½ÃÀ庸°í¼­
»óǰÄÚµå
1558325

ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2030³â) : Àü°³ ¸ðµ¨º°, ±¸¼º¿ä¼Òº°, ¿î¿µº°, ÇÁ·Î¼¼½º À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Robotic Process Automation in Healthcare Market Forecasts to 2030 - Global Analysis By Deployment Model (On-Premises, Cloud-Based and Hybrid), Component (Software and Services), Operations, Process Type, Application, End User and Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ¼¼°è ½ÃÀåÀº 2024³â 21¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 24.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 78¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA)´Â ¼ÒÇÁÆ®¿þ¾î ·Îº¿À» »ç¿ëÇÏ¿© ±ÔÄ¢¿¡ µû¶ó ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ¿© °ü¸®, ÀÓ»ó ¹× ¾÷¹« ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀ» ¸»ÇÑ´Ù, ÀÇ·á ¹®¼­ ÀÛ¼º, Àç°í °ü¸® µîÀÇ ±â´ÉÀ» °£¼ÒÈ­ÇÕ´Ï´Ù. RPA´Â ¼öÀÛ¾÷À» ÁÙÀÓÀ¸·Î½á »ý»ê¼ºÀ» ³ôÀÌ°í ½Ç¼ö¸¦ ÃÖ¼ÒÈ­Çϸç, ÀÇ·á ¼­ºñ½º Á¦°øÀÚ°¡ ¸®¼Ò½º °ü¸®¸¦ ÃÖÀûÈ­ÇÏ°í ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϸ鼭 ȯÀÚ Ä¡·á¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

Blue &Co., LLC°¡ ÀοëÇÑ Á¶»ç¿¡ µû¸£¸é, º¸Çè±Ý û±¸ 1°ÇÀ» ¼öÀÛ¾÷À¸·Î ó¸®ÇÒ °æ¿ì Æò±Õ 85Ãʰ¡ ¼Ò¿äµÇ´Â ¹Ý¸é, RPA ¼Ö·ç¼ÇÀº ´Ü 12ÃÊ ¸¸¿¡ ó¸®ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

ȯÀÚ Ä¡·á °³¼±

RPA ±â¼úÀ» ÅëÇØ ÀÇ·á ¼­ºñ½º Á¦°øÀÚ´Â ÀÏ»óÀûÀÎ °ü¸® ¾÷¹«¸¦ ÀÚµ¿È­ÇÏ¿© ÀÇ·áÁøÀÌ È¯ÀÚ¸¦ Á÷Á¢ µ¹º¸´Â µ¥ ´õ ¸¹Àº ½Ã°£À» ÇÒ¾ÖÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­¸¦ ÅëÇØ µ¥ÀÌÅÍ ÀÔ·Â ¹× ó¸® ¿À·ù¸¦ ÁÙ¿© º¸´Ù Á¤È®ÇÑ È¯ÀÚ ±â·Ï°ú Ä¡·á °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖÀ¸¸ç, RPA´Â ¿¹¾à ¿¹¾à, û±¸ ó¸®, ¾à¹° °ü¸®¸¦ °£¼ÒÈ­ÇÏ¿© Àü¹ÝÀûÀΠȯÀÚ °æÇèÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÔÀ¸·Î½á ÀÇ·áÁøÀº º¸´Ù º¹ÀâÇϰí ȯÀÚ Áß½ÉÀûÀΠȰµ¿¿¡ ÁýÁßÇÒ ¼ö ÀÖ¾î ½Å¼ÓÇÑ ´ëÀÀ°ú °³º°È­ µÈ Ä¡·á·Î À̾îÁ® ±Ã±ØÀûÀ¸·Î °Ç°­ °á°ú¿Í ȯÀÚ ¸¸Á·µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

