½ÃÀ庸°í¼­
»óǰÄÚµå
1603783

ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå ¿¹Ãø(-2030³â) : ÀÚµ¿Â÷ ºÎǰº°, Àç·áº°, Á¦Á¶ ÇÁ·Î¼¼½ºº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Automotive Lightweighting Market Forecasts to 2030 - Global Analysis By Vehicle Component, Material, Manufacturing Process, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀåÀº 2024³â¿¡ 762¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2030³â¿¡´Â 1,206¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 8.5%ÀÔ´Ï´Ù.

ÀÚµ¿Â÷ °æ·®È­¶õ °æ·® ¼ÒÀ縦 »ç¿ëÇÏ°í ¼³°è¸¦ ÃÖÀûÈ­ÇÏ¿© ÀÚµ¿Â÷¸¦ °æ·®È­ÇÏ¿© ¿¬ºñ¸¦ °³¼±ÇÏ°í ¹è±â°¡½º ¹èÃâ·®À» ÁÙÀÌ¸ç ¼º´ÉÀ» Çâ»ó½ÃŰ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. °æ·®È­ Àü·«Àº ¶ÇÇÑ ¾ÈÀü¼º°ú ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ¹«°Ô¸¦ ÃÖ¼ÒÈ­Çϱâ À§ÇØ °ø±â¿ªÇÐ ¹× ±¸Á¶ ¼³°è¸¦ °³¼±ÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ÀÚµ¿Â÷ °æ·®È­ Ãß¼¼´Â ±ÔÁ¦ ¿ä°Ç, ģȯ°æ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä, ¾÷°èÀÇ ±â¼ú Çõ½Å Ãß±¸¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

World AutoSteel¿¡ µû¸£¸é ¾Ë·ç¹Ì´½°ú °°Àº Àç·á¸¦ »ç¿ëÇϸé ÀÚµ¿Â÷ »ý»ê ºñ¿ëÀÌ 60% Áõ°¡ÇÑ´Ù°í ÇÕ´Ï´Ù.

¾ö°ÝÇÑ ¹è±â°¡½º ¹èÃâ ±ÔÁ¦

¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦´Â ÀÚµ¿Â÷ °æ·®È­¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦´Â ¿¬ºñ¸¦ °³¼±Çϰí ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Â÷·® ¹«°Ô¸¦ ÁÙ¿©¾ß Çϱ⠶§¹®ÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ´Â ´õ¿í ¾ö°ÝÇÑ ¿¬ºñ ±âÁذú CO2 ¹èÃâ·® ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº °æ·®È­ ¼ÒÀ縦 äÅÃÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ¾ÈÀü°ú ¼º´ÉÀ» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼­ ¿¬ºñ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÃæÁ·ÇÔÀ¸·Î½á ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ó¹úÀ» ÇÇÇϰí, Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϰí, ȯ°æ ģȭÀûÀÎ ¼ÒºñÀÚ¿¡°Ô ¾îÇÊÇÒ ¼ö ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ Á¦Á¶ °øÁ¤

ÀÚµ¿Â÷ °æ·®È­ÀÇ º¹ÀâÇÑ Á¦Á¶ °øÁ¤Àº ÷´Ü ¼ÒÀ縦 ÀÚµ¿Â÷ »ý»ê¿¡ ÅëÇÕÇϱâ À§ÇÑ Æ¯¼ö ±â¼úÀÌ ÇÊ¿äÇϹǷΠ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ¼ºÇü, Á¢Âø, ¿ëÁ¢ µî ´Ù¾çÇÑ °¡°ø ¹æ¹ýÀ» ÇÊ¿ä·Î ÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ´Â ±âÁ¸ Á¦Á¶º¸´Ù ´õ º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº »ý»ê ½Ã°£, ºñ¿ë ¹× Àü¿ë ÀåºñÀÇ Çʿ伺À» Áõ°¡½ÃÄÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ °æ·®È­ ¼Ö·ç¼ÇÀ» È®ÀåÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Àüü ÀÚµ¿Â÷ Á¦Á¶ ºñ¿ëÀ» Áõ°¡½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷(EV)ÀÇ ¼ºÀå

°æ·® ¼ÒÀç´Â ¿¡³ÊÁö È¿À²À» °³¼±ÇÏ°í ¹èÅ͸® ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇÏ¿© EVÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄÑ EV´Â ¹èÅ͸® ¹«°Ô¸¦ »ó¼âÇϱâ À§ÇØ ´õ °¡º­¿î ±¸Á¶°¡ ÇÊ¿äÇϸç, °æ·®È­°¡ ÇʼöÀûÀÔ´Ï´Ù. ¾Ë·ç¹Ì´½, ź¼Ò¼¶À¯, °í°­µµ °­Ã¶°ú °°Àº ¼ÒÀ縦 »ç¿ëÇÔÀ¸·Î½á ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â Àüü Â÷·®ÀÇ ¹«°Ô¸¦ ÁÙ¿© ÁÖÇà°Å¸®¸¦ ´Ã¸®°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº ȯ°æÀû Áö¼Ó°¡´É¼º¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖÀ¸¸ç, °æ·®È­´Â ´õ¿í ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦¸¦ ÃæÁ·ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ EVÀÇ µîÀåÀº Çõ½ÅÀûÀÎ °æ·®È­ ¼ÒÀç ¹× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Á÷Á¢ÀûÀ¸·Î ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àç·áÀÇ ³»±¸¼º¿¡ ´ëÇÑ ¿ì·Á

