½ÃÀ庸°í¼­
»óǰÄÚµå
1577098

ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå ¿¹Ãø(-2030³â) : ¼¾¼­ À¯Çüº°, Â÷Á¾º°, ÄÄÆ÷³ÍÆ®º°, ÀÚÀ² ·¹º§º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Automotive Sensor Fusion Market Forecasts to 2030 - Global Analysis By Sensor Type, Vehicle Type, Component, Autonomy Level, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀåÀº 2024³â¿¡ 15¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2030³â¿¡´Â 69¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 21.5%ÀÔ´Ï´Ù.

ÀÚµ¿Â÷ ¼¾¼­ Ç»ÀüÀº Â÷·®³» ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ÀÎ½Ä ¹× ÀÇ»ç°áÁ¤ ´É·ÂÀ» °­È­ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. Ä«¸Þ¶ó, ·¹ÀÌ´õ, ·¹ÀÌ´õ, ¶óÀÌ´õ, ÃÊÀ½ÆÄ ¼¾¼­ µî ´Ù¾çÇÑ ¼Ò½ºÀÇ ÀÔ·ÂÀ» °áÇÕÇÏ¿© Â÷·® ÁÖº¯ ȯ°æ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØ¸¦ Á¦°øÇÏ´Â ±â¼úÀÔ´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿Í ¿ªµ¿ÀûÀÎ ÁÖÇà ȯ°æ¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¾ÈÀü, ³»ºñ°ÔÀÌ¼Ç Á¤È®µµ ¹× Àüü Â÷·® ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

Áß±¹ÀÚµ¿Â÷»ê¾÷Çùȸ(CAAM)¿¡ µû¸£¸é 2022³â 4¿ù Áß±¹¿¡¼­ »ý»êµÈ ½Â¿ëÂ÷´Â ¾à 99¸¸ 6,000´ë, »ó¿ëÂ÷´Â ¾à 21¸¸ ´ë¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS) ¼ö¿ä Áõ°¡

ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, ÀÚµ¿ ±ä±Þ Á¦µ¿°ú °°Àº ±â´ÉÀ» ¿øÇÏ´Â ¼ÒºñÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ¼¾¼­ À¶ÇÕ ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¼¾¼­ À¶ÇÕÀº ´Ù¾çÇÑ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ÀÎ½Ä ½Ã½ºÅÛÀÇ Á¤È®µµ¸¦ Çâ»ó½ÃŰ°í ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­´Â ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ ÀÚµ¿È­¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ³ô¿© ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ºÎǰ ¹× ¼Ö·ç¼Ç ½ÃÀåÀ» »õ·Î¿î Â÷¿øÀ¸·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷¸¦ À§ÇÑ Á¦ÇÑµÈ ÀÎÇÁ¶ó

V2X(Vehicle-to-Everything) µî ÇÊ¿äÇÑ Åë½Å ½Ã½ºÅÛÀ» °®Ãá µµ·Î°¡ ÃæºÐÇÏÁö ¾Ê¾Æ ½Ç½Ã°£ µ¥ÀÌÅÍ ±³È¯ÀÌ Á¦ÇÑµÇ¾î ¼¾¼­ À¶ÇÕÀÇ È¿À²¼ºÀÌ ¶³¾îÁý´Ï´Ù. ¶ÇÇÑ Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í Ç¥ÁØÈ­µÈ Å×½ºÆ® ȯ°æÀÌ ¾ø±â ¶§¹®¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ °³¹ßÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº ¼¾¼­ À¶ÇÕ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¿Í Çõ½ÅÀ» ÀúÇØÇϰí, ±Ã±ØÀûÀ¸·Î ½ÃÀå¿¡¼­ ÀÚÀ²ÁÖÇà Â÷·®ÀÇ È®À强°ú äÅÃÀ» Á¦ÇÑÇÕ´Ï´Ù.

