½ÃÀ庸°í¼­
»óǰÄÚµå
1587673

¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå ¿¹Ãø : ¼Ö·ç¼Ç À¯Çüº°, ³ó¾÷ À¯Çüº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2030³â)

Agriculture Machine to Machine (M2M) Market Forecasts to 2030 - Global Analysis By Solution Type (Hardware, Software and Services), Agriculture Type, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀåÀº 2024³â 38¾ï 4,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ Áß CAGRÀº 10.07%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç,, 2030³â¿¡´Â 68¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

³ó¾÷ ±â°è, Àåºñ ¹× °ü¸® ½Ã½ºÅÛ °£ÀÇ ÀÚµ¿ µ¥ÀÌÅÍ ±³È¯À» »ç¶÷ÀÇ ¼ÕÀ» ÅëÇÏÁö ¾Ê°í °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀÌ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀåÀÇ ¸ñÇ¥ÀÔ´Ï´Ù. ÀÛ¹°ÀÇ °Ç°­»óÅÂ, Åä¾ç»óÅÂ,°ü°³, °¡Ãà°ü¸® µî ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ÅëÇØ ³ó¾÷ÀÇ M2M ±â¼úÀº IoT ¼¾¼­, ¹«¼± ¿¬°á, µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© »ý»ê·®À» Áõ°¡½Ãŵ´Ï´Ù.

2021³â 7¿ù 10°³ Á¤ºÎ ±â°üÀÌ °øµ¿À¸·Î ¹ßÇ¥ÇÑ 3°³³â °èȹ¿¡ µû¸£¸é Áß±¹Àº 2023³â ¸»±îÁö 5¾ï 6,000¸¸ ¸íÀÇ 5G ¸ð¹ÙÀÏ °í°´À» °³Ã´ÇØ, ´ë±â¾÷¿¡¼­ °í¼Ó ¹«¼± ±â¼úÀÇ º¸±Þ·üÀ» 35%·Î ¿Ã¸± °èȹÀÔ´Ï´Ù. 2023³â ¸»±îÁö Áß±¹Àº °³ÀÎ ¼ÒºñÀÚÀÇ 5G º¸±Þ·üÀ» 40%¿¡ µµ´Þ½ÃÄÑ 5G µ¥ÀÌÅͰ¡ Àüü ¿Â¶óÀÎ Æ®·¡ÇÈÀÇ Àý¹Ý ÀÌ»óÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ±â´ëÇϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð ³ó¾÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

Á¤¹Ð ³ó¾÷Àº Á¡Â÷ º¸±ÞµÇ°í ÀÖÀ¸¸ç, ³ó¾÷ Á¾»çÀÚ°¡ »ý»ê·®À» ´Ã¸®°í ÀÚ¿øÀ» ÃÖ´ëÇÑ È°¿ëÇϱâ À§ÇÑ µ¥ÀÌÅÍ ÁÖµµÀÇ ¹æ¹ýÀ» ¸ð»öÇÏ´Â °¡¿îµ¥, ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. M2M ±â¼úÀº ÀÛ¹°ÀÇ °Ç°­ »óÅÂ, Åä¾ç »óÅÂ, ¹° »ç¿ë·®À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© Á¤È®ÇÑ ÀÇ»ç °áÁ¤°ú È¿°úÀûÀÎ ³óÀå °ü¸®¸¦ Áö¿øÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Æó±â¹°ÀÇ »è°¨, ºñ¿ë Àý°¨, ¼öÈ®·®ÀÇ ÃÖ´ëÈ­¸¦ Áö¿øÇÏ´Â °ÍÀ¸·Î, À̵éÀº ¸ðµÎ Áõ´ëÇÏ´Â ½Ä·® ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ÇʼöÀûÀÎ °ÍÀÔ´Ï´Ù. M2M ´ëÀÀ Á¤¹Ð ³ó¾÷ ½Ã½ºÅÛÀÇ Ã¤¿ëÀº ³ó¾à »ç¿ëÀÇ »è°¨ µî ȯ°æ¸é¿¡¼­ÀÇ ¸Þ¸®Æ®µµ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

