½ÃÀ庸°í¼­
»óǰÄÚµå
1569779

¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2030³â) : ¹èÅ͸® À¯Çüº°, ºÎǰ À¯Çüº°, Â÷·® À¯Çüº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº°·Î ¼¼°è ºÐ¼®

EV Battery Thermal Management Systems Market Forecasts to 2030 - Global Analysis By Battery Type, Component Type, Vehicle Type, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀåÀº 2024³â 70¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 22.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 238¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü±âÂ÷(EV)ÀÇ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ(BTMS)Àº ÃæÀü, ¹æÀü ¹× À¯ÈÞ »óÅÂÀÇ ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ¿Âµµ¸¦ Á¶ÀýÇϱâ À§ÇØ ¼³°èµÈ Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¹èÅ͸® ¼º´É, ¼ö¸í ¹× ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÃÖÀûÀÇ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇÕ´Ï´Ù. BTMS´Â ´Éµ¿ ³Ã°¢, °¡¿­ ¹× ´Ü¿­°ú °°Àº ¹æ¹ýÀ» »ç¿ëÇÏ¿© °ú¿­À» ¹æÁöÇϰí È¿À²ÀûÀÎ ¿Âµµ Á¶ÀýÀ» º¸ÀåÇÕ´Ï´Ù. È¿°úÀûÀÎ ¿­°ü¸®´Â ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¿­ ÆøÁÖ °ü·Ã À§ÇèÀ» ÁÙ¿© Àüü Â÷·®ÀÇ ½Å·Ú¼º°ú ¾ÈÀü¿¡ ±â¿©ÇÕ´Ï´Ù.

Àü±âÂ÷(EV) µµÀÔ Áõ°¡

Àü±âÂ÷(EV)ÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ¹èÅ͸® ¼º´É°ú ¾ÈÀü¼ºÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ(BTMS)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, EV »ç¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹èÅ͸® ¼ö¸í°ú È¿À²À» Çâ»ó½Ã۱â À§ÇØ È¿°úÀûÀÎ ¿­ Á¦¾î°¡ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÷´Ü ³Ã°¢ ¹× °¡¿­ ±â¼úÀ» Æ÷ÇÔÇÑ ±â¼ú Çõ½ÅÀº ´Ù¾çÇÑ ÀÛµ¿ Á¶°ÇÀ¸·Î ÀÎÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿­°ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â EVÀÇ ±¤¹üÀ§ÇÑ º¸±ÞÀ» Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹èÅ͸® ±â¼ú ¹× Â÷·® ¼³°èÀÇ ¹ßÀüÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

ºÒÃæºÐÇÑ ÃæÀü ÀÎÇÁ¶ó

°í¼Ó ÃæÀü¼Ò¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Á¦ÇÑÀûÀ̱⠶§¹®¿¡ ÃæÀü ½Ã°£ÀÌ ±æ¾îÁö°í ¹èÅ͸®°¡ Àå½Ã°£ °ú¿­µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ú¿­Àº ¹èÅ͸® ¼º´É, ¼ö¸í ¹× ¾ÈÀü¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÎÇÁ¶ó°¡ ºÎÁ·Çϸé ÀáÀçÀûÀÎ »ç¿ëÀÚ°¡ ÁÖÇà °Å¸®¿¡ ´ëÇÑ ºÒ¾È°¨°ú ºñÈ¿À²Àû ÀÎ ÃæÀü °æÇè¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ EVÀÇ º¸±ÞÀ» ÀúÇØ ÇÒ ¼ö ÀÖ½À´Ï´Ù. °á±¹ ÀÌ·¯ÇÑ ¹®Á¦´Â EVÀÇ È¿°úÀûÀÎ ¿Âµµ °ü¸®¸¦ Áö¿øÇÏ´Â °ß°íÇÑ ÃæÀü ³×Æ®¿öÅ©ÀÇ Çʿ伺À» °­Á¶ÇÕ´Ï´Ù.