Â÷·®ÀÇ Àüµ¿È­ ¹ßÀü

EVÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ¼º´É, ¿¡³ÊÁö È¿À²¼º, ¾ÈÀü¼ºÀ» ÃÖÀûÈ­Çϱâ À§ÇØ Ã·´Ü ¼¾¼­ ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¼¾¼­ Ç»ÀüÀº ´Ù¾çÇÑ ¼¾¼­ °£ÀÇ ¿øÈ°ÇÑ Åë½ÅÀ» ÅëÇØ Ãæµ¹ ¹æÁö, Â÷¼± À¯Áö Áö¿ø, ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ µîÀÇ ±â´ÉÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷ÀÇ ÀÚÀ²ÁÖÇà ±â¼úÀÇ ¹ßÀüÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ À§ÇÑ °­·ÂÇÑ ¼¾¼­ À¶ÇÕ ½Ã½ºÅÛ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿Â÷ ½ÃÀå¿¡¼­ ´õ ³ôÀº ¼öÁØÀÇ ÀÚµ¿È­¿Í ¼ÒºñÀÚ ¼ö¿ëÀ» ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀû °úÁ¦

ÀÚµ¿Â÷ ¼¾¼­ Ç»ÀüÀÇ ±â¼úÀû °úÁ¦´Â µ¥ÀÌÅÍ Çü½Ä, ó¸® ¼Óµµ, ȯ°æ ¹Î°¨µµ°¡ ¼­·Î ´Ù¸¥ ´Ù¾çÇÑ À¯ÇüÀÇ ¼¾¼­¸¦ ÅëÇÕÇÏ´Â º¹À⼺¿¡¼­ ±âÀÎÇÕ´Ï´Ù. ½Ç½Ã°£ ó¸® ´É·ÂÀ» À¯ÁöÇϸ鼭 Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ À¶ÇÕÀ» ½ÇÇöÇÏ´Â °ÍÀº Å« Àå¾Ö¹°ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ADAS ¹× ÀÚÀ²ÁÖÇàÂ÷ °³¹ß ºñ¿ë Áõ°¡¿Í ½ÃÀå Ãâ½Ã ½Ã°£ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î È¿°úÀûÀÎ ¼¾¼­ À¶ÇÕÀÇ ¾î·Á¿òÀº Çõ½ÅÀûÀÎ ¾ÈÀü ±â´ÉÀÇ Ã¤ÅÃÀ» ¹æÇØÇϰí, ±Ã±ØÀûÀ¸·Î Àüü ÀÚµ¿Â÷ ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº °ø±Þ¸Á¿¡ È¥¶õÀ» ÃÊ·¡ÇÏ°í »ý»ê ÀÏÁ¤À» Áö¿¬½ÃÅ´À¸·Î½á ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, ±× °á°ú ÀÚµ¿Â÷ »ý»êÀÌ µÐÈ­µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ ¿ø°Ý ±Ù¹«¿Í »çȸÀû °Å¸®µÎ±â·Î ÀÎÇØ ¾ÈÀü°ú ÀÚµ¿È­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÷´Ü ±â¼ú äÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ºñÁ¢ÃË½Ä ÁÖÇà ¼Ö·ç¼Ç°ú ¾ÈÀü ±â´É °­È­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¼¾¼­ À¶ÇÕ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß°í, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ º¯È­ÇÏ´Â ¼ÒºñÀÚ ´ÏÁî¿¡ ´ëÀÀÇϸ鼭 ½ÃÀåÀº Á¡Â÷ ȸº¹°ú ¼ºÀåÀ» °ÅµìÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß µ¥ÀÌÅÍ À¶ÇÕ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ À¶ÇÕ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Â÷·®¿ë ¼¾¼­ À¶ÇÕÀÇ µ¥ÀÌÅÍ À¶ÇÕ ±â¼úÀº ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ °áÇÕÇÏ¿© Â÷·® ÁÖº¯ÀÇ »óȲÀ» Á¾ÇÕÀûÀ̰í Á¤È®ÇÏ°Ô ÆÄ¾ÇÇÏ´Â ±â¼úÀÔ´Ï´Ù. »ç°¢Áö´ë³ª ½Ã¾ß ºÎÁ·°ú °°Àº ¼¾¼­ÀÇ Á¦¾àÀ» ÁÙÀÌ°í ¹°Ã¼ÀÇ °¨Áö, ÃßÀû ¹× ºÐ·ù¸¦ °³¼±ÇÏ¿© ´Ù¾çÇÑ ÁÖÇà Á¶°Ç¿¡¼­ º¸´Ù ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Â÷·® ÀÛµ¿À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â Ãæµ¹ ȸÇÇ ºÎ¹®

