![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1558303
÷´Ü ź¼Ò Àç·á ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ±â¼ú, ¿ëµµ, Áö¿ªº° ¼¼°è ºÐ¼®Advanced Carbon Materials Market Forecasts to 2030 - Global Analysis By Product Type (Carbon Fibers, Special Graphite, Carbon Nanotubes, Graphene, Carbon Foams and Other Product Types), Technology, Application and by Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Ã·´Ü ź¼Ò Àç·á ½ÃÀåÀº 2024³â¿¡ 63¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß 8.4%ÀÇ CAGR·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 102¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÷´Ü ź¼Ò Àç·á´Â °í°µµ ´ë Áß·®ºñ, Àüµµ¼º, ¿ ¾ÈÁ¤¼º, ³»ÈÇмº µî Ư¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ¸¹Àº »ê¾÷À» º¯È½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á¿¡´Â ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ, ź¼Ò¼¶À¯, Ç®·¯·» µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ °æ·®È, °íÈ¿À²È, Á¦Ç° ¼º´É °³¼±ÀÌ °¡´ÉÇϹǷΠÂ÷¼¼´ë ±â¼ú¿¡ ÀûÇÕÇÕ´Ï´Ù.
±¹Á¦Åº¼ÒÀç·áÇùȸ¿¡ µû¸£¸é °í¼º´É ¹èÅ͸®, °æ·® º¹ÇÕÀç·á, Â÷¼¼´ë ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ÀÀ¿ëÀÌ È®´ëµÊ¿¡ µû¶ó ÇâÈÄ 10³â°£ ÷´Ü ź¼ÒÀç·á¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä´Â Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¡³ÊÁö ÀúÀå ¹× ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
±×·¡Çɰú ź¼Ò³ª³ëÆ©ºê¿Í °°Àº ¼ÒÀç°¡ ÀüÀÚÁ¦Ç°, ¹èÅ͸®, ½´ÆÛÄ¿ÆÐ½ÃÅÍ¿Í °°Àº ¿¡³ÊÁö ÀúÀå Àåºñ¿¡ »ç¿ëµÇ¸é¼ ÷´Ü ź¼Ò Àç·á ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¼ÒÀç´Â ¶Ù¾î³ Àüµµ¼º, ¿¡³ÊÁö ¹Ðµµ ¹× ³»±¸¼ºÀ¸·Î ÀÎÇØ °í¼º´É °¡ÀüÁ¦Ç°, Àü±âÀÚµ¿Â÷(EV) ¹× Àç»ý ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀ» ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
³ôÀº Á¦Á¶ ºñ¿ë°ú Á¦ÇÑµÈ ±Ô¸ðÀÇ ÀÌÁ¡
÷´Ü ź¼Ò Àç·áÀÇ ³ôÀº Á¦Á¶ ºñ¿ëÀº ½ÃÀåÀ» °¡·Î¸·´Â ÁÖ¿ä À庮 Áß ÇϳªÀÔ´Ï´Ù. ź¼Ò³ª³ëÆ©ºê(CNT) Á¦Á¶¿Í ÈÇбâ»óÁõÂø¹ý(CVD)Àº º¹ÀâÇÑ ÀýÂ÷, Ư¼ö °ø±¸, ´ë·®ÀÇ ¿¡³ÊÁö°¡ ÇÊ¿äÇϹǷΠ±âÁ¸ Àç·áº¸´Ù ´õ ºñ½Ñ ±â¼úÀÇ µÎ °¡Áö ¿¹ÀÔ´Ï´Ù. ¶ÇÇÑ ¸¹Àº ÷´Ü ź¼Ò Àç·á´Â ¾ÆÁ÷ ¼Ò·® »ý»êÀ¸·Î ±Ô¸ðÀÇ °æÁ¦¸¦ ½ÇÇöÇÏ±â ¾î·Æ½À´Ï´Ù.
±¹¹æ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼ÀÇ È°¿ë È®´ë
³ôÀº °µµ ´ë Áß·®ºñ, ¿ ¾ÈÁ¤¼º, °¡È¤ÇÑ È¯°æ¿¡ ´ëÇÑ ³»¼ºÀº Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷¿¡¼ Ç×»ó ¼ÒÀç¿¡ ¿ä±¸µÇ´Â ǰÁúÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ Åº¼Ò¼¶À¯¿Í ±×·¡ÇÉÀ» ºñ·ÔÇÑ Ã·´Ü ź¼Ò Àç·á´Â Ç×°ø¿ìÁÖ ±¸Á¶¹°, À§¼º ºÎǰ, ±¹¹æ °ü·Ã ¿ëµµ·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Ç×°ø±â´Â °æ·®È, ¿¬ºñ Çâ»ó, ¼º´É Çâ»óÀ» À§ÇØ Åº¼Ò¼¶À¯ º¹ÇÕÀ縦 äÅÃÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª °í¼º´É ¼¾¼, °æ·® Àå°©, ´ë·¹ÀÌ´õ ÄÚÆÃÀº ±×·¡ÇÉÀÇ °íÀ¯ÇÑ Æ¯¼ºÀ» ÀÌ¿ëÇÏ¿© °³¹ßµÇ°í ÀÖ½À´Ï´Ù.