º¹À⼺°ú ±â¼ú Áö½ÄÀÇ Çʿ伺

³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½Ã½ºÅÛÀÇ µµÀÔÀº º¹À⼺°ú ±â¼úÀû ¿ä°ÇÀ¸·Î ÀÎÇØ ƯÈ÷ ±â¼ú¿¡ Àͼ÷ÇÏÁö ¾ÊÀº ³ó¾÷ Á¾»çÀڵ鿡°Ô Å« Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. Àü¹®ÀûÀÎ ±³À°À» ¹ÞÁö ¾ÊÀ¸¸é M2M ½Ã½ºÅÛ¿¡¼­ ³×Æ®¿öũȭµÈ ¼¾¼­, µ¥ÀÌÅÍ ºÐ¼® ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ µµ±¸¸¦ M2M ½Ã½ºÅÛ¿¡¼­ À¯ÁöÇϱⰡ ¾î·Æ½À´Ï´Ù. ½Ã½ºÅÛ ¼³Á¤, À¯Áö º¸¼ö ¹× µ¥ÀÌÅÍ ºÐ¼®¿¡ ´õ ¸¹Àº µµ¿òÀ» ÇÊ¿ä·Î ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ±â¼úÀû ¿ä°Ç°ú ÇнÀ °î¼±Àº ¼Ò±Ô¸ð ³óÀåÀÌ M2M ±â¼ú¿¡ ÅõÀÚÇÒ ÀÇ¿åÀ» ±ðÀ» ¼ö ÀÖ¾î ½ÃÀå ÀüüÀÇ È®´ë¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

IoT¿Í ¼¾¼­ ±â¼úÀÇ »ó½Â

º¸´Ù ½º¸¶Æ®Çϰí È¿°úÀûÀÎ ³óÀå ¿î¿µÀº IoT¿Í ¼¾¼­ ±â¼úÀÇ ¼ºÀå¿¡ ÀÇÇØ °¡´ÉÇØÁö¸ç, ÀÌ´Â ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀåÀ» °ßÀÎÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¿¹°, ÀÛ¹°, ³¯¾¾ ¹× Åä¾ç ¼öºÐ¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅʹ ÷´Ü ¼¾¼­¿¡ ÀÇÇØ ¼öÁýµÇ¸ç M2M ½Ã½ºÅÛÀº ÀýÂ÷ ÀÚµ¿È­ ¹× ÀÚ¿øÀÇ ÃÖ´ë Ȱ¿ë¿¡ Ȱ¿ëµË´Ï´Ù. ÀÌ ¿¬°áÀº ³ëµ¿·ÂÀÇ Çʿ伺À» ÁÙÀÌ°í ³¶ºñ¸¦ ¾ø¾Ö°í ¼öÀ² ¿¹ÃøÀ» °³¼±ÇÕ´Ï´Ù. IoTÀÇ Áö¼ÓÀûÀÎ °³¼±À¸·Î ÀÎÇØ ³ó¾÷ Á¾»çÀÚµéÀº º¸´Ù Á¤È®ÇÑ ÀλçÀÌÆ®¸¦ ¾ò°í M2M ¼Ö·ç¼ÇÀ» º¸´Ù ³Î¸® ÀÌ¿ëÇÒ ¼ö ÀÖ¾î È¿À²ÀûÀ̰í Çö´ëÀûÀÎ ³ó¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù.