¼º´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¿ä±¸»çÇ×

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î, ÃËÁø¿äÀÎÀº È¿À²¼º°ú ¾ÈÀü¼º Çâ»óÀ» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ ½ÃÀå¿¡¼­ °í¼º´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, EV°¡ ´ëÁßÈ­µÊ¿¡ µû¶ó ±¸¸ÅÀÚ´Â ¹èÅ͸®ÀÇ ÃÖÀû ¿Âµµ¸¦ º¸ÀåÇϰí ÁÖÇà °Å¸®¸¦ ¿¬ÀåÇϰí ÃæÀü ½Ã°£À» ´ÜÃàÇÏ´Â ½Ã½ºÅÛÀ» ±â´ëÇÕ´Ï´Ù. °í¼º´ÉÀº ¿¡³ÊÁö Ȱ¿ëµµ¸¦ Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¿­ ÆøÁÖ À§Çèµµ ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ë°¡ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷üµéÀº Çõ½ÅÀûÀÎ ³Ã°¢ ¹× ³­¹æ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ±Ã±ØÀûÀ¸·Î ¼ÒºñÀÚÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

¼³°è ¹× ÅëÇÕÀÇ º¹À⼺

º¹ÀâÇÑ ½Ã½ºÅÛÀº °íµµÀÇ ¿£Áö´Ï¾î¸µ°ú Á¤¹ÐÇÑ Ä¶¸®ºê·¹À̼ÇÀÌ ÇÊ¿äÇϸç, Á¦Á¶ ºñ¿ë°ú ÀáÀçÀû °íÀå ÁöÁ¡À» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº À¯Áö º¸¼ö ¹× ¼ö¸® ÇÁ·Î¼¼½º¸¦ º¹ÀâÇÏ°Ô ¸¸µé°í ±â¼úÀÚ°¡ ¹®Á¦¸¦ Áø´ÜÇÏ±â ¾î·Æ°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ Â÷·® ¾ÆÅ°ÅØÃ³¿ÍÀÇ ÅëÇÕÀÌ ¾î·Á¿öÁö¸é Àüü ½Ã½ºÅÛÀÇ È¿À²¼ºÀÌ ÀúÇÏµÇ¾î ¹èÅ͸® ¼º´É ¹× Â÷·® ½Å·Ú¼º¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î Á¦Á¶¾÷ü´Â °³¹ß ¹× ¹èÆ÷ Áö¿¬¿¡ Á÷¸é ÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19ÀÇ ´ëÀ¯ÇàÀº °ø±Þ¸Á°ú Á¦Á¶ °øÁ¤¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÙ½É ºÎǰÀÇ Á¶´ÞÀÌ Áö¿¬µÇ¸é¼­ ÷´Ü ¿­°ü¸® ±â¼úÀÇ »ý»ê¿¡ Â÷ÁúÀ» ºú¾î »õ·Î¿î EV ¸ðµ¨ÀÇ Ãâ½Ã°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ºÀ¼â ±â°£ µ¿¾È ¼ÒºñÀÚ ¼ö¿ä °¨¼Ò´Â EV ÀÎÇÁ¶ó ¹× R&D ÅõÀÚ¿¡ ¿µÇâÀ» ¹ÌÃÄ Çõ½ÅÀ» Á¦ÇÑÇß½À´Ï´Ù. ¾÷°è°¡ ÆÒµ¥¹Í ÀÌÈÄ »óȲ¿¡ ÀûÀÀÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ ¿­°ü¸® ¼Ö·ç¼ÇÀ» ¹ßÀü½Ã۰í EVÀÇ ¼ºÀåÀ» Áö¿øÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾×Ƽºê ½Ã½ºÅÛ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»ó

¾×Ƽºê ½Ã½ºÅÛ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡´Â ÀϹÝÀûÀ¸·Î ¾×ü ³Ã°¢, ¿­±³È¯±â ¹× ¿­ ¼¾¼­¿Í °°Àº ±¸¼º ¿ä¼Ò°¡ ÅëÇÕµÇ¾î ¿­ ºÐÆ÷¸¦ ´Éµ¿ÀûÀ¸·Î Á¶Á¤ÇÕ´Ï´Ù. ¹èÅ͸® »óÅ¿¡ µû¶ó ½Ç½Ã°£À¸·Î ³Ã°¢ ¹× °¡¿­À» Á¶Á¤ÇÔÀ¸·Î½á ´Éµ¿Çü ½Ã½ºÅÛÀº ¼º´É, È¿À²¼º ¹× ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ´õ ºü¸¥ ÃæÀüÀ» Áö¿øÇÏ¿© Çö´ë EV »ç¿ëÀÚÀÇ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ½Â¿ëÂ÷ ºÎ¹®