Á¤·ÃµÇ°í È®¸³µÈ ´ëü ¼ÒÀç°¡ Ä¡¿ÇÑ °æÀï¿¡ ³ëÃâµÇ¾î ÀÖ½À´Ï´Ù.
÷´Ü ź¼Ò Àç·á ½ÃÀåÀº ÀüÅëÀû ¼ÒÀç¿Í ÷´Ü ´ëü ¼ÒÀç¿ÍÀÇ Ä¡¿ÇÑ °æÀï¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Àß ¾Ë·ÁÁø Ư¼º, Àú·ÅÇÑ ºñ¿ë ¹× È®¸³µÈ °ø±Þ¸ÁÀ¸·Î ÀÎÇØ ±Ý¼Ó, Æú¸®¸Ó ¹× ¼¼¶ó¹Í°ú °°Àº ÀüÅëÀûÀÎ Àç·á´Â ¸¹Àº ¿ëµµ¿¡¼ ¿ìÀ§¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ °í¼º´É ÇÃ¶ó½ºÆ½ ¹× ÷´Ü ÇÕ±ÝÀº ź¼Ò¼¶À¯ º¹ÇÕÀç·á ¹× ±×·¡ÇÉ ±â¹Ý Àç·á¿Í Ä¡¿ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Å¼ÒÀçÀÇ °³¹ßÀÌ ºü¸£°Ô ÁøÇàµÇ°í ÀÖÀ¸¸ç, ÀϺΠ°í¼ºÀå ºÐ¾ß¿¡¼´Â ź¼Ò ¼ÒÀ縦 ´É°¡ÇÒ °¡´É¼ºµµ ÀÖ½À´Ï´Ù.
÷´Ü ź¼Ò¼ÒÀç ½ÃÀåÀº COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÁÖ¿ä Á¦Á¶ Áö¿ªÀÇ °¡µ¿ Áß´Ü ¹× ±âŸ Á¦ÇÑ Á¶Ä¡·Î ÀÎÇØ »ý»ê Áß´Ü, °ø±Þ¸Á Áß´Ü, ÇÁ·ÎÁ§Æ® ÀÏÁ¤ Áö¿¬ÀÌ ¹ß»ýÇÏ¸é¼ ½É°¢ÇÑ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, °Ç¼³ µî ÁÖ¿ä ÃÖÁ¾ »ç¿ë »ê¾÷ÀÌ Ä§Ã¼µÇ¸é¼ ÷´Ü ź¼Ò Àç·á¿¡ ´ëÇÑ ´Ü±â ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ ÆÒµ¥¹ÍÀº Áö¼Ó°¡´É¼º, Àç»ý¿¡³ÊÁö, Çõ½ÅÀû ÇコÄɾ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ·¯ÇÑ ¼ÒÀç¿¡ ÀÇÁ¸ÇÏ´Â ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú¿¡´Â ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ, ÀüÀÚÁ¦Ç°, ÀÇ·á±â±â µîÀÌ Æ÷ÇԵ˴ϴÙ.
ź¼Ò¼¶À¯ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
÷´Ü ź¼Ò Àç·á ½ÃÀåÀº ź¼Ò¼¶À¯ ºÐ¾ß°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ź¼Ò¼¶À¯´Â ¿ì¼öÇÑ °¼º, ¿ì¼öÇÑ ³»¿¼º, ³»ÈÇмº, ¶Ù¾î³ °µµ ´ë Áß·®ºñ·Î ÀÎÇØ ½ºÆ÷Ã÷ ¿ëǰ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, °ÇÃà µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Åº¼Ò¼¶À¯ ¼ö¿ä¿Í ½ÃÀå ¿ìÀ§´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼ ¿¬ºñ È¿À², ¹è±â°¡½º °¨¼Ò ¹× °æ·®È Àç·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í »ý»ê ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Áö¿øµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ÈÇÐ ±â»ó ¼ºÀå(CVD) ºÐ¾ßÀÔ´Ï´Ù.
