½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1569768

¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2030³â) : ¹èÅ͸® À¯Çüº°, ¹èÅ͸®¿ë·®º°, Â÷·® À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Second-Life EV Batteries Market Forecasts to 2030 - Global Analysis By Battery Type (Lithium-ion, Lead Acid, Sodium-ion, Nickel and Other Battery Types), Battery Capacity, Vehicle Type, Application, End User and by Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀåÀº 2024³â 7¾ï 4,881¸¸ ´Þ·¯·Î, 2030³â±îÁö 64¾ï 5,695¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 43.2%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸®´Â ÀÚµ¿Â÷ÀÇ ¼ö¸íÀÌ Á¾·áµÈ Àü±âÀÚµ¿Â÷ ¹èÅ͸®ÀÇ ´Ù¸¥ ¿ëµµ¿¡ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®´Â ÀÚµ¿Â÷¿Í µ¿ÀÏÇÑ Á¤µµ·Î Àü·ÂÀ» °ø±ÞÇÒ ¼ö ¾øÁö¸¸, ¿©ÀüÈ÷ »ó´çÇÑ ¿ë·®ÀÌ ÀÖÀ¸¸ç ÀϹÝÀûÀ¸·Î Ãʱâ È¿À²ÀÇ 70%¿¡¼­ 80%ÀÔ´Ï´Ù. ÀÌ ¹èÅ͸®´Â Àç»ý °¡´É ¿¡³ÊÁö ÀúÀå, Àü·Â ½Ã½ºÅÛ ¾ÈÁ¤È­, ¹é¾÷ Àü·Â °ø±Þ¿¡ µµ¿òÀÌ µË´Ï´Ù. ÀϹÝÀûÀ¸·Î °¡Á¤°ú ±â¾÷ÀÇ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ »ç¿ëµË´Ï´Ù. °Ô´Ù°¡, ¼¼ÄÁµå ¶óÀÌÇÁ ¿ëµµ´Â Àü±âÀÚµ¿Â÷ ¹èÅ͸®ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í ¹èÅ͸® »ý»ê ¹× Æó±â¿¡ ¼ö¹ÝµÇ´Â Æó±â¹° ¹× ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÔÀ¸·Î½á Áö¼Ó°¡´É¼º¿¡ ´ëóÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é ¼¼°è ¹èÅ͸® ÀçÈ°¿ë ´É·ÂÀº 2023³â 300±â°¡¿ÍÆ®¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ¹ßÇ¥µÈ ÇÁ·ÎÁ§Æ®°¡ ¸ðµÎ ½ÇÇöµÇ¸é, 2030³â¿¡´Â ¼¼°èÀÇ ¹èÅ͸® ÀçÈ°¿ë ´É·ÂÀº 1,500±â°¡¿ÍÆ®/½Ã°£À» ³Ñ¾î, ±× Áß 70%´Â Áß±¹¿¡¼­ ÇàÇØÁö°Ô µË´Ï´Ù.

¿¡³ÊÁö ÀúÀå Á¦Ç°¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

½ÅÀç»ý¿¡³ÊÁö¸¦ ÅëÇÕÇÏ°í Àü·Â¸ÁÀ» ¾ÈÁ¤È­½Ãų Çʿ伺À¸·Î ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ž翡³ÊÁö¿Í dz·Â¿¡³ÊÁö´Â °£ÇæÀû ÀΠƯ¼ºÀ¸·Î ÀÎÇØ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§Çؼ­´Â È¿À²ÀûÀÎ ÃàÀü ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. »ç¿ëÇÑ Àü±âÀÚµ¿Â÷ ¹èÅ͸®¸¦ ±×¸®µå ½ºÅ丮Áö¿¡ ÀçÀÌ¿ëÇϸé, »ý»ê ÇÇÅ©½Ã¿¡ »ý»êµÈ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í, ¼ö¿ä ±ÞÁõ½Ã¿¡ ¹æÃâÇÔÀ¸·Î½á ¼ö±Þ ±ÕÇüÀ» À¯ÁöÇϴµ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ÀÌ ¹èÅ͸®´Â ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡µµ »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ÁÖÅà ¼ÒÀ¯ÀÚ°¡ ÇÇÅ© ¹× Á¤Àü ½Ã »ç¿ëÇϴ ž翡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ¿¡³ÊÁö µ¶¸³¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