½Â¿ëÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È XX ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. È¿°úÀûÀÎ ¿­°ü¸®´Â ¹èÅ͸® ¼º´ÉÀ» ÃÖÀûÈ­Çϰí ÁÖÇà°Å¸®¸¦ ´Ã¸®¸ç ½Â¿ëÂ÷ÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ»óÀûÀÎ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇϱâ À§ÇØ ´Éµ¿Çü ³Ã°¢ ¹× °¡¿­ ½Ã½ºÅÛÀÌ ÀϹÝÀûÀ¸·Î äÅõǰí ÀÖ½À´Ï´Ù. Àü±â ½Â¿ëÂ÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Çõ½ÅÀûÀÎ BTMS ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀº Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¾÷°èÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È Àü±âÂ÷ µµÀÔ Áõ°¡¿Í Áö¼Ó °¡´ÉÇÑ ¿î¼Û¿¡ ´ëÇÑ ±ÔÁ¦ ÇýÅÃÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¹èÅ͸® ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ´Éµ¿ ³Ã°¢ ¹× ÅëÇÕ ¿­ ¼Ö·ç¼Ç°ú °°Àº ÷´Ü ¿­°ü¸® ±â¼úÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å¿¡ ÁßÁ¡À» µÎ°í Á¦Á¶¾÷üµéÀº È¿À²¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾ÆÅÂÁö¿ªÀº ź¼Ò¹èÃâ·® °¨Ãà°ú ´ë±â¿À¿° ¹æÁöÀÇ ÀÏȯÀ¸·Î Àü±âÀÚµ¿Â÷ µµÀÔÀ» ÃËÁøÇÏ´Â Á¤Ã¥°ú Àμ¾Æ¼ºê·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ È¿°úÀûÀÎ ¿­°ü¸® ½Ã½ºÅÛÀ» °®Ãá Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼­ °¡Ã³ºÐ ¼ÒµæÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ÒºñÀÚµéÀº Àü±âÀÚµ¿Â÷¿¡ ÅõÀÚÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö¸é¼­ Á¤±³ÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ¸®Æ¬À̿ ¹èÅ͸®
  • °íü ¹èÅ͸®
  • ´ÏÄÌ ¼ö¼Ò(NiMH) ¹èÅ͸®
  • ±âŸ ¹èÅ͸® À¯Çü

Á¦6Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : ÄÄÆ÷³ÍÆ® À¯Çüº°

  • ³Ã°¢ Ç÷¹ÀÌÆ®
  • ¿­±³È¯±â
  • ÆßÇÁ
  • ¼¾¼­ ¹Ì ÄÁÆ®·Ñ

Á¦7Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : Â÷·® À¯Çüº°

  • ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)
  • Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)
  • ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)
  • ±âŸ Â÷·® À¯Çü

Á¦8Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : ±â¼úº°

  • ¾×Ƽºê ½Ã½ºÅÛ
  • ÆÐ½Ãºê ½Ã½ºÅÛ
  • ÇÏÀ̺긮µå ½Ã½ºÅÛ
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • »ó¿ëÂ÷
  • ½Â¿ëÂ÷
  • ÀÌ·ûÂ÷
  • ¿ÀÇÁ·Îµå Â÷·®
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ Àü±âÂ÷ ¹èÅ͸® ¿­°ü¸® ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Robert Bosch GmbH
  • Lord Corporation
  • GENTHERM Incorporated
  • Polymer Science, Inc.
  • Valeo
  • Grayson
  • Dana Incorporated
  • Mahle GmbH
  • Johnson Controls
  • Hanon Systems
  • Voss Automotive GmbH
  • 3M
LSH 24.10.23