÷´Ü ź¼Ò¼ÒÀç ½ÃÀå¿¡¼ ÈÇбâ»óÁõÂø¹ý(CVD)Àº ÀϹÝÀûÀ¸·Î °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÈÇбâ»óÁõÂø(CVD)Àº ±âÆÇ À§¿¡ Á¤È®ÇÏ°í ±ÕÀÏÇÑ ÄÚÆÃÀ» »ý¼ºÇÒ ¼ö ÀÖÀ¸¸ç, ±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê¿Í °°Àº °íǰÁú ź¼Ò ¼ÒÀçÀÇ Á¦Á¶¿¡ ³Î¸® »ç¿ëµÇ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ °øÁ¤ÀÌ ¼±È£µÇ´Â ÀÌÀ¯´Â º¹ÇÕÀç·á, ÀüÀÚ, ¿¡³ÊÁö ÀúÀå°ú °°Àº ÷´Ü ¿ëµµ¿¡ ÇÊ¿äÇÑ Á¤¹ÐÇÑ Æ¯¼ºÀ» °¡Áø Àç·á¸¦ »ý»êÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ CVD ºÐ¾ß´Â º¸´Ù Áøº¸µÈ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ »ê¾÷°è ¼ö¿ä¿¡ ÈûÀÔ¾î Â÷¼¼´ë ±â¼ú °³¹ß¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ¸¹Ç·Î Å« ÆøÀÇ ¼ºÀåÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.
÷´Ü ź¼Ò Àç·á ½ÃÀåÀº ºÏ¹Ì°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °·ÂÇÑ »ê¾÷ ±â¹Ý, ´ë±Ô¸ð R&D ÅõÀÚ, ÃÖ°í ¼öÁØÀÇ ±â¼ú ±â¾÷ ¹× ¿¬±¸ ±â°üÀÌ ÁýÁߵǾî ÀÖ´Â °ÍÀÌ ÀÌ Áö¿ªÀÇ ¿ìÀ§ÀÇ ÁÖ¿ä ¿øÀÎÀÔ´Ï´Ù. ÷´Ü ź¼Ò Àç·á¿¡ ´ëÇÑ ¼ö¿ä´Â ƯÈ÷ ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µî ºÐ¾ß¿¡¼ ºÏ¹Ì°¡ ±â¼ú Çõ½Å°ú ±â¼ú ¹ßÀüÀ» Áß½ÃÇÏ´Â µ¥ ÈûÀÔÀº ¹Ù Å®´Ï´Ù.
÷´Ü ź¼Ò Àç·á ½ÃÀå¿¡¼ ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ »ê¾÷ ºÎ¹® ¼ºÀå, Á¦Á¶ ´É·Â Çâ»ó, ÀÎÇÁ¶ó ¹× ±â¼ú¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ ÀÌ·¯ÇÑ ºü¸¥ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µî ÁÖ¿ä ±¹°¡µéÀº ¿¡³ÊÁö ÀúÀå, ÀÚµ¿Â÷, ÀüÀÚÁ¦Ç° µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ÷´Ü ź¼Ò Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥, ¼ÒºñÀÚ ±â¹Ý È®´ë, ±â¼ú ¹ßÀü¿¡ ´ëÇÑ Á߿伺ÀÌ ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Advanced Carbon Materials Market is accounted for $6.32 billion in 2024 and is expected to reach $10.26 billion by 2030 growing at a CAGR of 8.4% during the forecast period. Advanced carbon materials are transforming a number of industries owing to their special qualities, which include high strength-to-weight ratio, electrical conductivity, thermal stability, and chemical resistance. These materials include carbon nanotubes, graphene, carbon fibers, and fullerenes. Moreover, the fact that they can lower weight, boost efficiency, and improve product performance makes them perfect for next-generation technologies.
According to the International Carbon Materials Association, the global demand for advanced carbon materials is expected to grow significantly over the next decade, driven by their increasing applications in high-performance batteries, lightweight composites, and next-generation electronics.
Increasing need for energy storage and electronics
The growing use of materials like graphene and carbon nanotubes in electronics and energy storage devices like batteries and super capacitors is driving the market for advanced carbon materials. Additionally, these materials are crucial for creating high-performance consumer electronics, electric vehicles (EVs), and renewable energy storage systems because of their exceptional electrical conductivity, energy density, and durability.
High production costs and restricted scale economies
The high production cost of advanced carbon materials is one of the main barriers to their market. Carbon nanotube (CNT) production and chemical vapor deposition (CVD) are two examples of techniques that are more expensive than traditional materials because they involve intricate procedures, specialized tools, and a significant amount of energy. Furthermore, a lot of advanced carbon materials are still made in small quantities, which makes it difficult to realize economies of scale.