³ôÀº Ãʱ⠵µÀÔ ºñ¿ë

¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º, ÀÎÇÁ¶ó ¾÷±×·¹À̵å, Á÷¿ø ±³À° µî RPA ¼Ö·ç¼Ç µµÀÔ¿¡ µû¸£´Â Ãʱ⠺ñ¿ëÀº »ó´çÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº ÀÇ·á ±â°ü, ƯÈ÷ ¼Ò±Ô¸ð Ŭ¸®´ÐÀ̳ª º´¿øÀÇ °æ¿ì ÀÌ·¯ÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ µµÀÔÀÌ Áö¿¬µÇ°Å³ª ¹æÇذ¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, RPA¿Í ±âÁ¸ ·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÌ º¹ÀâÇϱ⠶§¹®¿¡ µµÀÔ ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, RPA ¼Ö·ç¼ÇÀÇ ¼³°è, ±¸Çö ¹× À¯Áöº¸¼ö¿¡ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ Àü¹ÝÀûÀÎ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº Ãʱ⠺ñ¿ëÀº ƯÈ÷ ÀçÁ¤Àû ÀÚ¿øÀÌ ÇÑÁ¤µÈ Áö¿ª°ú ºÐ¾ß¿¡¼­ ½ÃÀå ¼ºÀåÀ» µÐÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù.

¿ø°ÝÀÇ·á·Î È®´ë

¿ø°ÝÀÇ·áÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó RPA´Â °¡»ó ÀÇ·á ¼­ºñ½º Á¦°øÀÇ °£¼ÒÈ­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ¸¸ç, RPA´Â ȯÀÚ ¿¹¾à, Áø·á Àü ¼³¹®Áö ÀÛ¼º, Áø·á ÈÄ ÈÄ¼Ó Á¶Ä¡¸¦ ÀÚµ¿È­ÇÏ¿© ¿ø°ÝÀÇ·á ¼­ºñ½ºÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿ø°ÝÀÇ·á¿¡¼­ RPA´Â ´Ù¾çÇÑ ¼Ò½ºÀÇ È¯ÀÚ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ¿© ÀÇ·á ¼­ºñ½º Á¦°øÀÚ°¡ °¡»ó Áø·á Áß¿¡ Á¾ÇÕÀûÀÎ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï Áö¿øÇϸç, RPA ±â¹Ý ÀÚµ¿È­µÈ 꺿Àº ȯÀÚÀÇ Ãʱ⠹®ÀÇ, »ç·Ê ºÐ·ù, ±âº» °Ç°­ Á¤º¸ Á¦°ø, ¿ø°ÝÀÇ·á ¼­ºñ½º ½ºÄÉÁÙ¸µ ¹× »çÈÄ °ü¸®(¿ø°ÝÁø·á ¼­ºñ½º ¿¹¾à) RPA´Â ¶ÇÇÑ ¿þ¾î·¯ºí ±â±â¿¡¼­ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» ÀÚµ¿È­ÇÏ¿© ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µÀ» Áö¿øÇÒ ¼ö ÀÖÀ¸¸ç, ¿ø°ÝÀÇ·á ¼­ºñ½ºÀÇ È®À强À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ RPA¿Í ¿ø°ÝÀÇ·áÀÇ ÅëÇÕÀº »õ·Î¿î ¼­ºñ½º Á¦°ø, ȯÀÚ Âü¿©µµ Çâ»ó, ÀÇ·á ¼­ºñ½º Á¢±Ù¼º È®´ë·Î À̾îÁ® ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼Ç°úÀÇ °æÀï

