the key players in Tissue Engineering market include Athersys Inc., Osiris Therapeutics Inc., Cytori Therapeutics Inc., Vericel Corporation, Regenative Labs LLC, MiMedx Group Inc., TissueTech Inc., Stryker Corporation, Celgene Corporation, Medtronic plc, Amgen Inc., Thermo Fisher Scientific Inc., Corning Inc., Glycosan BioSystems Inc., Centrica Inc. and Arthrex Inc.

Key Developments:

In April 2024, Medtronic plc announced the launch of its latest innovation in cardiac surgery, the Avalus Ultra(TM) valve. This next-generation surgical aortic tissue valve is designed to facilitate ease of use at implant and lifetime patient management. It's an excellent choice for cardiac surgeons and their patients seeking an aortic valve solution that can be fit for the future, right from the start.

In January 2024, Arthrex has launched a new patient-focused resource, TheNanoExperience.com, highlighting the science and benefits of Nano arthroscopy, a modern, least-invasive orthopedic procedure that may allow for a quick return to activity and less pain.

Products Covered:

  • Scaffolds
  • Cell Culture
  • Hydrogels
  • 3D Bioprinting
  • Other Products

Material Types Covered:

  • Synthetic Materials
  • Biological Materials
  • Composite Materials
  • Bioceramics

Technologies Covered:

  • Electrospinning
  • Cryopreservation
  • Decellularization
  • Gene Editing
  • Regenerative Medicine
  • Other Technologies

Applications Covered:

  • Orthopedics
  • Neurology
  • Cardiovascular
  • Skin & Integumentary
  • Dental
  • Other Applications

End Users Covered:

  • Hospitals & Clinics
  • Research Laboratories
  • Academic Institutes
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Tissue Engineering Market, By Product

  • 5.1 Introduction
  • 5.2 Scaffolds
  • 5.3 Cell Culture
  • 5.4 Hydrogels
  • 5.5 3D Bioprinting
  • 5.6 Other Products

6 Global Tissue Engineering Market, By Material Type

  • 6.1 Introduction
  • 6.2 Synthetic Materials
  • 6.3 Biological Materials
  • 6.4 Composite Materials
  • 6.5 Bioceramics

7 Global Tissue Engineering Market, By Technology

  • 7.1 Introduction
  • 7.2 Electrospinning
  • 7.3 Cryopreservation
  • 7.4 Decellularization
  • 7.5 Gene Editing
  • 7.6 Regenerative Medicine
  • 7.7 Other Technologies

8 Global Tissue Engineering Market, By Application

  • 8.1 Introduction
  • 8.2 Orthopedics
  • 8.3 Neurology
  • 8.4 Cardiovascular
  • 8.5 Skin & Integumentary
  • 8.6 Dental
  • 8.7 Other Applications

9 Global Tissue Engineering Market, By End User

  • 9.1 Introduction
  • 9.2 Hospitals & Clinics
  • 9.3 Research Laboratories
  • 9.4 Academic Institutes
  • 9.5 Other End Users

10 Global Tissue Engineering Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Athersys Inc.
  • 12.2 Osiris Therapeutics Inc.
  • 12.3 Cytori Therapeutics Inc.
  • 12.4 Vericel Corporation
  • 12.5 Regenative Labs LLC
  • 12.6 MiMedx Group Inc.
  • 12.7 TissueTech Inc.
  • 12.8 Stryker Corporation
  • 12.9 Celgene Corporation
  • 12.10 Medtronic plc
  • 12.11 Amgen Inc.
  • 12.12 Thermo Fisher Scientific Inc.
  • 12.13 Corning Inc.
  • 12.14 Glycosan BioSystems Inc.
  • 12.15 Centrica Inc.
  • 12.16 Arthrex Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