According to Stratistics MRC, the Global EV Battery Thermal Management Systems Market is accounted for $7.0 billion in 2024 and is expected to reach $23.8 billion by 2030 growing at a CAGR of 22.5% during the forecast period. Electric Vehicle (EV) Battery Thermal Management Systems (BTMS) are critical technologies designed to regulate the temperature of lithium-ion batteries during charging, discharging, and idle states. These systems maintain optimal operating temperatures to enhance battery performance, longevity, and safety. By utilizing methods such as active cooling, heating, and insulation, BTMS prevents overheating and ensures efficient thermal regulation. Effective thermal management not only improves energy efficiency but also mitigates risks associated with thermal runaway, thereby contributing to overall vehicle reliability and safety.

Market Dynamics:

Driver:

Rising adoption of electric vehicles (EVs)

The rising adoption of electric vehicles (EVs) has intensified the focus on Battery Thermal Management Systems (BTMS), essential for optimizing battery performance and safety. As EV usage increases, effective thermal regulation becomes crucial to enhance battery lifespan and efficiency. Innovations, including advanced cooling and heating technologies, address the challenges posed by varying operating conditions. This growing demand for reliable thermal management solutions not only supports the broader acceptance of EVs but also drives advancements in battery technology and vehicle design.

Restraint:

Inadequate charging infrastructure

Limited access to fast charging stations can lead to prolonged charging times, causing batteries to remain in a high-temperature state for extended periods. This overheating can negatively impact battery performance, longevity, and safety. Additionally, insufficient infrastructure may discourage EV adoption, as potential users worry about range anxiety and inefficient charging experiences. Ultimately, these issues underscore the need for robust charging networks to support effective thermal management in EVs.

Opportunity:

Consumer demand for performance

Consumer demand for high performance in the market is increasing as drivers seek enhanced efficiency and safety. As EVs gain popularity, buyers expect systems that ensure optimal battery temperature, promoting longer range and faster charging times. High-performance not only improves energy utilization but also reduce the risk of thermal runaway. This growing expectation drives manufacturers to invest in innovative cooling and heating solutions, ultimately leading to advancements that meet consumer needs.

Threat:

Complexity in design and integration

Intricate systems require advanced engineering and precise calibration, increasing production costs and potential points of failure. This complexity can complicate maintenance and repair processes, making it harder for technicians to diagnose issues. Furthermore, difficulties in integration with existing vehicle architectures may hinder overall system efficiency, negatively impacting battery performance and vehicle reliability. As a result, manufacturers may face delays in development and deployment.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the market by disrupting supply chains and manufacturing processes. Delays in sourcing critical components hindered the production of advanced thermal management technologies, slowing down the rollout of new EV models. Additionally, reduced consumer demand during lockdowns affected investment in EV infrastructure and R&D, limiting innovations. As the industry adapts to post-pandemic conditions, addressing these challenges will be crucial for advancing thermal management solutions and supporting EV growth.

The active systems segment is projected to be the largest during the forecast period

The active systems segment is projected to account for the largest market share during the projection period. These systems typically incorporate components like liquid cooling, heat exchangers, and thermal sensors that actively regulate heat distribution. By adjusting cooling or heating in real-time based on battery conditions, active systems enhance performance, efficiency, and safety. This proactive approach not only prolongs battery life but also supports faster charging, making it vital for meeting the demands of modern EV users.

The passenger cars segment is expected to have the highest CAGR during the forecast period

The passenger cars segment is expected to have the highest CAGR in the XX market during the extrapolated period. Effective thermal management is crucial for optimizing battery performance, enhancing driving range, and ensuring safety in passenger vehicles. Active cooling and heating systems are commonly employed to maintain ideal operating temperatures. As consumer demand for electric passenger cars rises, the focus on innovative BTMS solutions continues to grow, driving industry advancements.

Region with largest share:

North America region is expected to hold the largest share of the market during the forecast period driven by increasing EV adoption and regulatory incentives for sustainable transportation. The region emphasizes advanced thermal management technologies, such as active cooling and integrated thermal solutions, to enhance battery performance and safety. With a focus on innovation, manufacturers are investing in research and development to improve efficiency and reliability.