Ç¥ÁØÈ­ ºÎÁ·

ƯÈ÷ µ¥ÀÌÅÍ ÅëÇÕ°ú µð¹ÙÀ̽ºÀÇ È£È¯¼º¿¡ °üÇØ¼­´Â ³ó¾÷¿ë M2M ½ÃÀåÀÇ Ç¥ÁØÈ­°¡ ºÎÁ·Çϱ⠶§¹®¿¡ Å« ¾î·Á¿òÀÌ ¹ß»ýÇÕ´Ï´Ù. Á¦Á¶»ç¸¶´Ù ´Ù¸¥ Åë½Å ÇÁ·ÎÅäÄÝÀÌ Ã¤ÅõǾî Àֱ⠶§¹®¿¡ ¿©·¯ °ø±Þ¾÷üÀÇ ±â±â¸¦ ¿Ïº®ÇÏ°Ô ¿¬°è½ÃŰ´Â °ÍÀº ¾î·Æ½À´Ï´Ù. ȣȯ¼ºÀ» À§ÇØ Ãß°¡ ¹Ìµé¿þ¾î ¹× ¸ÂÃãÇü ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¼¼ºÐÈ­´Â ½Ã½ºÅÛ ¼³Á¤À» ¾î·Æ°Ô ÇÏ°í ºñ¿ëÀ» Áõ°¡½ÃŰ°í ºñÈ¿À²¼ºÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­µÈ ÇÁ·¹ÀÓ¿öÅ©°¡ ¾ø±â ¶§¹®¿¡ ¿¬°èµÈ µ¥ÀÌÅÍ ÁÖµµ ³ó¾÷ÀÇ °¡´É¼ºÀº Á¦ÇÑµÇ¾î ³ó¾÷¿¡¼­ M2M ±â¼úÀÇ ÀϹÝÀûÀÎ »ç¿ëÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ½Å±â¼úÀÇ Ã¤¿ëÀ» ´ÊÃß°í °ø±Þ¸ÁÀ» È¥¶õ½ÃÅ´À¸·Î½á ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) »ç¾÷¿¡ Å« ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. È¿À²È­¿Í Á¤¹Ð³ó¾÷¿¡ ÇʼöÀûÀÎ M2M ¼Ö·ç¼Ç µµÀÔÀº Àη ºÎÁ·°ú À̵¿ÀÇ Á¦¾àÀ¸·Î ÀÎÇØ ¸¹Àº ³ó¾÷ »ç¾÷ÀÚ¿¡°Ô ¾î·Á¿òÀ» °Þ°Ô Çß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ³ó¾÷¿¡¼­ÀÇ µðÁöÅÐ º¯ÇõÀÇ Çʿ伺À» º¸´Ù ±ä±ÞÇÏ°Ô Çϰí, ³ó¾÷ Á¾»çÀÚ¸¦ ÀÚµ¿È­³ª ¿ø°Ý °¨½Ã ±â¼úÀÇ Á¶»ç¿¡ ÇâÇÏ°Ô Çß½À´Ï´Ù. »ê¾÷ÀÌ »õ·Î¿î °æ¿µ½ÇÅ¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ º¯È­´Â M2M ºÐ¾ßÀÇ Àå±â ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

Á¤¹Ð ³ó¾÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ³ó¾÷ Á¾»çÀÚ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ÀÛ¹° ¼öÀ²°ú ÀÚ¿ø ÀÌ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö Àֱ⠶§¹®¿¡ Çϵå¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ³ëµ¿ ºñ¿ë »ó½ÂÀÌ ÀÚµ¿È­ ±â¼úÀÇ Ã¤ÅÃÀ» µÞ¹ÞħÇÏ°í ¼öÀÛ¾÷ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í ÀÖ½À´Ï´Ù ¶ÇÇÑ ¼¾¼­ ±â¼ú°ú ¿¬°á ¼Ö·ç¼ÇÀÇ Áøº¸´Â ÀÛ¾÷ È¿À²¼ºÀ» ³ôÀÌ°í ¿ø°Ý ¸ð´ÏÅ͸µÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ½º¸¶Æ® ³ó¾÷ ½ÇõÀ» ÃßÁøÇÏ´Â Á¤ºÎÀÇ ´ëó°¡ ÀÌ·¯ÇÑ ¼ºÀåÀ» ÇÑÃþ ´õ µÞ¹ÞÄ§ÇØ, M2M ¼Ö·ç¼ÇÀÌ ±Ù´ëÀûÀÎ ³ó¾÷ ½Çõ¿¡ ÇʼöÀûÀÎ °ÍÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Á¤¹Ð ³ó¾÷ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

Á¤¹Ð ³ó¾÷ ºÎ¹®Àº ȯ°æ º¯¼ö, ÀÛ¹° °Ç°­ ¹× Åä¾ç »óÅ¿¡ ´ëÇÑ ÃֽŠÁ¤º¸¸¦ Á¦°øÇÏ´Â ¼¾¼­ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤Àº ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Á¶ÇÕ¿¡ ÀÇÇØ Ãß°¡·Î Áö¿øµÇ¾î ½Å¼ÓÇÑ ÀÛ¹° °ü¸® ÇൿÀ» °¡´ÉÇϰÔÇÕ´Ï´Ù. ¶ÇÇÑ, È¿À²ÀûÀÎ ³ó¾÷À» Áö¿øÇÏ´Â Á¤¹Ð ³ó¾÷ ±â¼úÀÇ ÀÌ¿ëÀº ¼¼°è ½Ä·® ¼ö¿ä Áõ°¡¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» °¡Áø Áö¿ª