ÀΰøÁö´É ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ±âÁ¸ RPA¸¦ ´É°¡ÇÒ ¼ö ÀÖ´Â °í±Þ ±â´ÉÀ» Á¦°øÇÏ´Â ¾ÖÇø®ÄÉÀ̼ÇÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI ±â¹Ý ¼Ö·ç¼ÇÀº º¸´Ù º¹ÀâÇÑ ÀÎÁö ÀÛ¾÷À» ó¸®ÇÏ°í º¯È­ÇÏ´Â ½Ã³ª¸®¿À¿¡ ÀûÀÀÇÒ ¼ö Àֱ⠶§¹®¿¡ Á¾ÇÕÀûÀÎ ÀÚµ¿È­¸¦ ¿øÇÏ´Â ÇコÄɾî Á¶Á÷¿¡ ´õ¿í ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. AI°¡ ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÇнÀÇÏ°í °³¼±ÇÏ´Â ´É·ÂÀº ±ÔÄ¢ ±â¹Ý RPA ½Ã½ºÅÛ¿¡ ºñÇØ °æÀï ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¼­ºñ½º Á¦°øÀÚ´Â ÇÁ·Î¼¼½º ÀÚµ¿È­¿Í °í±Þ ºÐ¼®À» ¸ðµÎ Á¦°øÇÏ´Â ÅëÇÕ AI ¼Ö·ç¼ÇÀ» ¼±ÅÃÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â °³º° RPA Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¨¼Ò½Ãų ¼ö ÀÖÀ¸¸ç, RPA¿Í AI ±â¼úÀÇ °æ°è°¡ ¸ðÈ£ÇØÁü¿¡ µû¶ó ½ÃÀåÀ» È¥¶õ½º·´°Ô Çϰí RPA µµÀÔ·ü¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº ÇコÄÉ¾î ºÐ¾ß¿¡¼­ RPAÀÇ µµÀÔÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ Àü·Ê ¾ø´Â ¾Ð¹Ú¿¡ Á÷¸éÇÑ »óȲ¿¡¼­ RPA´Â Áõ°¡ÇÏ´Â °ü¸® ¾÷¹«, ȯÀÚ µ¥ÀÌÅÍ Ã³¸® ¹× ÀÚ¿ø ¹èºÐ °ü¸®¿¡ Áß¿äÇÑ Áö¿øÀ» Á¦°øÇßÀ¸¸ç, RPA ¼Ö·ç¼ÇÀº COVID-19 °Ë»ç ¿öÅ©Ç÷οì, ȯÀÚ °ËÁø ¹× ¹é½Å ¹èÆ÷ ¹°·ùÀÇ ÀÚµ¿È­¿¡ µµ¿òÀ» ÁÖ¾ú½À´Ï´Ù. ÀÚµ¿È­¿¡ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ À§±â´Â ÀÇ·á ½Ã½ºÅÛÀÇ È¸º¹·Â°ú È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖ¾î ÀÚµ¿È­ÀÇ Á߿伺À» ºÎ°¢½ÃÄ×À¸¸ç, ÀÌ ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ RPA µµÀÔ¿¡ ´ëÇÑ Àå±âÀûÀÎ °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â ÇコÄɾî ÇÁ·Î¼¼½º ÀÚµ¿È­¿¡ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇϱ⠶§¹®¿¡ ÇコÄɾî RPA ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, RPA ¼ÒÇÁÆ®¿þ¾î´Â ´Ù¾çÇÑ ÇコÄÉ¾î ¾÷¹«¿¡¼­ ¹Ýº¹ÀûÀÎ ÀÛ¾÷, µ¥ÀÌÅÍ Ã³¸® ¹× ¿öÅ©ÇÃ·Î¿ì °ü¸®¸¦ ÀÚµ¿È­Çϱâ À§ÇÑ ÇÙ½É ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. RPA ¼ÒÇÁÆ®¿þ¾îÀÇ À¯¿¬¼º°ú È®À强À» ÅëÇØ ÀÇ·á ±â°üÀº ȯÀÚ µî·ÏºÎÅÍ Ã»±¸ 󸮱îÁö ƯÁ¤ ¿ä±¸¿¡ ¸Â°Ô ¼Ö·ç¼ÇÀ» ¸ÂÃãÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¼­ºñ½º Á¦°øÀÚµéÀÌ ÀÚµ¿È­ÀÇ ÀÌÁ¡À» Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇÔ¿¡ µû¶ó °í±Þ RPA ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI ÅëÇÕ ¹× ºÐ¼® ±â´É°ú °°Àº °í±Þ ±â´ÉÀÇ Áö¼ÓÀûÀÎ °³¹ßÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼® ¹× ¿¹Ãø ¸ðµ¨¸µ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼® ¹× ¿¹Ãø ¸ðµ¨¸µ ºÐ¾ß´Â ÇコÄɾî ÀÇ»ç°áÁ¤°ú ȯÀÚ Ä¡·á¸¦ º¯È­½Ãų ¼ö ÀÖ´Â ÀáÀç·ÂÀ¸·Î ÀÎÇØ ÇコÄɾî RPA ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, RPA¿Í °í±Þ ºÐ¼® ±â´ÉÀ» °áÇÕÇÏ¿© ÇコÄɾî Á¦°ø¾÷ü´Â ¹æ´ëÇÑ ¾çÀÇ È¯ÀÚ µ¥ÀÌÅ͸¦ ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô Ã³¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ È¯ÀÚ µ¥ÀÌÅ͸¦ ºü¸£°í Á¤È®ÇÏ°Ô Ã³¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ȯÀÚ °á°ú, ÀÚ¿ø ¹èºÐ, Áúº´ µ¿Çâ¿¡ ´ëÇÑ ¿¹Ãø ¸ðµ¨¸µÀ» Áö¿øÇÏ¿© »çÀü ¿¹¹æÀû ÀÇ·á °ü¸®¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ Á߿伺ÀÌ Ä¿Áö¸é¼­ °­·ÂÇÑ ºÐ¼® ±â´ÉÀ» °®Ãá RPA ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº Áý´Ü°Ç°­°ü¸® °³¼±, °³ÀÎÈ­µÈ Ä¡·á °èȹ, Á¶±â °³ÀÔ Àü·«À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ÀÇ·á ÀÎÇÁ¶ó°¡ Àß ±¸ÃàµÇ¾î ÀÖ°í ÷´Ü ±â¼ú äÅ÷üÀÌ ³ôÀº Áö¿ªÀÔ´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç°ú ¾÷¹« È¿À²È­¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÇ·á ¼­ºñ½º Á¦°ø¾÷üµéÀÇ RPA ¼Ö·ç¼Ç µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä RPA º¥´õÀÇ Á¸Àç¿Í ÇコÄɾî IT ±â¾÷ÀÇ ÅºÅºÇÑ »ýŰ谡 ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ºñ¿ë Àý°¨°ú ȯÀÚ ¿¹ÈÄ °³¼±¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Â ÀÌ Áö¿ªÀÇ ³ë·ÂÀº RPA°¡ Á¦°øÇÏ´Â ÇýÅðú ÀÏÄ¡ÇÕ´Ï´Ù. ÀÇ·á ±â·ÏÀÇ µðÁöÅÐÈ­ ÁøÀü°ú ¹Ì±¹ ÀÇ·á ½Ã½ºÅÛÀÇ »óÈ£¿î¿ë¼º ÃßÁøÀº RPA ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸î °¡Áö ¼ºÀå ¿äÀÎÀ¸·Î ÀÎÇØ ÇコÄɾî RPA ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ Áß±¹, Àεµ¿Í °°Àº ±¹°¡¿¡¼­ ÀÇ·á ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­´Â RPA µµÀÔÀÇ ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Àα¸ Áõ°¡¿Í ÀÇ·áºñ Áõ°¡·Î ÀÎÇØ È¿À²ÀûÀÎ ÀÇ·á ¼­ºñ½º Á¦°ø ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ÀÎÇÁ¶ó¸¦ Çö´ëÈ­Çϰí ÀÇ·á Á¢±Ù¼ºÀ» °³¼±Çϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·ÂÀº RPA¿Í °°Àº Çõ½ÅÀûÀÎ ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº ¾Æ½Ã¾Æ ±¹°¡¿¡¼­´Â ÀÇ·á Àü¹®°¡°¡ ºÎÁ·Çϱ⠶§¹®¿¡ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÌ Æ¯È÷ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ½ÅÈï±¹µéÀº ÇコÄɾî IT ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖÀ¸¸ç, ÀÌ´Â RPA µµÀÔ¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇÏ¿© ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ ³ôÀº ¼ºÀå·ü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º Á¦°ø

