½ÃÀ庸°í¼­
»óǰÄÚµå
1558353

dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀå ¿¹Ãø(-2030³â) : Àç·áº°, ±æÀ̺°, ¿ëµµº°, Áö¿ªº° ¼¼°è ½ÃÀå ºÐ¼®

Wind Turbine Rotor Blade Market Forecasts to 2030 - Global Analysis By Material, Length, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀåÀº 2024³â 129¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 23.4%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 456¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹À̵å´Â ¹Ù¶÷ÀÇ ¿îµ¿ ¿¡³ÊÁö¸¦ Æ÷ÂøÇÏ¿© ±â°èÀû ¿¡³ÊÁö·Î º¯È¯Çϵµ·Ï ¼³°èµÈ dz·Â ÅͺóÀÇ ÇÙ½É ºÎǰÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î À¯¸®¼¶À¯ ¹× ź¼Ò¼¶À¯ º¹ÇÕÀç·á¿Í °°Àº °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ Àç·á·Î ±¸¼ºµÇ¸ç, È¿À²°ú ¼º´ÉÀ» ÃÖÀûÈ­Çϱâ À§ÇØ °ø±â¿ªÇÐÀûÀ¸·Î ¼ºÇüµË´Ï´Ù. °¢ ºí·¹À̵å´Â ·ÎÅÍ Çãºê¿¡ ÀåÂøµÇ¾î ¹Ù¶÷¿¡ ÀÇÇØ ȸÀüÇÒ ¶§ ¹ßÀü±â¸¦ ±¸µ¿ÇÏ¿© Àü±â¸¦ »ý»êÇÕ´Ï´Ù. ºí·¹À̵åÀÇ ¼³°è´Â ¿¡³ÊÁö¸¦ ÃÖ´ëÈ­Çϰí ÀúÇ×À» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ºñƲ¸²°ú Å×ÀÌÆÛ¸µ°ú °°Àº Ư¡À» ÅëÇØ ¿øÈ°ÇÑ °ø±â È帧°ú È¿°úÀûÀÎ ¹ßÀüÀ» º¸ÀåÇÕ´Ï´Ù.

Àεµ ½ÅÀç»ý¿¡³ÊÁöºÎ¿¡ µû¸£¸é 2021³â ÇöÀç ÀεµÀÇ Ç³·Â¹ßÀü ¼³ºñ ¿ë·®Àº ¼¼°è¿¡¼­ 4¹øÂ°·Î ³ôÀº 40.08GW·Î ÃÑ ¼³ºñ¿ë·®ÀÌ 40.08GW¿¡ ´ÞÇÕ´Ï´Ù.

¸ÂÃãÇü À¯¿¬ÇÑ Ç³·Â Åͺó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¸ÂÃãÇü À¯¿¬ÇÑ Ç³·Â Åͺó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹À̵åÀÇ °³¹ßÀÌ Å©°Ô ÁøÀüµÇ°í ÀÖ½À´Ï´Ù. dz·Â¿¡³ÊÁö°¡ Áö¼Ó°¡´ÉÇÑ ¹ßÀü¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­ ƯÁ¤ dzȲ°ú ¿î¿µ ¿ä°Ç¿¡ ¸Â°Ô ¸ÂÃãÇüÀ¸·Î Á¦ÀÛÇÒ ¼ö ÀÖ´Â ·ÎÅÍ ºí·¹À̵忡 ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ºí·¹À̵å´Â ´Ù¾çÇÑ Ç³¼Ó°ú ³­·ù¿¡ ¸Â°Ô ¸ð¾ç, ±æÀÌ ¹× Àç·á ±¸¼ºÀ» Á¶Á¤ÇÏ¿© ¿¡³ÊÁö Æ÷ÁýÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº È¿À²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ±â°èÀû ½ºÆ®·¹½º¸¦ ÁÙ¿© ÅͺóÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥¿¡µµ µµ¿òÀÌ µË´Ï´Ù.