Àα¸ÀÇ ±Þ¼ÓÇÑ È®´ë, ½Ä·® ¼ö¿ä Áõ°¡, ģȯ°æ ³ó¹ý¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. M2MÀÇ µµÀÔÀº ÀÌ Áö¿ª Á¤ºÎ°¡ »ý»ê°ú ÀÚ¿ø È¿À²¼º Çâ»óÀ» ¸ñÀûÀ¸·Î ÇÏ´Â ½º¸¶Æ® ³ó¾÷°ú Á¤¹Ð ³ó¾÷¿¡ ´ëÇÑ ³ë·ÂÀ» ÃßÁøÇÔÀ¸·Î½á °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ IoT¿Í Åë½Å ÀÎÇÁ¶óÀÇ ¹ßÀüÀ¸·Î ³ó¾÷ÀÇ ´Ù¾çÇÑ Àå¸é¿¡¼­ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

ºÏ¹Ì´Â ±â¼ú °³¹ß, ¿î¿µºñ Áõ°¡¿¡ Á÷¸éÇÑ È¿°úÀûÀÎ ÀÚ¿ø°ü¸®ÀÇ Çʿ伺, Á¤¹Ð³ó¾÷¿¡ ´ëÇÑ °­ÇÑ ¼ö¿ä·Î ¿¹Ãø±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °ß°íÇÑ Åë½Å ÀÎÇÁ¶ó´Â M2M ¼Ö·ç¼ÇÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ» ÃËÁøÇÏ°í µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. M2M¿¡ ´ëÇÑ ÅõÀÚ´Â Àý¼ö ¹× Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» Áö¿øÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥ ¹× Àμ¾Æ¼ºê¿¡ ÀÇÇØ µÞ¹ÞħµË´Ï´Ù. ºÏ¹Ì ³ó¾÷¿¡¼­ ÀÚµ¿È­ÀÇ µµÀÔÀº ´ë±Ô¸ð ³ó¾÷ ±â¼ú »ç¾÷ÀÇ Á¸Àç¿Í ÀÎÀû ºÎÁ·ÀÇ ½É°¢È­·Î ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞº° ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­¹®
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå : ¼Ö·ç¼Ç À¯Çüº°

  • ¼­¹®
  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå : ³ó¾÷ À¯Çüº°

  • ¼­¹®
  • ¾ç½Ä¾÷
  • °æÀÛ ³ó¾÷
  • ¿ø¿¹
  • Ãà»ê

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå : ±â¼úº°

  • ¼­¹®
  • ¼¿·ê·¯ M2M
  • ´Ü°Å¸®
  • À§¼º M2M
  • À¯¼±
  • ÀúÀü·Â ±¤¿ª ³×Æ®¿öÅ©
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå : ¿ëµµº°

  • ¼­¹®
  • Á¤¹Ð³ó¾÷
  • °¡Ãà ¸ð´ÏÅ͸µ
  • ¾ç½Ä
  • ½º¸¶Æ® ¿Â½Ç
  • Åä¾ç ¸ð´ÏÅ͸µ
  • Àç°í ¹× ¼³ºñ °ü¸®
  • ÀÛ¹° ¸ð´ÏÅ͸µ
  • ¸®¸ðÆ® ¼¾½Ì ¹× À̹Ì¡
  • °ø±Þ¸Á°ú ¹°·ù
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸Ó½Å Åõ ¸Ó½Å(M2M) ½ÃÀå : Áö¿ªº°

  • ¼­¹®
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • John Deere
  • Trimble Inc.
  • AGCO Corporation
  • CNH Industrial
  • Yara International ASA
  • Kubota Corporation
  • Hexagon Agriculture
  • AG Leader Technology
  • Raven Industries
  • Digi International
  • Telit Communications
  • Orange Business Services
  • Vodafone Group Plc
  • Cisco Systems Inc.
  • AT&T Inc.
  • Siemens AG
AJY 24.11.22

According to Stratistics MRC, the Global Agriculture Machine to Machine (M2M) Market is accounted for $3.84 billion in 2024 and is expected to reach $6.83 billion by 2030 growing at a CAGR of 10.07% during the forecast period. Enabling automated data interchange between agricultural machinery, devices, and management systems without the need for human interaction is the target of the agriculture machine-to-machine (M2M) market. Through real-time monitoring of crop health, soil conditions, irrigation, and animal management, M2M technology in agriculture increases production by leveraging IoT sensors, wireless connectivity, and data analytics.