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : Àü°³ ¸ðµ¨º°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå ±â¹Ý
  • ÇÏÀ̺긮µå

Á¦6Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¼­ºñ½º
    • ±¸Çö ¼­ºñ½º
    • Æ®·¹ÀÌ´× ¹× ¼­Æ÷Æ® ¼­ºñ½º

Á¦7Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ¿î¿µº°

  • ±ÔÄ¢ ±â¹Ý
  • Áö½Ä ±â¹Ý

Á¦8Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ÇÁ·Î¼¼½º À¯Çüº°

  • °ü¸® ÇÁ·Î¼¼½º
    • ȯÀÚ µî·Ï
    • ÀÎ»ç °ü¸®
  • ÀÓ»ó ÇÁ·Î¼¼½º
    • ÀÇ·á ÄÚµù
    • ÀÓ»ó ¹®¼­ °³¼±(CDI)
    • Áø´Ü Áö¿ø
  • ¿î¿µ ÇÁ·Î¼¼½º
    • °ø±Þ¸Á °ü¸®
    • Àç°í °ü¸®
    • ÆÛÆ÷¸Õ½º ºÐ¼®
  • ÄÄÇöóÀ̾𽺠ÇÁ·Î¼¼½º
    • ±ÔÁ¦ º¸°í
    • °¨»ç °ü¸®