Ãæµ¹ ¹æÁö ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ãæµ¹ ȸÇÇ ¿ëµµÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»ÀüÀº ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© Â÷·® ÁÖº¯ ȯ°æÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ÅëÇÕ Á¤º¸¸¦ ºÐ¼®ÇÔÀ¸·Î½á ½Ã½ºÅÛÀº Àå¾Ö¹°À» Á¤È®ÇÏ°Ô °¨ÁöÇÏ°í °Å¸®¸¦ Æò°¡Çϸç Ãæµ¹ °¡´É¼ºÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çâ»óµÈ »óȲ ÀνÄÀ» ÅëÇØ ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)´Â Àû½Ã¿¡ °æ°í ¹× ÀÚµ¿ Á¦µ¿À» ½ÃÀÛÇÒ ¼ö ÀÖÀ¸¸ç, Â÷·®ÀÇ ¾ÈÀü¼ºÀ» Å©°Ô Çâ»ó½ÃŰ°í µµ·Î¿¡¼­ÀÇ »ç°í °¡´É¼ºÀ» ³·Ãâ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇàÂ÷ µµÀÔ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, °¡Ã³ºÐ ¼Òµæ Áõ°¡, ±³Åë¾ÈÀü¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ÷´Ü ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÅëÇØ ÀÚµ¿Â÷ ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎ Áö¿øÃ¥°ú ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½ÊÀº ÀÌ ¿ªµ¿ÀûÀÎ ½ÃÀå¿¡¼­ ¼¾¼­ À¶ÇÕ ¼Ö·ç¼ÇÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ¾ÈÀü¿¡ ´ëÇÑ ³ôÀº °ü½É°ú ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS) µµÀÔ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ±â¼ú Çõ½Å°ú ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ´Â ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±³Åë¾ÈÀü¿¡ ´ëÇÑ Á¤ºÎ ±ÔÁ¦¿Í ¼ÒºñÀÚ ÀνÄÀº ºÏ¹Ì ÀÚµ¿Â÷ ºÎ¹® Àü¹Ý¿¡ °ÉÃÄ Ã·´Ü ¼¾¼­ À¶ÇÕ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ÀÇ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ¼¾¼­ À¯Çüº°

  • ·¹ÀÌ´õ ¼¾¼­
  • LiDAR ¼¾¼­
  • ÃÊÀ½ÆÄ ¼¾¼­
  • Àû¿Ü¼± ¼¾¼­
  • ¾Ð·Â¼¾¼­
  • ¿Âµµ ¼¾¼­
  • ±âŸ ¼¾¼­ À¯Çü

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : Â÷Á¾º°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • Àü±âÀÚµ¿Â÷(EV)
  • ±âŸ Â÷Á¾

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼¾¼­
  • ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯
  • Åë½Å ¸ðµâ
  • Á¢¼Ó ¸ðµâ
  • Àü¿ø À¯´Ö
  • ¸Þ¸ð¸® µð¹ÙÀ̽º
  • »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ÀÚÀ² ·¹º§º°

  • ¿îÀüÀÚ ¾î½Ã½ºÅϽº
  • ºÎºÐÀû ÀÚµ¿È­
  • Á¶°ÇºÎ ÀÚµ¿È­
  • ³ôÀº ÀÚµ¿È­
  • ¿ÏÀü ÀÚµ¿È­