¿­È­¿Í ¼º´ÉÀÇ ÆíÂ÷

2Â÷ EV ¹èÅ͸®ÀÇ ¿ë·®°ú ¿­È­À²Àº ÀÌÀü »ç¿ë »óȲ¿¡ µû¶ó Å©°Ô ´Þ¶óÁú ¼ö ÀÖÀ¸¸ç ¼º´É¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. »õ·Î¿î ¿ëµµ·Î Àç»ç¿ëÇÏ´Â °æ¿ì ´Ù¾çÇÑ ¿Âµµ, ÃæÀü »çÀÌŬ ¹× »ç¿ë ÆÐÅÏ¿¡ ³ëÃâµÈ ¹èÅ͸®´Â ÀÏ°üµÇ°Ô ÀÛµ¿ÇÏÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÏ°ü¼ºÀÌ ¾ø±â ¶§¹®¿¡ ÀÌ·¯ÇÑ ¹èÅ͸®¸¦ »ç¿ëÇÏ´Â ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(ESS)ÀÇ ¼³°è´Â ´Ù¾çÇÑ ¹èÅ͸® Á¶°Ç ÇÏ¿¡¼­ ¼º´ÉÀ» °ü¸®ÇÏ°í ±Ø´ëÈ­Çϱâ À§ÇÑ º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ÇÊ¿ä·Î ÇÏ°í, ´õ¿í ¾î·Á¿î ¹°°ÇÀÔ´Ï´Ù.

Àü·«Àû Á¦ÈÞ ¹× ¿öÅ· ±×·ì

Áß°í Àü±âÀÚµ¿Â÷ ¹èÅ͸®ÀÇ °¡´É¼ºÀ» Á¶»çÇϱâ À§ÇØ ¸¹Àº ±â¾÷µéÀÌ Àü·«ÀûÀ¸·Î Çù·ÂÇÏ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ¿¡³ÊÁö °ø±ÞÀÚ, ±â¼ú°è ±â¾÷ÀÌ Çù·ÂÇÏ¿© Àç»ç¿ë ¹èÅ͸®¸¦ È¿À²ÀûÀ¸·Î È°¿ëÇÏ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ» ±¸ÃàÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Honda Europe¿Í Æó±â¹° ó¸® ȸ»ç´Â ¿¡³ÊÁö ÀúÀå ¿ëµµÀÇ EV ¹èÅ͸®ÀÇ ½ÇÇà °¡´É¼ºÀ» Æò°¡Çϱâ À§ÇØ Á¦ÈÞÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº R&D È°µ¿À» °³¼±ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¾÷°è Âü°¡ÀÚµéÀÌ Áö½ÄÀ» °øÀ¯ÇÏ°í ÀÚ¿øÀ» Ç®¸µÇÏ´Â °ÍÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.