Á¦9Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • û±¸ ó¸®
  • ¿¹¾à ½ºÄÉÁÙ
  • û±¸ ¹× ¼öÀÍ Áֱ⠰ü¸®
  • ¿öÅ©Ç÷οì ÀÚµ¿È­
  • µ¥ÀÌÅÍ ºÐ¼®°ú ¿¹Ãø ¸ðµ¨¸µ
  • ȯÀÚ Âü¿©
  • ÀÓ»ó½ÃÇè °ü¸®

Á¦10Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÇコÄɾî Á¦°øÀÚ
    • º´¿ø
    • Áø·á¼Ò ¹× ¿Ü·¡ Áø·á ¼¾ÅÍ
  • ÇコÄɾî ÁöºÒÀÚ
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ¿¬±¸±â°ü
  • Áø´Ü ¼¾ÅÍ

Á¦11Àå ¼¼°èÀÇ ÇコÄÉ¾î ºÐ¾ß ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • UiPath
  • SS&C Blue Prism
  • Automation Anywhere
  • Pegasystems
  • NICE Systems
  • FeatSystems
  • EnterBridge
  • T-impact
  • Element5
  • CloudMedx
  • Microsoft
  • IBM
  • Appian
ksm 24.10.07

According to Stratistics MRC, the Global Robotic Process Automation In Healthcare Market is accounted for $2.1 billion in 2024 and is expected to reach $7.8 billion by 2030, growing at a CAGR of 24.1% during the forecast period. Robotic Process Automation (RPA) in healthcare refers to the use of software robots to automate repetitive, rule-based tasks, improving efficiency and accuracy in administrative, clinical, and operational processes. RPA streamlines functions like patient scheduling, billing, claims processing, medical documentation, and inventory management. By reducing manual effort, RPA enhances productivity, minimizes errors, and enables healthcare providers to focus more on patient care while optimizing resource management and ensuring regulatory compliance.

According to a study cited by Blue & Co., LLC, processing a single insurance claim manually takes an average of 85 seconds, whereas RPA solutions can complete it in just 12 seconds.

Market Dynamics:

Driver:

Improved patient care

RPA technologies enable healthcare providers to automate routine administrative tasks, allowing medical professionals to dedicate more time to direct patient care. This automation reduces errors in data entry and processing, leading to more accurate patient records and improved treatment outcomes. RPA can streamline appointment scheduling, claims processing, and medication management, enhancing the overall patient experience. By automating repetitive tasks, healthcare staff can focus on more complex, patient-centric activities, leading to faster response times and personalized care, ultimately contributing to improved health outcomes and patient satisfaction.

Restraint:

High initial implementation costs

The upfront expenses associated with implementing RPA solutions, including software licenses, infrastructure upgrades, and staff training, can be substantial. Many healthcare organizations, particularly smaller clinics and hospitals, may find these costs prohibitive, delaying or preventing adoption. The complexity of integrating RPA with existing legacy systems in healthcare settings can further increase implementation costs. Additionally, the needs for specialized expertise to design, implement, and maintain RPA solutions add to the overall expense. These high initial costs can slow market growth, especially in regions or sectors with limited financial resources.

Opportunity:

Expansion into telemedicine

As telemedicine adoption accelerates, RPA can play a crucial role in streamlining virtual healthcare delivery. RPA can automate patient scheduling, pre-appointment questionnaires, and post-visit follow-ups, enhancing the efficiency of telehealth services. In telemedicine, RPA can facilitate seamless integration of patient data from various sources, ensuring healthcare providers have comprehensive information during virtual consultations. Automated chatbots powered by RPA can handle initial patient inquiries, triage cases, and provide basic health information, improving the scalability of telemedicine services. RPA can also assist in remote patient monitoring by automating data collection and analysis from wearable devices. This integration of RPA with telemedicine can lead to new service offerings, improved patient engagement, and expanded access to healthcare, driving market growth.