±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠Á¦¾àÁ¶°Ç

±ÔÁ¦ ¹× ±ÔÁ¤ Áؼö Á¦¾àÀº dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹À̵åÀÇ °³¹ß ¹× µµÀÔ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº dz·Â¿¡³ÊÁö ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇϱâ À§ÇØ ±ÔÁ¦ ±â°üÀÌ ºÎ°úÇÏ´Â ¾ö°ÝÇÑ ¾ÈÀü, ȯ°æ ¹× ¼º´É ±âÁØ¿¡¼­ ºñ·ÔµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿¹¸¦ µé¾î, ±¹Á¦Àü±âÇ¥ÁØÈ¸ÀÇ(IEC)¿Í °°Àº ±¹Á¦ Ç¥ÁØÀ» ÁؼöÇϱâ À§Çؼ­´Â ´ë±Ô¸ð Å×½ºÆ®¿Í ÀÎÁõÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ¶ÇÇÑ, ȯ°æ ±ÔÁ¦·Î ÀÎÇØ ºí·¹À̵åÀÇ Àç·á¿Í Á¦Á¶ °øÁ¤ÀÌ »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇØ¾ß Çϱ⠶§¹®¿¡ Á¦Á¶ Áö¿¬°ú Á¦Á¶ ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

ÀÎÇÁ¶ó °³¹ß

Àç·á °úÇаú Á¦Á¶ °øÁ¤ÀÇ Çõ½ÅÀº ÀÌ·¯ÇÑ ÁøÈ­ÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ÷´Ü ź¼Ò¼¶À¯ ¹× ¼öÁö¿Í °°Àº °­È­µÈ º¹ÇÕÀç·á´Â ºí·¹À̵带 ´õ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç, ´õ °¡È¤ÇÑ È¯°æ Á¶°ÇÀ» °ßµð°í ¹Ù¶÷À¸·ÎºÎÅÍ ´õ ¸¹Àº ¿¡³ÊÁö¸¦ Èí¼öÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, ´õ Å©°í Á¤¹ÐÇÑ Á¦Á¶ Àåºñ¿Í °°Àº Á¦Á¶ ÀÎÇÁ¶óÀÇ °³¼±À¸·Î °ø±â¿ªÇÐÀûÀ¸·Î ÃÖÀûÈ­µÈ ´õ ±ä ºí·¹À̵带 »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÎÇÁ¶ó´Â ¶ÇÇÑ »ý»ê °øÁ¤¿¡¼­ ´õ ³ªÀº ǰÁú °ü¸®¿Í È¿À²¼ºÀ» Áö¿øÇÕ´Ï´Ù.