Ç¥ÁØÈ­ ºÎÁ·

Àü±âÀÚµ¿Â÷ ¹èÅ͸®ÀÇ ¼³°è, È­ÇÐ ¹× ¼º´É Ư¼ºÀº Á¦Á¶¾÷ü, ¸ðµ¨ ¹× ¹èÅ͸® À¯Çü¿¡ µû¶ó Å©°Ô ´Ù¸¦ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­°¡ ¾ø±â ¶§¹®¿¡ ´Ù¾çÇÑ À¯ÇüÀÇ ¹èÅ͸®¸¦ È¿°úÀûÀ¸·Î »ç¿ëÇÒ ¼ö Àִ ǥÁØÈ­µÈ ½Ã½ºÅÛÀ» ¼³°èÇϱⰡ ¾î·Æ°í ¹èÅ͸® Àç»ç¿ëÀÌ ¾î·Á¿öÁý´Ï´Ù. ÀÏ°ü¼ºÀÌ ¾øÀ¸¸é »ç¿ëµÈ ¹èÅ͸®¸¦ Àç»ç¿ëÇÏ´Â ±â¾÷Àº ´Ù¾çÇÑ À¯ÇüÀÇ ¹èÅ͸®¿¡ °ÉÃÄ ½Å·Ú¼º°ú ¼º´ÉÀ» º¸ÀåÇÏ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» °³¹ßÇϱⰡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ À¯ÇüÀÇ ¹èÅ͸®°¡ º°µµÀÇ Àç»ý ÀýÂ÷¸¦ ÇÊ¿ä·Î ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Ç¥ÁØÈ­°¡ ÁøÇàµÇÁö ¾Ê¾Æ ºñ¿ëÀÌ Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

°ø±Þ¸Á È¥¶õ°ú ½ÅÂ÷ ¼ö¿ä °¨¼Ò·Î ÀÎÇØ COVID-19ÀÇ ´ëÀ¯ÇàÀº 2Â÷ ¶óÀÌÇÁ Àü±âÀÚµ¿Â÷(EV) ¹èÅ͸® ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. ÀÌ´Â Àç»ç¿ëÀ» À§ÇÑ Áß°í ¹èÅ͸®ÀÇ °¡¿ë¼º¿¡µµ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÆÒµ¥¹ÍÀÇ Ãʱ⠴ܰ迡¼­´Â ƯÈ÷ 2020³â 1ºÐ±â¿¡ Áß±¹ µî Áß¿äÇÑ ½ÃÀå¿¡¼­ EVÀÇ ¿ù°£ ÆǸŠ´ë¼ö°¡ 39% °¨¼ÒÇß½À´Ï´Ù. ±× °á°ú ½ÅÇ° EV ¹èÅ͸®ÀÇ »ý»êÀÌ °¨¼ÒÇß½À´Ï´Ù. ÀÌ °¨¼Ò·Î ÀÎÇØ ¼¼ÄÁµå ¶óÀÌÇÁ ¿ëµµ Áß°í ¹èÅ͸® ½ÃÀå µµÀÔÀÌ °¨¼ÒÇß½À´Ï´Ù. °Ô´Ù°¡ À¯ÅëÀº EV ¹èÅ͸® °ø±Þ¸Á Àüü¿¡ Áö¿¬°ú È¥¶õÀ» ÀÏÀ¸ÄÑ »ý»ê°ú ¹è¼Û ÀýÂ÷¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸®Æ¬ ÀÌ¿Â ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó

Áß°í Àü±âÀÚµ¿Â÷ ¹èÅ͸® ½ÃÀåÀº ¸®Æ¬ ÀÌ¿Â ¹èÅ͸® ºÎ¹®ÀÌ Áö¹èÀûÀÔ´Ï´Ù. ¸®Æ¬ ÀÌ¿Â ¹èÅ͸®ÀÇ ÀÌÁ¡Àº ÁÖ·Î Àü±âÀÚµ¿Â÷¿¡¼­ ³Î¸® »ç¿ëµÇ°í Àֱ⠶§¹®¿¡ ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ±ä ¼ö¸í ¹× È¿À²¼ºÀ¸·Î Ç¥ÁØ ¹èÅ͸® ±â¼úÀÌ µÇ¾ú½À´Ï´Ù. ¸®Æ¬ ÀÌ¿Â ¹èÅ͸®´Â Àü±âÀÚµ¿Â÷¿¡¼­ 9³â¿¡¼­ 12³â »ç¿ëÇÑ ÈÄ¿¡µµ ¿ë·®ÀÇ ¾à 60%¸¦ À¯ÁöÇϱ⠶§¹®¿¡ °¡Á¤¿ë ¹× »ó¾÷¿ë ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ°ú °°Àº 2Â÷ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¹èÅ͸®¸¦ Àç»ç¿ëÇÏ¸é ¼ö¸íÀÌ ¿¬ÀåµÉ »Ó¸¸ ¾Æ´Ï¶ó ¿¡³ÊÁö ÀúÀåÀ» À§ÇÑ »õ·Î¿î ¹èÅ͸® ¿É¼ÇÀ» ´ëüÇÒ ¼ö ÀÖ´Â Àú·ÅÇÑ ¿É¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È 100kWh ¹Ì¸¸ÀÇ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