Region with highest CAGR:

Asia Pacific is expected to register the highest growth rate over the forecast period due to policies and incentives to promote electric vehicle adoption as part of efforts to reduce carbon emissions and combat air pollution. Increasing awareness of environmental issues is propelling consumer demand for electric vehicles equipped with effective thermal management systems. As disposable incomes rise in many countries, consumers are more inclined to invest in electric vehicles, further driving the demand for sophisticated solutions.

Key players in the market

Some of the key players in EV Battery Thermal Management Systems market include Robert Bosch GmbH, Lord Corporation, GENTHERM Incorporated, Polymer Science, Inc., Valeo, Grayson, Dana Incorporated, Mahle GmbH, Johnson Controls, Hanon Systems, Voss Automotive GmbH and 3M.

Key Developments:

In January 2024, Bosch Rexroth today announced a partnership with leading thermal management manufacturer Modine . The two organizations are collaborating to bring Modine EVantage ((TM)) thermal management systems to the Bosch Rexroth portfolio of eLION products for electrified off-highway machinery worldwide.

In January 2024, the partnership between ZutaCore and Valeo represents a significant step forward in advancing battery thermal management systems for EVs.

Battery Types Covered:

  • Lithium-ion Batteries
  • Solid-State Batteries
  • Nickel-Metal Hydride (NiMH) Batteries
  • Other Battery Types

Component Types Covered:

  • Cooling Plates
  • Heat Exchangers
  • Pumps
  • Sensors and Controls

Vehicle Types Covered:

  • Battery Electric Vehicles (BEVs)
  • Plug-in Hybrid Electric Vehicles (PHEVs)
  • Fuel Cell Electric Vehicles (FCEVs)
  • Other Vehicle Types

Technologies Covered:

  • Active Systems
  • Passive Systems
  • Hybrid Systems
  • Other Technologies

Applications Covered:

  • Commercial Vehicles
  • Passenger Cars
  • Two-Wheelers
  • Off-Highway Vehicles
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global EV Battery Thermal Management Systems Market, By Battery Type

  • 5.1 Introduction
  • 5.2 Lithium-ion Batteries
  • 5.3 Solid-State Batteries
  • 5.4 Nickel-Metal Hydride (NiMH) Batteries
  • 5.5 Other Battery Types

6 Global EV Battery Thermal Management Systems Market, By Component Type

  • 6.1 Introduction
  • 6.2 Cooling Plates
  • 6.3 Heat Exchangers
  • 6.4 Pumps
  • 6.5 Sensors and Controls

7 Global EV Battery Thermal Management Systems Market, By Vehicle Type

  • 7.1 Introduction
  • 7.2 Battery Electric Vehicles (BEVs)
  • 7.3 Plug-in Hybrid Electric Vehicles (PHEVs)
  • 7.4 Fuel Cell Electric Vehicles (FCEVs)
  • 7.5 Other Vehicle Types

8 Global EV Battery Thermal Management Systems Market, By Technology

  • 8.1 Introduction
  • 8.2 Active Systems
  • 8.3 Passive Systems
  • 8.4 Hybrid Systems
  • 8.5 Other Technologies

9 Global EV Battery Thermal Management Systems Market, By Application

  • 9.1 Introduction
  • 9.2 Commercial Vehicles
  • 9.3 Passenger Cars
  • 9.4 Two-Wheelers
  • 9.5 Off-Highway Vehicles
  • 9.6 Other Applications

10 Global EV Battery Thermal Management Systems Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Robert Bosch GmbH
  • 12.2 Lord Corporation
  • 12.3 GENTHERM Incorporated
  • 12.4 Polymer Science, Inc.
  • 12.5 Valeo
  • 12.6 Grayson
  • 12.7 Dana Incorporated
  • 12.8 Mahle GmbH
  • 12.9 Johnson Controls
  • 12.10 Hanon Systems
  • 12.11 Voss Automotive GmbH
  • 12.12 3M
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