According to a three-year plan jointly released by ten government entities in July 2021, China plans to develop 560 million 5G mobile customers by the end of 2023 and increase the penetration rate of fast wireless technology among large industrial firms to 35%. By the end of 2023, China hopes to have reached a 40 percent penetration rate of 5G among individual consumers, with 5G data making up more than half of all online traffic.

Market Dynamics:

Driver:

Growing demand for precision agriculture

Precision farming is becoming more and more popular, which is driving the agriculture machine-to-machine (M2M) market as farmers look for data-driven methods to increase output and maximize resource utilization. M2M technology supports accurate decision-making and effective farm management by enabling real-time monitoring of crop health, soil conditions, and water usage. This technology aids in waste reduction, cost reduction, and yield maximization-all of which are essential for satisfying the growing demand for food. The adoption of M2M-enabled precision agriculture systems is also encouraged by environmental advantages, such as reduced pesticide use.

Restraint:

Complexity and technical knowledge requirement

Adoption of Agriculture Machine-to-Machine (M2M) systems is severely hampered by their complexity and technical requirements, particularly for farmers with limited familiarity with technology. Without specialized training, maintaining networked sensors, data analytics, and real-time monitoring tools can be difficult in M2M systems. Higher operating expenses result from this complexity, which frequently calls for more assistance with system setup, maintenance, and data interpretation. The technological requirements and learning curve may discourage smaller farms from investing in M2M technology, which would impede the expansion of the market as a whole.

Opportunity:

Rise in IoT and sensor technology

Smarter, more effective farm operations are made possible by the growth of IoT and sensor technologies, which is a key factor driving the agriculture machine-to-machine (M2M) market. Real-time data on animals, crops, weather, and soil moisture is collected by sophisticated sensors and used by M2M systems to automate procedures and maximize resource utilization. This connection lowers the need for labour, cuts down on waste, and improves yield forecasts. Farmers are gaining more accurate insights as a result of continuous IoT improvements, which make M2M solutions more widely available, efficient, and crucial to contemporary agriculture.

Threat:

Lack of standardization

Significant difficulties arise from the agriculture machine-to-machine (M2M) market's lack of standardization, especially when it comes to data integration and device compatibility. The employment of different communication protocols by different manufacturers makes it challenging for equipment from several suppliers to function together flawlessly. Due to the possibility of requiring additional middleware or customized solutions for compatibility, this fragmentation can make system setup more difficult, raise costs, and result in inefficiencies. The entire potential of linked, data-driven farming is limited in the absence of standardized frameworks, which impede the general use of M2M technology in agriculture.

Covid-19 Impact

The COVID-19 pandemic had a major impact on the agriculture machine-to-machine (M2M) business by delaying the adoption of new technology and upsetting supply networks. Adoption of M2M solutions, which are essential for efficiency and precision farming, was difficult for many agricultural businesses due to personnel shortages and movement constraints. But the crisis also made the need for digital transformation in agriculture more urgent, leading farmers to investigate automation and remote monitoring technology. As the industry adapts to the new operating realities, this change is anticipated to propel long-term growth in the M2M sector.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is estimated to be the largest, due to increasing demand for precision agriculture enables farmers to optimize crop yields and resource use through real-time data analysis. Rising labour costs push the adoption of automation technologies, reducing dependency on manual labour. Additionally, advancements in sensor technology and connectivity solutions enhance operational efficiency and facilitate remote monitoring. Government initiatives promoting smart farming practices further support this growth, making M2M solutions essential for modern agricultural practices.