2Â÷ EV ¹èÅ͸® ½ÃÀå¿¡¼­´Â 100kWh ¹Ì¸¸ÀÇ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ È®ÀåÀº ¼Ò±Ô¸ð »ó¾÷¿ë ¹× ÁÖ°Å¿ë ¿ëµµ¿¡¼­ È¿À²ÀûÀÌ°í ÄÄÆÑÆ®ÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. °¡Á¤¿ë ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº žçÀüÁöÆÇ°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁö¿øÀ¸·ÎºÎÅÍÀÇ ¿¡³ÊÁö¸¦ ³ªÁß¿¡ »ç¿ëÇϱâ À§ÇØ ÀúÀåÇÒ ¼ö Àֱ⠶§¹®¿¡ÀÌ ¿ë·® ¹üÀ§ÀÇ ¹èÅ͸®°¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ÀÌ°ÍÀº ¿¡³ÊÁöÀÇ µ¶¸³¼ºÀ» Áõ°¡½ÃÅ°°í ±¤¿­ºñ¸¦ °¨¼Ò½Ãŵ´Ï´Ù. °Ô´Ù°¡ ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â °ÍÀº ¹èÅ͸®¿ë·®ÀÌ ÀÛÀº Àü±âÂ÷°¡ ½ÃÀå¿¡ ³ª¼­¸é¼­ 2Â÷ ¿ëµµ·Î ÀºÅðÇÑ ¹èÅ͸®ÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁø´Ù´Â °ÍÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À²ÀÌ ÀÖ´Â Áö¿ª:

Àü±âÀÚµ¿Â÷(EV)¿ë Áß°í ¹èÅ͸® ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ Áö¹èÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁ¡Àº Áß±¹, ÀϺ», Àεµ µî ±¹°¡¿¡¼­ Àü±âÀÚµ¿Â÷ »ê¾÷ÀÌ Æø¹ßÀûÀ¸·Î Áõ°¡ÇÏ°í ÀÖ´Â °ÍÀÌ ÁÖ¿ä ÀÌÀ¯ÀÔ´Ï´Ù. ÀÌµé ±¹°¡¿¡¼­´Â ¹èÅ͸® Á¦Á¶¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, EVÀÇ º¸±Þ·üµµ ³ô½À´Ï´Ù. 2025³â±îÁö ½ÅÂ÷ ÆǸÅÀÇ 50%¸¦ Àü±âÂ÷·Î »ï´Â Áß±¹ÀÇ ¾ß½ÉÂù EV º¸±Þ ¸ñÇ¥´Â ¼­ºñ½º ¼ö¸íÀ» ¸Â´Â ÀÚµ¿Â÷°¡ ´Ã¾î³²¿¡ µû¶ó Áß°í ¹èÅ͸® ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀº Àç»ý°¡´ÉÇÑ ¿¡³ÊÁö¿ø°ú Áö¼Ó°¡´É¼º¿¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ ¿À·¡µÈ ¹èÅ͸®¸¦ ¿¡³ÊÁö ÀúÀåÀåÄ¡·Î ÀçÈ°¿ëÇϱ⠽¬¿öÁö°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