ȯ°æ°ú ¹Ì°ü¿¡ ´ëÇÑ ¹è·Á

dz·Â Åͺó¿ë ·ÎÅÍ ºí·¹À̵å´Â ȯ°æ°ú ¹ÌÀû Ãø¸é ¸ðµÎ¿¡¼­ Å« µµÀü¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ȯ°æ Ãø¸é¿¡¼­ ºí·¹À̵åÀÇ Á¦Á¶ ¹× Æó±â´Â ÀçȰ¿ëÀÌ ¾î·Æ°í Æó±â¹°À» À¯¹ßÇÏ´Â º¹ÇÕÀç·á¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ¹®Á¦¸¦ ÀÏÀ¸Å³ ¼ö ÀÖ½À´Ï´Ù. Å©±â°¡ Å©°í ÀÛµ¿ Áß¿¡ ¹ß»ýÇÏ´Â ¼ÒÀ½Àº Áö¿ª ¾ß»ý µ¿¹°°ú »ýŰè, ƯÈ÷ ºí·¹À̵å¿Í Ãæµ¹ ÇÒ ¼öÀÖ´Â »õ¿Í ¹ÚÁãÀÇ °³Ã¼ ¼ö¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. dz·Â ÅͺóÀÇ ¿ì¶Ò ¼ÚÀº Á¸Àç°¨°ú ȸÀüÇÏ´Â ºí·¹À̵å´Â ÀÚ¿¬ °æ°ü°ú Àü¸ÁÀ» ÆÄ±«ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ °æ°üÀû °¡Ä¡¸¦ ¿ì¼±½ÃÇÏ´Â Áö¿ª »çȸ¿Í ÀÌÇØ°ü°èÀÚµéÀÇ ÀúÇ×À» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19´Â ¼¼°è °ø±Þ¸Á È¥¶õ°ú Á¦Á¶ Áö¿¬À» ÅëÇØ dz·Â Åͺó ·ÎÅÍ ºí·¹ÀÌµå »ê¾÷¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °¡µ¿ Áß´Ü ¹× Á¦ÇÑÀ¸·Î ÀÎÇØ Çʼö ºÎǰ ¹× ¿øÀÚÀç »ý»êÀÌ Áß´ÜµÇ¾î °ø±Þ ºÎÁ·°ú ºñ¿ë Áõ°¡·Î À̾îÁ³½À´Ï´Ù. ³ëµ¿·Â Á¦ÇѰú °Ç°­ ¹®Á¦·Î ÀÎÇØ Á¦Á¶ °øÁ¤°ú À¯Áöº¸¼ö Ȱµ¿ÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. COVID-19·Î ÀÎÇÑ °æÁ¦Àû Ÿ°ÝÀº ÅõÀÚ °¨¼Ò¿Í dz·Â ÇÁ·ÎÁ§Æ® ¿¬±â ¹× Áß´ÜÀ¸·Î À̾îÁ® ·ÎÅÍ ºí·¹ÀÌµå ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ½Å±Ô dz·Â¹ßÀü¼Ò °Ç¼³À» Áö¿¬½ÃÄ×À» »Ó¸¸ ¾Æ´Ï¶ó ÁøÇà ÁßÀÎ ÇÁ·ÎÁ§Æ®¿¡µµ ¿µÇâÀ» ¹ÌÃÄ ºñÈ¿À²°ú ¿î¿µ ºñ¿ë Áõ°¡·Î À̾îÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ź¼Ò º¹ÇÕÀç ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ź¼Ò º¹ÇÕÀç ºÐ¾ß´Â Ã·´Ü ¼ÒÀçÀÇ ¼º´É ¹× ³»±¸¼º Çâ»óÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶Ù¾î³­ °­µµ ´ë Áß·® ºñÀ²·Î À¯¸íÇÑ Åº¼Ò º¹ÇÕÀç·á´Â È¿À²¼º°ú ¼ö¸íÀ» Çâ»ó½Ã۱â À§ÇØ ·ÎÅÍ ºí·¹À̵忡 Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀç´Â ±âÁ¸ À¯¸®¼¶À¯¿¡ ºñÇØ ¹«°Ô°¡ Å©°Ô ÁÙ¾îµé¾î ´õ ±æ°í °ø±â¿ªÇÐÀûÀÎ ºí·¹ÀÌµå ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¿¡³ÊÁö Æ÷Áý°ú Àüü ÅͺóÀÇ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ź¼Ò º¹ÇÕÀç·á´Â ÇÇ·Î¿Í È¯°æÀû ¾ÇÈ­¿¡ ´ëÇÑ ÀúÇ×·ÂÀÌ ¶Ù¾î³ª À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÏ°í ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇØ»ó dz·Â Åͺó ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇØ»ó dz·Â Åͺó ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºí·¹ÀÌµå ¼³°è ¹× Àç·áÀÇ ¹ßÀüÀº º¸´Ù ¾ÈÁ¤ÀûÀÌ°í °­ÇÑ ÇØ»ódzÀÇ ¿¡³ÊÁö Æ÷ȹÀ» ÃÖÀûÈ­ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ±â¼ú¿¡´Â ºÎ½Ä¿¡ °­Çϰí À¯Áöº¸¼ö Çʿ伺À» ÁÙ¿©ÁÖ´Â ´õ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ º¹ÇÕÀç·áÀÇ »ç¿ëÀÌ Æ÷ÇԵ˴ϴÙ. ´õ ±æ°í °ø±â¿ªÇÐÀûÀ¸·Î ´õ Á¤±³ÇÑ ºí·¹À̵å´Â ³·Àº dz¼Ó¿¡¼­µµ ´õ ¸¹Àº dz·Â¿¡³ÊÁö¸¦ Æ÷ÂøÇϱâ À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºí·¹À̵åÀÇ °¢µµ¸¦ ½Ç½Ã°£À¸·Î Á¶Á¤Çϰí È¿À²À» ±Ø´ëÈ­ÇÏ¸ç ¸¶¸ð¸¦ ÃÖ¼ÒÈ­Çϱâ À§ÇØ °í±Þ ¼¾¼­¿Í Á¦¾î ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¿© ¼³°è¸¦ °­È­Çß½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