Growing utilization in the defense and aerospace sectors
High strength-to-weight ratios, thermal stability, and resistance to harsh environments are qualities that the aerospace and defense industries are constantly looking for in materials. To address these needs, advanced carbon materials-especially carbon fibers and graphene-are being utilized more frequently in aerospace structures, satellite parts, and defense-related applications. For instance, aircraft employ carbon fiber composites to lower weight, increase fuel efficiency, and boost performance. However, high-performance sensors, lightweight armor, and anti-radar coatings are being developed using graphene's unique properties.
Sophisticated and established alternatives are in fierce competition
The market for advanced carbon materials is facing serious competition from both well-established materials and cutting-edge substitutes. Because of their well-understood properties, lower costs, and established supply chains, traditional materials like metals, polymers, and ceramics continue to dominate many applications. For example, high-performance plastics and advanced alloys compete fiercely with carbon fiber composites and graphene-based materials in the automotive and aerospace industries. Moreover, new materials are developing quickly and may surpass carbon materials in some high-growth areas.
The market for advanced carbon materials was severely impacted by the COVID-19 pandemic, which resulted in production halts, supply chain disruptions, and project timeline delays because of lockdowns and other restrictions in key manufacturing regions. The short-term demand for advanced carbon materials decreased as a result of the downturn in significant end-use industries like aerospace, automotive, and construction. Additionally, the pandemic hastened the adoption of technologies that depend on these materials, though, as evidenced by the increased focus on sustainability, renewable energy, and innovative healthcare. These technologies include energy storage systems, electronics, and medical devices.
The Carbon Fibers segment is expected to be the largest during the forecast period
The market for advanced carbon materials is dominated by the carbon fiber segment. Carbon fibers are used extensively in many different industries, such as sports equipment, automotive, aerospace, and construction, because of their great stiffness, outstanding heat and chemical resistance, and remarkable strength-to-weight ratio. Furthermore, the demand for and market dominance of carbon fibers are sustained by the growing emphasis in the automotive and aerospace sectors on fuel efficiency, emission reduction, and lightweight materials, as well as by technological advancements in production.
The Chemical Vapor Deposition segment is expected to have the highest CAGR during the forecast period
In the market for advanced carbon materials, chemical vapour deposition (CVD) typically shows the highest CAGR. Due to its ability to produce accurate and uniform coatings on substrates, chemical vapour deposition (CVD) is a widely used technique for producing high-quality carbon materials, including graphene and carbon nanotubes. This process is preferred because it can produce materials with precise properties needed for cutting-edge applications in composites, electronics, and energy storage. Moreover, the CVD segment continues to grow significantly due to its crucial role in the development of next-generation technologies, which is being driven by industry demands for more advanced and high-performance materials.
The market for advanced carbon materials is dominated by North America. The region's strong industrial base, large R&D investments and concentration of top technology firms and research institutes are the main causes of its dominance. The demand for advanced carbon materials is driven by North America's strong emphasis on innovation and technological advancement, particularly in sectors like electronics, automotive, and aerospace.
In the market for advanced carbon materials, Asia-Pacific is growing at the highest CAGR. The region's growing industrial sector, improved manufacturing capabilities, and significant investments in infrastructure and technology are the main drivers of this rapid growth. Key nations like China, India, and Japan are driving demand for advanced carbon materials in a variety of applications, such as energy storage, automotive, and electronics. Moreover, favourable government policies, a growing consumer base, and a strong emphasis on technological advancement are driving the region's market growth at an accelerated rate.
Key players in the market
Some of the key players in Advanced Carbon Materials market include Toray Industries, Solvay, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Teijin Limited, Showa Denko K.K., Zoltek, Arkema S.A., Hanwha Chemical, Nippon Graphite Fiber Corporation, Hexcel Corporation, Jiangsu Cnano Technology Co., Ltd., Graphenea, Inc., Toho Tenax Co. Ltd., XG Sciences, Inc. and Graphite India Limited.
In June 2024, Solvay, a leader in rare earth materials supply for catalysis and electronics, and Cyclic Materials, an advanced metals recycling company building a circular supply chain for rare earth elements and other critical metals, announced the signing of an agreement for the supply of recycled mixed rare earth oxide (rMREO) from Cyclic Materials to Solvay, with shipments to begin in late 2024.
In May 2024, Arkema has agreed to acquire Dow's flexible packaging laminating adhesives business, one of the leading producers of adhesives for the flexible packaging market, generating annual sales of around US$250 million. The proposed acquisition will significantly expand Arkema's portfolio of solutions for flexible packaging, enabling the Group to become a key player in this attractive market.
In May 2023, Toray Industries, Inc., announced that it has signed a four-year global partnership agreement with star Japanese sprinter Abdul Hakim Sani Brown. Under this arrangement, he will receive support from Toray and appear in its advertisements while helping develop materials and taking part in its social contribution initiatives.