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ±â¼úº°

  • µ¥ÀÌÅÍ À¶ÇÕ
  • º¸¿ÏÀû À¶ÇÕ
  • Ä®¸¸ ÇÊÅ͸µ
  • ´º·² ³×Æ®¿öÅ©
  • µö·¯´×
  • ±âŸ ±â¼ú

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ¿ëµµº°

  • ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ)(ADAS)
  • ¿îÀüÀÚ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ
  • »ç°¢ ŽÁö
  • ÁÖÂ÷ Áö¿ø
  • Â÷¼±ÀÌÅ» °æº¸ ½Ã½ºÅÛ
  • ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ(ACC)
  • ±³Åë Ç¥Áö ÀνÄ
  • Ãæµ¹ ȸÇÇ
  • ±âŸ ¿ëµµ

Á¦11Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • OEM(Original Equipment Manufacturers)
  • ¾ÖÇÁÅ͸¶ÄÏ °ø±Þ¾÷ü

Á¦12Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¼¾¼­ Ç»Àü ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Bosch
  • Continental AG
  • Aptiv PLC
  • Denso Corporation
  • Valeo
  • ZF Friedrichshafen AG
  • Veoneer Inc.
  • Texas Instruments Inc.
  • NXP Semiconductors
  • Renesas Electronics Corporation
  • Infineon Technologies AG
  • Analog Devices Inc.
  • Magna International
  • ON Semiconductor
  • TE Connectivity
KSA 24.11.07

According to Stratistics MRC, the Global Automotive Sensor Fusion Market is accounted for $1.58 billion in 2024 and is expected to reach $6.92 billion by 2030 growing at a CAGR of 21.5% during the forecast period. Automotive sensor fusion refers to the integration of data from multiple sensors within a vehicle to enhance perception and decision-making capabilities. By combining inputs from various sources, such as cameras, radar, lidar, and ultrasonic sensors, this technology provides a comprehensive understanding of the vehicle's surroundings. It enhances safety, navigational precision, and overall vehicle performance by allowing real-time data processing and informed responses to dynamic driving environments.

According to the China Association of Automobile Manufacturers (CAAM), in April 2022, about 996 thousand passenger vehicles and 210 thousand commercial vehicles were produced in China.

Market Dynamics:

Driver:

Growing demand for advanced driver-assistance systems (ADAS)

As consumers increasingly seek features like adaptive cruise control, lane-keeping assistance, and automated emergency braking, automakers are investing in sensor fusion technologies to meet these demands. Sensor fusion integrates data from various sensors, improving the accuracy of perception systems and enabling real-time decision-making. This evolution not only ensures compliance with stringent safety regulations but also boosts consumer confidence in vehicle automation, driving the market for automotive sensor fusion components and solutions to new heights.

Restraint:

Limited infrastructure for autonomous vehicles

Insufficient roadways equipped with necessary communication systems, such as V2X (Vehicle-to-Everything), restrict real-time data exchange and reduce the effectiveness of sensor fusion. Additionally, the lack of supportive regulatory frameworks and standardized testing environments slows the development of reliable autonomous systems. This uncertainty deters investment and innovation in sensor fusion technologies, ultimately limiting the scalability and adoption of autonomous vehicles in the market.

Opportunity:

Increasing vehicle electrification

Since EVs are becoming more prevalent, integrating sophisticated sensor systems becomes essential for optimizing performance, energy efficiency, and safety. Sensor fusion enables seamless communication between various sensors, enhancing functionalities like collision avoidance, lane-keeping assistance, and adaptive cruise control. Furthermore, the rise of autonomous driving technologies in electrified vehicles relies heavily on robust sensor fusion systems to process real-time data, making them crucial for achieving higher levels of automation and consumer acceptance in the automotive market.