À¯·´ Áö¿ª ±¹°¡µéÀÌ Àç»ý¿¡³ÊÁö ¿ë·®À» È®´ëÇϱâ À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó º¸´Ù È¿À²ÀûÀÌ°í ´ëÇüÈ­µÈ dz·Â ÅÍºó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó À¯·´ Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀº ·ÎÅÍ ºí·¹ÀÌµå ±â¼úÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº ´õ ¸¹Àº dz·Â¿¡³ÊÁö¸¦ Æ÷ÂøÇÏ°í ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¼³°è, Àç·á ¹× °ø±â¿ªÇÐÀ» °­È­ÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ±â¼ú·Î´Â °æ·®È­ ¹× °í°­µµ º¹ÇÕÀç·á »ç¿ë, ºí·¹À̵å Çü»ó ÃÖÀûÈ­, ½Ç½Ã°£ ¼º´É ¸ð´ÏÅ͸µÀ» À§ÇÑ ÅëÇÕ ¼¾¼­ µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº dz·Â ÅͺóÀÇ È¿À²°ú ¼ö¸íÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Áö¿ª ÀüüÀÇ Ç³·Â¿¡³ÊÁö ºñ¿ë Àý°¨¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

À¯·´ Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤ºÎ ±ÔÁ¦´Â ºí·¹ÀÌµå ¼³°è ¹× Á¦Á¶ÀÇ Çõ½Å°ú È¿À²¼ºÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº ÀÌ Áö¿ª¿¡¼­ ³»±¸¼º°ú °ø±â¿ªÇÐÀû È¿À²À» Çâ»ó½ÃŰ´Â ÷´Ü ±â¼ú°ú Àç·á¸¦ äÅÃÇϵµ·Ï °­¿äÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯·´¿¬ÇÕ(EU)Àº ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ´Â ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ¿© dz·Â¿¡³ÊÁö¸¦ ´õ ¸¹ÀÌ Èí¼öÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â ±æ°í °¡º­¿î ºí·¹À̵带 °³¹ßÇÏ°Ô µÇ¾ú½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Ç³·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀå : Àç·áº°

  • Ä«º» º¹ÇÕÀç
  • À¯¸®¼¶À¯
  • ±âŸ Àç·á

Á¦6Àå ¼¼°èÀÇ Ç³·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀå : ±æÀ̺°

  • 45¹ÌÅÍ ÀÌÇÏ
  • 45-60¹ÌÅÍ
  • 60¹ÌÅÍ ÀÌ»ó

Á¦7Àå ¼¼°èÀÇ Ç³·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀå : ¿ëµµº°

  • ÇØ»ó dz·Â Åͺó
  • À°»ó dz·Â Åͺó

Á¦8Àå ¼¼°èÀÇ Ç³·Â Åͺó¿ë ·ÎÅÍ ºí·¹ÀÌµå ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ °³¿ä

  • Acciona S.A
  • Enercon GmbH
  • GE Renewable Energy
  • Hitachi Power Solutions
  • Nordex Group
  • Siemens AG
  • Sinoma Wind Power Blade Co. Ltd
  • Suzlon Energy
  • TPI Composites Inc
  • Vestas Wind Systems A/S
ksm 24.10.07

According to Stratistics MRC, the Global Wind Turbine Rotor Blade Market is accounted for $12.9 billion in 2024 and is expected to reach $45.6 billion by 2030 growing at a CAGR of 23.4% during the forecast period. A wind turbine rotor blade is a crucial component of a wind turbine, designed to capture the kinetic energy of the wind and convert it into mechanical energy. Typically constructed from lightweight, durable materials such as fiberglass or carbon fiber composites, these blades are aerodynamically shaped to optimize efficiency and performance. Each blade is attached to the rotor hub, which, when turned by the wind, drives the generator to produce electricity. The design of the blade is essential for maximizing energy capture and minimizing resistance, with features like twist and tapering to ensure smooth airflow and effective power generation.