Threat:

Competition from AI-driven Solutions

As artificial intelligence technologies advance, they offer increasingly sophisticated capabilities that can potentially surpass traditional RPA in certain applications. AI-driven solutions can handle more complex, cognitive tasks and adapt to changing scenarios, potentially making them more attractive for healthcare organizations seeking comprehensive automation. The ability of AI to learn and improve over time may provide a competitive edge over rule-based RPA systems. Healthcare providers might opt for integrated AI solutions that offer both process automation and advanced analytics, potentially reducing the demand for standalone RPA products. The blurring lines between RPA and AI technologies could lead to market confusion and impact RPA adoption rates.

Covid-19 Impact:

The COVID-19 pandemic accelerated the adoption of RPA in healthcare. As healthcare systems faced unprecedented pressures, RPA provided crucial support in managing increased administrative workloads, patient data processing, and resource allocation. RPA solutions helped in automating COVID-19 testing workflows, patient screening, and vaccine distribution logistics. The crisis highlighted the importance of automation in enhancing healthcare system resilience and efficiency, driving long-term interest in RPA adoption across the sector.

The software segment is expected to be the largest during the forecast period

The software segment is anticipated to dominate the RPA in the healthcare market due to its central role in automating healthcare processes. RPA software provides the core functionality for automating repetitive tasks, data processing, and workflow management across various healthcare operations. The flexibility and scalability of RPA software allow healthcare organizations to customize solutions to their specific needs, from patient registration to claims processing. As healthcare providers increasingly recognize the benefits of automation, the demand for sophisticated RPA software solutions is growing. The continuous development of more advanced features, including AI integration and analytics capabilities, further drives the growth of this segment.

The data analytics and predictive modeling segment is expected to have the highest CAGR during the forecast period

The data analytics and predictive modeling segment is projected to experience the highest CAGR in the RPA in the healthcare market due to its potential to transform healthcare decision-making and patient care. RPA combined with advanced analytics capabilities enables healthcare providers to process and analyze vast amounts of patient data quickly and accurately. This integration supports predictive modeling for patient outcomes, resource allocation, and disease trends, enhancing proactive healthcare management. The growing emphasis on data-driven decision-making in healthcare is driving demand for RPA solutions with robust analytics features. These capabilities allow for improved population health management, personalized treatment plans, and early intervention strategies.

Region with largest share:

The North America region is anticipated to be the largest during the forecast period. The region has a well-established healthcare infrastructure and a high adoption rate of advanced technologies. Stringent regulatory requirements and the need for improved operational efficiency drive healthcare providers to implement RPA solutions. The presence of major RPA vendors and a robust ecosystem of healthcare IT companies contribute to market growth. Additionally, the region's focus on reducing healthcare costs and improving patient outcomes aligns well with the benefits offered by RPA. The increasing digitization of healthcare records and the push for interoperability in the U.S. healthcare system further fuel the demand for RPA solutions.

Region with highest CAGR:

The Asia Pacific region is expected to witness the highest CAGR in the RPA in Healthcare market due to several growth factors. Rapid digitalization of healthcare systems, particularly in countries like China and India, is creating opportunities for RPA adoption. The region's large and growing population, coupled with increasing healthcare expenditure, drives the need for efficient healthcare delivery systems. Government initiatives to modernize healthcare infrastructure and improve access to care are promoting the adoption of innovative technologies like RPA. The shortage of healthcare professionals in many Asian countries makes automation solutions particularly attractive. Additionally, the region's emerging economies are investing in healthcare IT infrastructure, creating a favorable environment for RPA implementation and contributing to the high growth rate in the Asia Pacific market.

Key players in the market

Some of the key players in Robotic Process Automation In Healthcare Market include UiPath, SS&C Blue Prism, Automation Anywhere, Pegasystems, NICE Systems, FeatSystems, EnterBridge, T-impact, Element5, CloudMedx, Microsoft, IBM, and Appian.

Key Developments:

In August 2024, Pegasystems Inc., the leading enterprise AI decisioning and workflow automation platform provider, announced it is expanding its relationship with Amazon Web Services (AWS). Pega is among the initial companies to reveal it will leverage the recently announced AWS European Sovereign Cloud to deliver the Pega EU Service Boundary - a solution that will help customers meet their most stringent digital sovereignty goals within the European Union (EU). The Pega EU Service Boundary is set to launch alongside the AWS European Sovereign Cloud at the end of 2025.