Áß°í Àü±âÀÚµ¿Â÷(EV)¿ë ¹èÅ͸® ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È À¯·´¿¡¼­ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ç¿ëµÈ Àü±âÀÚµ¿Â÷ ¹èÅ͸®¿¡¼­ Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§ÇÑ Á¤ºÎ ¹× ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Àû±ØÀûÀÎ ³ë·Â µî ¸¹Àº ¿äÀεéÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀ» µÞ¹ÞħÇÏ°í ÀÖ½À´Ï´Ù. ¼¼ÄÁµå ¶óÀÌÇÁ ¹èÅ͸®ÀÇ ÀçÈ°¿ëÀº À¯·´ ±¹°¡µéÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í Àç»ý°¡´É ¿¡³ÊÁö¿øÀ» ÃßÁøÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç·á Àç»ç¿ëÀ» ÃËÁøÇÏ´Â ¼øȯ °æÁ¦ ¿øÄ¢ÀÌÀÌ Áö¿ªÀ» ´Ù·ç°í Àֱ⠶§¹®¿¡ ¼¼ÄÁµå ¶óÀÌÇÁ ¹èÅ͸® ¼Ö·ç¼ÇÀº ´õ¿í ¸Å·ÂÀûÀÔ´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ¸®Æ¬ ÀÌ¿Â
  • ³³Ãà ¹èÅ͸®
  • ³ªÆ®·ý ÀÌ¿Â
  • ´ÏÄÌ
  • ±âŸ ¹èÅ͸® À¯Çü

Á¦6Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå : ¹èÅ͸®¿ë·®º°

  • 100kWh ¹Ì¸¸
  • 100-200kWh
  • 200-300kWh
  • 300kWh ÀÌ»ó

Á¦7Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå : Â÷·® À¯Çüº°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷

Á¦8Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå : ¿ëµµº°

  • Àü¿ø ¹é¾÷
    • Åë½Å
    • °¡½ºÅͺó ¹ßÀü¼Ò
    • UPS
  • ±×¸®µå ÃæÀü
  • EVÃæÀü
  • ÁÖÅà ¿¡³ÊÁö ÀúÀå
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • »ó¾÷
  • ÁÖÅÃ
  • »ê¾÷
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ¼¼ÄÁµå ¶óÀÌÇÁ EV ¹èÅ͸® ½ÃÀå :Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîƼ³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Enel X Srl
  • Fortum
  • BMW
  • Mitsubishi Motors Corporation
  • Hyundai Motor Company
  • Beijing Electric Vehicle
  • Nissan Motors Corporation
  • Renault Group
  • BELECTRIC
  • Mercedes-Benz Group AG
  • RWE
  • BeePlanet Factory SL
  • Rivian Automotive, Inc.
  • Proterra, Inc.
  • Morris Garages(MG)
JHS 24.10.30

According to Stratistics MRC, the Global Second-Life EV Batteries Market is accounted for $748.81 million in 2024 and is expected to reach $6456.95 million by 2030 growing at a CAGR of 43.2% during the forecast period. Second-life EV batteries are used in other applications for electric vehicle batteries that have reached the end of their useful life in vehicles. Even though these batteries might not be able to power cars to the same extent, they still have a significant capacity-typically between 70 and 80 percent of their initial efficiency. These batteries help with the storage of renewable energy, the stabilization of power systems, and the provision of backup power. They are typically utilized in energy storage systems for homes or businesses. Moreover, second-life applications help with sustainability initiatives by extending the life of electric vehicle batteries and minimizing waste and the environmental impact of battery production and disposal.

According to the International Energy Agency (IEA), global battery recycling capacity reached 300 gigawatt-hours in 2023. If all announced projects materialize, global battery recycling capacity could exceed 1,500 gigawatt-hours in 2030, of which 70% would be in China.

Market Dynamics:

Driver:

Growing need for energy storage products

The need to integrate renewable energy sources and stabilize power grids is driving an increasing demand for energy storage solutions. Due to their intermittent nature, solar and wind energy are becoming more and more common. To ensure reliability, efficient storage solutions are therefore required. Reusing used electric vehicle batteries for grid storage can help maintain supply and demand equilibrium by storing excess energy produced during peak production periods and releasing it during times of high demand. Additionally, these batteries can also be utilized in residential energy storage systems, which increase energy independence by enabling homeowners to store solar energy for use during peak hours or blackouts.