According to India's Ministry of New and Renewable Energy, as of 2021 the country had the fourth-highest installed wind energy capacity in the world, with a total installed capacity of 40.08 GW.

Market Dynamics:

Driver:

Growing demand for customized and flexible wind turbine solutions

The growing demand for customized and flexible wind turbine solutions is substantially advancing the development of wind turbine rotor blades. As wind energy becomes an increasingly critical component of sustainable power generation, there is a push for rotor blades that can be tailored to specific wind conditions and operational requirements. Customized blades can optimize energy capture by adjusting their shape, length, and material composition to suit varying wind speeds and turbulence. This flexibility not only improves efficiency but also extends the operational lifespan of the turbines by reducing mechanical stress.

Restraint:

Regulatory and compliance constraints

Regulatory and compliance constraints can significantly impact the development and deployment of wind turbine rotor blades. These constraints often arise from stringent safety, environmental, and performance standards imposed by regulatory bodies to ensure the reliability and sustainability of wind energy systems. For instance, compliance with international standards such as those from the International Electrotechnical Commission (IEC) requires extensive testing and certification, which can be time-consuming and costly. Environmental regulations also mandate that blade materials and manufacturing processes minimize ecological impact, leading to potential delays and increased production costs.

Opportunity:

Infrastructure development

Innovations in materials science and manufacturing processes are at the forefront of this evolution. Enhanced composite materials, such as advanced carbon fibers and resins, are making blades lighter and more durable, allowing them to capture more energy from the wind while withstanding harsher environmental conditions. Additionally, improvements in manufacturing infrastructure, including larger and more precise production facilities, enable the creation of longer blades with optimized aerodynamics. This infrastructure also supports better quality control and efficiency in the production process.

Threat:

Environmental and aesthetic concerns

Wind turbine rotor blades face significant challenges from both environmental and aesthetic concerns. Environmentally, the production and disposal of these blades can pose issues due to their reliance on composite materials, which are difficult to recycle and can contribute to waste. Their large size and the noise they generate during operation can impact local wildlife and ecosystems, particularly bird and bat populations, which may collide with the blades. Aesthetically, the visual impact of wind turbines can be contentious, as their towering presence and rotating blades can disrupt natural landscapes and views. This has led to resistance from communities and stakeholders who prioritize scenic values.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the wind turbine rotor blade industry through disruptions in global supply chains and manufacturing delays. Lockdowns and restrictions hindered the production of essential components and raw materials, leading to shortages and increased costs. Workforce limitations and health concerns slowed down manufacturing processes and maintenance activities. The pandemic's economic fallout also resulted in reduced investment and postponed or canceled wind energy projects, affecting demand for rotor blades. These challenges not only delayed the deployment of new wind farms but also impacted ongoing projects, leading to inefficiencies and increased operational costs.

The Carbon Composite segment is expected to be the largest during the forecast period

Carbon Composite segment is expected to be the largest during the forecast period by enhancing performance and durability through advanced materials. Carbon composites, known for their exceptional strength-to-weight ratio, are increasingly being used in rotor blades to improve their efficiency and longevity. These materials provide significant weight reduction compared to traditional fiberglass, allowing for longer and more aerodynamic blade designs. This, in turn, enhances energy capture and overall turbine performance. Additionally, carbon composites offer superior resistance to fatigue and environmental degradation, which translates to reduced maintenance costs and extended operational life.