The precision farming segment is expected to have the highest CAGR during the forecast period

The precision farming segment is anticipated to witness the highest CAGR during the forecast period, due to the developments in sensor technology, which offer up-to-date information on environmental variables, crop health, and soil conditions. Data-driven decision-making is further supported by the combination of artificial intelligence and machine learning, which enables prompt crop management actions. Additionally, the use of precision farming techniques that support effective agricultural operations is pushed by growing global food demand and sustainability concerns.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period due to rapid population expansion, increased food demand, and growing consciousness of environmentally friendly agricultural methods. M2M adoption is accelerated by the region's governments' backing of smart farming and precision agricultural efforts aimed at increasing production and resource efficiency. Furthermore, real-time monitoring in a variety of agricultural contexts is made possible by developments in IoT and communication infrastructure.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period, owing to technological developments, the necessity for effective resource management in the face of growing operating expenses, and the strong demand for precision agriculture. The region's robust communication infrastructure facilitates the broad use of M2M solutions, allowing for data-driven decision-making and real-time monitoring. M2M investment is also encouraged by government programs and incentives that support water conservation and sustainable farming. The adoption of automation in North American agriculture is further fuelled by the existence of significant agricultural technology businesses and growing manpower shortages.

Key players in the market

Some of the key players profiled in the Agriculture Machine to Machine (M2M) Market include John Deere, Trimble Inc., AGCO Corporation, CNH Industrial, Yara International ASA, Kubota Corporation, Hexagon Agriculture, AG Leader Technology, Raven Industries, Digi International, Telit Communications, Orange Business Services, Vodafone Group Plc, Cisco Systems Inc., AT&T Inc., Siemens AG.

Key Developments:

In October 2024, John Deere announced an expansion to its Agriculture & Turf training center and field site near Orlando, Florida. This investment advances the company's commitment to customer success through the support of John Deere's world-class dealer channel.

In January 2023, AGCO Autonomous Tractor introduced an autonomous tractor equipped with M2M technology for precision farming applications.

In March 2021, Trimble Ag Software Update launched a cloud-based platform update that enhances data analysis and visualization for precision agriculture.

Solution Types Covered:

  • Hardware
  • Software
  • Services

Agriculture Types Covered:

  • Aquaculture
  • Arable Farming
  • Horticulture
  • Livestock Farming

Technologies Covered:

  • Cellular M2M
  • Short-Range
  • Satellite M2M
  • Wired
  • Low-Power Wide Area Networks
  • Other Technologies

Applications Covered:

  • Precision Farming
  • Livestock Monitoring
  • Fish Farming
  • Smart Greenhouses
  • Soil Monitoring
  • Inventory and Equipment Management
  • Crop Monitoring
  • Remote Sensing & Imaging
  • Supply Chain & Logistics
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Agriculture Machine to Machine (M2M) Market, By Solution Type

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Agriculture Machine to Machine (M2M) Market, By Agriculture Type

  • 6.1 Introduction
  • 6.2 Aquaculture
  • 6.3 Arable Farming
  • 6.4 Horticulture
  • 6.5 Livestock Farming

7 Global Agriculture Machine to Machine (M2M) Market, By Technology

  • 7.1 Introduction
  • 7.2 Cellular M2M
  • 7.3 Short-Range
  • 7.4 Satellite M2M
  • 7.5 Wired
  • 7.6 Low-Power Wide Area Networks
  • 7.7 Other Technologies

8 Global Agriculture Machine to Machine (M2M) Market, By Application

  • 8.1 Introduction
  • 8.2 Precision Farming
  • 8.3 Livestock Monitoring
  • 8.4 Fish Farming
  • 8.5 Smart Greenhouses
  • 8.6 Soil Monitoring
  • 8.7 Inventory and Equipment Management
  • 8.8 Crop Monitoring
  • 8.9 Remote Sensing & Imaging
  • 8.10 Supply Chain & Logistics
  • 8.11 Other Applications

9 Global Agriculture Machine to Machine (M2M) Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 John Deere
  • 11.2 Trimble Inc.
  • 11.3 AGCO Corporation
  • 11.4 CNH Industrial
  • 11.5 Yara International ASA
  • 11.6 Kubota Corporation
  • 11.7 Hexagon Agriculture
  • 11.8 AG Leader Technology
  • 11.9 Raven Industries
  • 11.10 Digi International
  • 11.11 Telit Communications
  • 11.12 Orange Business Services
  • 11.13 Vodafone Group Plc
  • 11.14 Cisco Systems Inc.
  • 11.15 AT&T Inc.
  • 11.16 Siemens AG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