Restraint:

Deterioration and variability in performance

The capacity and degradation rates of second-life EV batteries can vary significantly due to their prior use, which affects how well they perform. When repurposed for new applications, batteries that have been exposed to varying temperatures, charging cycles, and usage patterns might not function consistently. Because of this inconsistency, the design of energy storage systems (ESS) that use these batteries is made more difficult because complex algorithms are needed to manage and maximize performance under a variety of battery conditions.

Opportunity:

Strategic alliances and working groups

A lot of businesses are collaborating strategically to investigate the possibilities of used electric vehicle batteries. Manufacturers of automobiles, energy providers, and tech companies are working together to create integrated solutions that make efficient use of repurposed batteries. For instance, Honda Europe and waste management firms have partnered to evaluate the viability of EV batteries for energy storage applications. Furthermore, these partnerships not only improve R&D activities but also make it easier for industry participants to share knowledge and pool resources.

Threat:

Lack of standardization

The design, chemistry, and performance characteristics of electric vehicle batteries can differ substantially based on the manufacturer, model, and type of battery. The absence of standardization makes it difficult to design standardized systems that can effectively use various battery types, which makes repurposing batteries challenging. Without consistency, businesses that reuse used batteries could have trouble developing scalable solutions that guarantee dependability and performance across a range of battery types. Moreover, costs may rise as a result of this lack of standardization because various battery types might need distinct refurbishment procedures.

Covid-19 Impact:

Due to supply chain disruptions and a decline in demand for new cars, the COVID-19 pandemic has had a substantial effect on the market for second-life electric vehicle (EV) batteries. This has also affected the availability of used batteries for reuse. The early phases of the pandemic saw a 39% decline in monthly EV sales in important markets like China, especially in the first quarter of 2020. This resulted in a decrease in the production of new EV batteries. As a result of this decline, fewer used batteries for second-life applications were introduced to the market. Furthermore, the pandemic slowed down production and delivery procedures by causing delays and disruptions throughout the whole EV battery supply chain.

The Lithium-ion segment is expected to be the largest during the forecast period

The market for used electric vehicle batteries is dominated by the lithium-ion battery segment. Their dominance stems mainly from their extensive use in electric vehicles, where their high energy density, extended lifespan, and efficiency have made them the standard battery technology. Lithium-ion batteries are usually good for secondary applications like home and commercial energy storage systems since they retain roughly 60% of their capacity after 9 to 12 years of initial use in EVs. Moreover, reusing these batteries not only increases their lifespan but also offers an affordable alternative to new battery options for energy storage.

The <100 kWh segment is expected to have the highest CAGR during the forecast period

In the market for second-life EV batteries, the <100 kWh segment is projected to grow at the highest CAGR. This expansion is explained by the rising need in small-scale commercial and residential applications for energy storage solutions that are both efficient and compact. With home energy storage systems, batteries in this capacity range are especially well-suited because they can store energy from renewable sources, such as solar panels, for later use. This increases energy independence and lowers utility costs. Additionally, propelling growth in this market will be the increased availability of retired batteries for second-life applications as more electric vehicles with lower battery capacities hit the market.

Region with largest share:

The market for used electric vehicle (EV) batteries is dominated by the Asia Pacific region. This dominance is mostly due to the electric vehicle industry's explosive rise in nations like China, Japan, and India, where there are large investments in battery manufacturing and a high penetration rate for EVs. China's ambitious EV adoption targets, which call for 50% of new car sales to be electric by 2025, will increase demand for used batteries as more cars approach the end of their useful lives. Furthermore, the region's focus on renewable energy sources and sustainability has made it easier to recycle old batteries into energy storage devices.

Region with highest CAGR:

The market for used electric vehicle (EV) batteries is expected to grow at the highest CAGR during the forecast period in the Europe region. A number of factors, including aggressive government and automaker initiatives to develop sustainable energy storage systems from used electric vehicle batteries, are driving this growth. Second-life battery recycling is in line with European nations' growing emphasis on cutting carbon emissions and advancing renewable energy sources. Moreover, second-life battery solutions are even more appealing because of the region's dedication to circular economy principles, which promote material reuse.