The Offshore Wind Turbines segment is expected to have the highest CAGR during the forecast period

Offshore Wind Turbines segment is expected to have the highest CAGR during the forecast period. Advances in blade design and materials are aimed at optimizing energy capture from the more consistent and stronger offshore winds. Innovations include the use of lighter, more durable composite materials that resist corrosion and reduce maintenance needs. Longer and more aerodynamically refined blades are being developed to capture more wind energy, even at lower wind speeds. Enhanced design also involves integrating advanced sensors and control systems to adjust blade angles in real-time, maximizing efficiency and minimizing wear.

Region with largest share:

As countries in the region commit to expanding their renewable energy capacities, the demand for more efficient and larger wind turbines grows, Europe region is poised to hold lucrative growth over the projection period. This drive is prompting innovations in rotor blade technology, with manufacturers focusing on enhancing their design, materials and aerodynamics to capture more wind energy and improve performance across the region. Advances include the use of lighter and stronger composite materials, optimized blade shapes, and integrated sensors for real-time performance monitoring. These improvements not only boost the efficiency and lifespan of wind turbines but also contribute to reducing the overall cost of wind energy throughout the region.

Region with highest CAGR:

Europe region is projected to hold the largest share of the market over the extrapolated time frame. Government regulations drive innovation and efficiency in blade design and manufacturing, compelling companies to adopt cutting-edge technologies and materials that enhance durability and aerodynamic efficiency across the region. For instance, the European Union's focus on reducing carbon emissions has spurred investments in research and development, leading to the creation of longer and lighter blades that capture more wind energy and reduce costs.

Key players in the market

Some of the key players in Wind Turbine Rotor Blade market include Acciona S.A, Enercon GmbH, GE Renewable Energy, Hitachi Power Solutions, Nordex Group, Siemens AG, Sinoma Wind Power Blade Co. Ltd, Suzlon Energy, TPI Composites Inc and Vestas Wind Systems A/S.

Key Developments:

In May 2024, Siemens Energy AG announced its plan to sell turbine unit of Indian subsidiary Siemens Gamesa Renewable Energy. The company plans to focus on European and U.S. market despite challenges. However, in India the company remains obligated to provide services.

In March 2023, EnBW secured loan of nearly USD 650 million from the European Investment Bank for its wind farm in North Sea. With this project, the company has plans to provide green electricity to 1.1 million household.

In December 2022, Covestro and Zhuzhou Times New Material Technology, a polyurethane (PU) wind turbine manufacturer, announced the launch of the one-thousandth PU wind turbine blade, achieving commercialization goals initially developed under a memorandum of cooperation signed by both companies approximately one year prior.

In November 2022, Stora Enso and Voodin Blade Technology GmbH entered into a collaboration to develop wood-based blades for sustainable wind turbines. Under the terms of the agreement, the companies have committed to devising environmentally friendly alternatives for wind turbine blades and establishing a competitive and dependable supply chain.

Materials Covered:

  • Carbon Composite
  • Glass Fiber
  • Other Materials

Lengths Covered:

  • Below 45 meters
  • 45-60 meters
  • Above 60 meters

Applications Covered:

  • Offshore Wind Turbines
  • Onshore Wind Turbines

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Wind Turbine Rotor Blade Market, By Material

  • 5.1 Introduction
  • 5.2 Carbon Composite
  • 5.3 Glass Fiber
  • 5.4 Other Materials

6 Global Wind Turbine Rotor Blade Market, By Length

  • 6.1 Introduction
  • 6.2 Below 45 meters
  • 6.3 45-60 meters
  • 6.4 Above 60 meters

7 Global Wind Turbine Rotor Blade Market, By Application

  • 7.1 Introduction
  • 7.2 Offshore Wind Turbines
  • 7.3 Onshore Wind Turbines

8 Global Wind Turbine Rotor Blade Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Acciona S.A
  • 10.2 Enercon GmbH
  • 10.3 GE Renewable Energy
  • 10.4 Hitachi Power Solutions
  • 10.5 Nordex Group
  • 10.6 Siemens AG
  • 10.7 Sinoma Wind Power Blade Co. Ltd
  • 10.8 Suzlon Energy
  • 10.9 TPI Composites Inc
  • 10.10 Vestas Wind Systems A/S
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