Threat:

Technical challenges

Technical challenges in automotive sensor fusion stem from the complexity of integrating diverse sensor types which can have varying data formats, processing speeds, and environmental sensitivities. Ensuring accurate and reliable data fusion while maintaining real-time processing capabilities poses significant hurdles. These challenges can lead to increased development costs and prolonged time-to-market for ADAS and autonomous vehicles. Consequently, difficulties in achieving effective sensor fusion may hinder the adoption of innovative safety features, ultimately hampering overall market growth in the automotive sector.

Covid-19 Impact

The covid-19 pandemic significantly impacted the Automotive Sensor Fusion Market by disrupting supply chains and delaying production schedules, resulting in a slowdown of vehicle manufacturing. However, the crisis also accelerated the adoption of advanced technologies, as remote working and social distancing heightened the focus on safety and automation. Increased interest in contactless driving solutions and enhanced safety features fuelled demand for sensor fusion systems, leading to a gradual recovery and growth in the market as automotive manufacturers adapted to changing consumer needs.

The data fusion segment is expected to be the largest during the forecast period

The data fusion segment is predicted to secure the largest market share throughout the forecast period. Data fusion technology in automotive sensor fusion combines data from multiple sensors to create a comprehensive, accurate understanding of the vehicle's surroundings. It reduces sensor limitations, such as blind spots or poor visibility, and improves object detection, tracking, and classification, enabling safer, more reliable vehicle operation in various driving conditions.

The collision avoidance segment is expected to have the highest CAGR during the forecast period

The collision avoidance segment is anticipated to witness the highest CAGR during the forecast period. Automotive sensor fusion in collision avoidance applications integrates data from multiple sensors to create a comprehensive understanding of the vehicle's surroundings. By analyzing this combined information, the system can accurately detect obstacles, assess distances, and predict potential collisions. This enhanced situational awareness enables advanced driver assistance systems (ADAS) to initiate timely warnings or automatic braking, significantly improving vehicle safety and reducing the likelihood of accidents on the road.

Region with largest share:

Asia Pacific is expected to register the largest market share during the forecast period driven by the increasing adoption of advanced driver-assistance systems (ADAS) and autonomous vehicles. Rapid urbanization, rising disposable incomes and heightened awareness of road safety contribute to the demand for sophisticated sensor technologies. Countries like China, Japan, and South Korea are at the forefront of automotive innovation, with investments in research and development. Additionally, supportive government initiatives and partnerships between automotive manufacturers and technology firms are further propelling the growth of sensor fusion solutions in this dynamic market.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period due to strong focus on safety and the increasing implementation of advanced driver-assistance systems (ADAS). The region is home to major automotive manufacturers and technology companies that invest heavily in innovation and research. Additionally, supportive government regulations and consumer awareness regarding road safety further fuel the adoption of sophisticated sensor fusion solutions across the North American automotive sector.

Key players in the market

Some of the key players profiled in the Automotive Sensor Fusion Market include Bosch, Continental AG, Aptiv PLC, Denso Corporation, Valeo, ZF Friedrichshafen AG, Veoneer Inc., Texas Instruments Inc., NXP Semiconductors, Renesas Electronics Corporation, Infineon Technologies AG, Analog Devices Inc., Magna International, ON Semiconductor and TE Connectivity.

Key Developments:

In March 2024, Bosch launched its next-generation Vehicle Motion and Position Sensor (VMPS). The VMPS is designed to integrate data from multiple sensors such as cameras, radar, and LIDAR, creating a highly accurate sensor fusion system for autonomous driving and advanced driver-assistance systems (ADAS).

In August 2023, Continental AG released its High-Resolution 3D Flash LIDAR sensor. This cutting-edge sensor is designed to significantly enhance the precision of object detection in autonomous vehicles. By utilizing high-resolution 3D Flash LIDAR technology, it provides a more accurate and detailed representation of the surrounding environment.