Key players in the market

Some of the key players in Second-Life EV Batteries market include Enel X S.r.l., Fortum, BMW, Mitsubishi Motors Corporation, Hyundai Motor Company, Beijing Electric Vehicle, Nissan Motors Corporation, Renault Group, BELECTRIC, Mercedes-Benz Group AG, RWE, BeePlanet Factory SL, Rivian Automotive, Inc., Proterra, Inc. and Morris Garages (MG).

Key Developments:

In September 2024, Hyundai Motor Company and General Motors have signed an agreement to explore future collaboration across key strategic areas. GM and Hyundai will look for ways to leverage their complementary scale and strengths to reduce costs and bring a wider range of vehicles and technologies to customers faster.

In April 2024, Mitsubishi Motors Corporation have agreed to conclude a joint venture agreement with Security Bank Corporation, a financial institution in the Philippines, to establish Mitsubishi Motors Finance Philippines Inc. that offers financing services to Mitsubishi Motors' customers in the country.

In March 2024, Nissan Motor Co. and Honda Motor Co. have signed an agreement to cooperate in the development of electric vehicles (EV) in a bid to match other Japanese automakers that have formed similar partnerships. Nissan President Makoto Uchida and Honda President Toshihiro Mibe held a joint news conference on March 15 to announce the signing of the agreement.

Battery Types Covered:

  • Lithium-ion
  • Lead Acid
  • Sodium-ion
  • Nickel
  • Other Battery Types

Battery Capacities Covered:

  • <100 kWh
  • 100-200 kWh
  • 200-300 kWh
  • >300 kWh

Vehicle Types Covered:

  • Passenger Cars
  • Commercial Vehicles

Applications Covered:

  • Power Backup
  • Grid Charging
  • EV Charging
  • Residential Energy Storage
  • Other Applications

End Users Covered:

  • Commercial
  • Residential
  • Industrial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Second-Life EV Batteries Market, By Battery Type

  • 5.1 Introduction
  • 5.2 Lithium-ion
  • 5.3 Lead Acid
  • 5.4 Sodium-ion
  • 5.5 Nickel
  • 5.6 Other Battery Types

6 Global Second-Life EV Batteries Market, By Battery Capacity

  • 6.1 Introduction
  • 6.2 <100 kWh
  • 6.3 100-200 kWh
  • 6.4 200-300 kWh
  • 6.5 >300 kWh

7 Global Second-Life EV Batteries Market, By Vehicle Type

  • 7.1 Introduction
  • 7.2 Passenger Cars
  • 7.3 Commercial Vehicles

8 Global Second-Life EV Batteries Market, By Application

  • 8.1 Introduction
  • 8.2 Power Backup
    • 8.2.1 Telecom
    • 8.2.2 Gas Turbine Power Plant
    • 8.2.3 UPS
  • 8.3 Grid Charging
  • 8.4 EV Charging
  • 8.5 Residential Energy Storage
  • 8.6 Other Applications

9 Global Second-Life EV Batteries Market, By End User

  • 9.1 Introduction
  • 9.2 Commercial
  • 9.3 Residential
  • 9.4 Industrial
  • 9.5 Other End Users

10 Global Second-Life EV Batteries Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Enel X S.r.l.
  • 12.2 Fortum
  • 12.3 BMW
  • 12.4 Mitsubishi Motors Corporation
  • 12.5 Hyundai Motor Company
  • 12.6 Beijing Electric Vehicle
  • 12.7 Nissan Motors Corporation
  • 12.8 Renault Group
  • 12.9 BELECTRIC
  • 12.10 Mercedes-Benz Group AG
  • 12.11 RWE
  • 12.12 BeePlanet Factory SL
  • 12.13 Rivian Automotive, Inc.
  • 12.14 Proterra, Inc.
  • 12.15 Morris Garages (MG)
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