In March 2024, UiPath, a leading enterprise automation and AI software company, announced the general availability of UiPath Automation Cloud(TM) on Microsoft Azure in the UK, driven by high customer demand for local data residency and a growing need for AI and automation from UiPath. The expansion enables private and public-sector customers to strategically position their infrastructure, applications, and data to better comply with local data residency laws.

In May 2023, SS&C Technologies Holdings, Inc. has launched SS&C Blue Prism Process Intelligence 2.0, the next-generation AI-powered process and task mining solution. Powered by ABBYY Timeline 6.0, the solution accelerates process discovery and identification time by up to 80%. Integration with SS&C Blue Prism Chorus business process management (BPM) enables continuous process optimization and rapid scalability. The enhancements enable businesses to better manage and optimize processes for maximum business results.

Deployment Models Covered:

  • On-Premises
  • Cloud-Based
  • Hybrid

Components Covered:

  • Software
  • Services

Operations Covered:

  • Rule-Based
  • Knowledge-Based

Process Types Covered:

  • Administrative Processes
  • Clinical Processes
  • Operational Processes
  • Compliance Processes

Applications Covered:

  • Claims Processing
  • Appointment Scheduling
  • Billing and Revenue Cycle Management
  • Workflow Automation
  • Data Analytics and Predictive Modeling
  • Patient Engagement
  • Clinical Trial Management

End Users Covered:

  • Healthcare Providers
  • Healthcare Payers
  • Pharmaceutical and Biotechnology Companies
  • Research Institutions
  • Diagnostic Centers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robotic Process Automation In Healthcare Market, By Deployment Model

  • 5.1 Introduction
  • 5.2 On-Premises
  • 5.3 Cloud-Based
  • 5.4 Hybrid

6 Global Robotic Process Automation In Healthcare Market, By Component

  • 6.1 Introduction
  • 6.2 Software
  • 6.3 Services
    • 6.3.1 Consulting Services
    • 6.3.2 Implementation Services
    • 6.3.3 Training and Support Services

7 Global Robotic Process Automation In Healthcare Market, By Operations

  • 7.1 Introduction
  • 7.2 Rule-Based
  • 7.3 Knowledge-Based

8 Global Robotic Process Automation In Healthcare Market, By Process Type

  • 8.1 Introduction
  • 8.2 Administrative Processes
    • 8.2.1 Patient Registration
    • 8.2.2 Human Resources Management
  • 8.3 Clinical Processes
    • 8.3.1 Medical Coding
    • 8.3.2 Clinical Documentation Improvement (CDI)
    • 8.3.3 Diagnostics Assistance
  • 8.4 Operational Processes
    • 8.4.1 Supply Chain Management
    • 8.4.2 Inventory Control
    • 8.4.3 Performance Analytics
  • 8.5 Compliance Processes
    • 8.5.1 Regulatory Reporting
    • 8.5.2 Audit Management

9 Global Robotic Process Automation In Healthcare Market, By Application

  • 9.1 Introduction
  • 9.2 Claims Processing
  • 9.3 Appointment Scheduling
  • 9.4 Billing and Revenue Cycle Management
  • 9.5 Workflow Automation
  • 9.6 Data Analytics and Predictive Modeling
  • 9.7 Patient Engagement
  • 9.8 Clinical Trial Management

10 Global Robotic Process Automation In Healthcare Market, By End User

  • 10.1 Introduction
  • 10.2 Healthcare Providers
    • 10.2.1 Hospitals
    • 10.2.2 Clinics and Ambulatory Care Centers
  • 10.3 Healthcare Payers
  • 10.4 Pharmaceutical and Biotechnology Companies
  • 10.5 Research Institutions
  • 10.6 Diagnostic Centers

11 Global Robotic Process Automation In Healthcare Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 UiPath
  • 13.2 SS&C Blue Prism
  • 13.3 Automation Anywhere
  • 13.4 Pegasystems
  • 13.5 NICE Systems
  • 13.6 FeatSystems
  • 13.7 EnterBridge
  • 13.8 T-impact
  • 13.9 Element5
  • 13.10 CloudMedx
  • 13.11 Microsoft
  • 13.12 IBM
  • 13.13 Appian
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