Sensor Types Covered:

  • Radar Sensors
  • LiDAR Sensors
  • Ultrasonic Sensors
  • Infrared Sensors
  • Pressure Sensors
  • Temperature Sensors
  • Other Sensor Types

Vehicle Types Covered:

  • Passenger Cars
  • Commercial Vehicles
  • Electric Vehicles (EVs)
  • Other Vehicle Types

Components Covered:

  • Sensors
  • Microcontrollers
  • Communication Modules
  • Connectivity Modules
  • Power Supply Units
  • Memory Devices
  • User Interfaces
  • Other Components

Autonomy Levels Covered:

  • Driver Assistance
  • Partial Automation
  • Conditional Automation
  • High Automation
  • Full Automation

Technologies Covered:

  • Data Fusion
  • Complementary Fusion
  • Kalman Filtering
  • Neural Networks
  • Deep Learning
  • Other Technologies

Applications Covered:

  • Advanced Driver Assistance Systems (ADAS)
  • Driver Monitoring Systems
  • Blind Spot Detection
  • Parking Assistance
  • Lane Departure Warning Systems
  • Adaptive Cruise Control (ACC)
  • Traffic Sign Recognition
  • Collision Avoidance
  • Other Applications

End Users Covered:

  • Original Equipment Manufacturers (OEMs)
  • Aftermarket Suppliers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Sensor Fusion Market, By Sensor Type

  • 5.1 Introduction
  • 5.2 Radar Sensors
  • 5.3 LiDAR Sensors
  • 5.4 Ultrasonic Sensors
  • 5.5 Infrared Sensors
  • 5.6 Pressure Sensors
  • 5.7 Temperature Sensors
  • 5.8 Other Sensor Types

6 Global Automotive Sensor Fusion Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Cars
  • 6.3 Commercial Vehicles
  • 6.4 Electric Vehicles (EVs)
  • 6.5 Other Vehicle Types

7 Global Automotive Sensor Fusion Market, By Component

  • 7.1 Introduction
  • 7.2 Sensors
  • 7.3 Microcontrollers
  • 7.4 Communication Modules
  • 7.5 Connectivity Modules
  • 7.6 Power Supply Units
  • 7.7 Memory Devices
  • 7.8 User Interfaces
  • 7.9 Other Components

8 Global Automotive Sensor Fusion Market, By Autonomy Level

  • 8.1 Introduction
  • 8.2 Driver Assistance
  • 8.3 Partial Automation
  • 8.4 Conditional Automation
  • 8.5 High Automation
  • 8.6 Full Automation

9 Global Automotive Sensor Fusion Market, By Technology

  • 9.1 Introduction
  • 9.2 Data Fusion
  • 9.3 Complementary Fusion
  • 9.4 Kalman Filtering
  • 9.5 Neural Networks
  • 9.6 Deep Learning
  • 9.7 Other Technologies

10 Global Automotive Sensor Fusion Market, By Application

  • 10.1 Introduction
  • 10.2 Advanced Driver Assistance Systems (ADAS)
  • 10.3 Driver Monitoring Systems
  • 10.4 Blind Spot Detection
  • 10.5 Parking Assistance
  • 10.6 Lane Departure Warning Systems
  • 10.7 Adaptive Cruise Control (ACC)
  • 10.8 Traffic Sign Recognition
  • 10.9 Collision Avoidance
  • 10.10 Other Applications

11 Global Automotive Sensor Fusion Market, By End User

  • 11.1 Introduction
  • 11.2 Original Equipment Manufacturers (OEMs)
  • 11.3 Aftermarket Suppliers

12 Global Automotive Sensor Fusion Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Bosch
  • 14.2 Continental AG
  • 14.3 Aptiv PLC
  • 14.4 Denso Corporation
  • 14.5 Valeo
  • 14.6 ZF Friedrichshafen AG
  • 14.7 Veoneer Inc.
  • 14.8 Texas Instruments Inc.
  • 14.9 NXP Semiconductors
  • 14.10 Renesas Electronics Corporation
  • 14.11 Infineon Technologies AG
  • 14.12 Analog Devices Inc.
  • 14.13 Magna International
  • 14.14 ON Semiconductor
  • 14.15 TE Connectivity
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