ź¼Ò¼¶À¯ ¹× ¾Ë·ç¹Ì´½°ú °°Àº ÀϺΠ°æ·® ¼ÒÀç´Â ±âÁ¸ °­Ã¶°ú µ¿ÀÏÇÑ ¼öÁØÀÇ °­µµ ¹× ³»Ãæ°Ý¼ºÀ» Á¦°øÇÏÁö ¸øÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÚµ¿Â÷ °æ·®È­¿¡¼­ ¼ÒÀçÀÇ ³»±¸¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Á¦±âµË´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â Ãæµ¹, ¸¶¸ð ¹× °¡È¤ÇÑ Á¶°Ç¿¡¼­ ½±°Ô ¼Õ»óµÇ¾î ÀÚµ¿Â÷ÀÇ ¾ÈÀü°ú ¼ö¸íÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â °æ·®È­¿Í ³»±¸¼º ¹× ¾ÈÀü Ç¥ÁØ À¯Áö »çÀÌÀÇ ±ÕÇüÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á´Â ¿¬±¸°³¹ß ºñ¿ëÀ» Áõ°¡½Ã۰í Àç·á äÅÃÀ» Áö¿¬½ÃÄÑ ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ »ý»ê°ú °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸Ä×½À´Ï´Ù. °øÀå Æó¼â¿Í ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ ¾Ë·ç¹Ì´½, º¹ÇÕÀç µî °æ·®È­ Àç·áÀÇ »ý»êÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº ¶ÇÇÑ ¿¬ºñ°¡ ³·°í ģȯ°æÀûÀÎ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ±ÔÁ¦ Ç¥Áذú Áö¼Ó°¡´ÉÇÑ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ºñ¿ë È¿À²ÀûÀÎ °æ·® ¼ÒÀç¿¡ Á¡Á¡ ´õ ÁýÁßÇÏ°Ô µÇ¾ú°í, ÀÌ´Â ÆÒµ¥¹Í ÀÌÈÄ ½ÃÀå ¼ºÀåÀ» À̲ø¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Áö¼Ó°¡´É¼º ¹× ¹èÃâ °¨¼Ò ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áö¼Ó°¡´É¼º ¹× ¹èÃâ °¨¼Ò ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ °æ·®È­´Â Â÷·® ¹«°Ô¸¦ ÁÙ¿© ¿¬ºñ¸¦ °³¼±Çϰí ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÓÀ¸·Î½á Áö¼Ó°¡´É¼º ¹× ¹èÃâ·® °¨¼Ò¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷°¡ °¡º­¿öÁö¸é ÁÖÇà¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö°¡ ÁÙ¾îµé¾î ¿¬ºñ°¡ Çâ»óµÇ°í ȯ°æ ¹ßÀÚ±¹À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» ÃæÁ·ÇÏ°í ¿Â½Ç°¡½º¸¦ ÁÙÀ̸ç ģȯ°æ ÀÚµ¿Â÷ Çõ½ÅÀ» Áö¿øÇϱâ À§ÇÑ Àü ¼¼°èÀûÀÎ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù.

»ó¿ëÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»ó¿ëÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ó¿ëÂ÷ÀÇ Â÷·® °æ·®È­´Â ¿¬ºñ, ÀûÀç ´É·Â ¹× Àü¹ÝÀûÀÎ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ °æ·®È­¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. °æ·® ¼ÒÀ縦 »ç¿ëÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ¿¬ºñ¸¦ °³¼±ÇÏ°í ¿îÀü ºñ¿ëÀ» Àý°¨ÇÏ¸ç Æ®·°, ¹ö½º ¹× ¹è¼Û Â÷·®ÀÇ ÀûÀç ¿ë·®À» ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. °æ·®È­´Â ¶ÇÇÑ »ó¿ëÂ÷°¡ ´õ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» ÃæÁ·Çϰí Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ±â¿©ÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, »ó¿ëÂ÷ ºÎ¹®¿¡¼­ Áß¿äÇÑ Àü·«ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº Â÷·® »ý»ê Áõ°¡, ȯ°æ ¹®Á¦ Áõ°¡, ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦ µîÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ¿Í °°Àº ±¹°¡µéÀÌ ÀÚµ¿Â÷ Á¦Á¶¿¡¼­ ¾Ë·ç¹Ì´½, ź¼Ò¼¶À¯, °í°­µµ °­Ã¶°ú °°Àº °æ·® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±Þ¼ÓÇÑ »ê¾÷È­¿Í Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº °æ·®È­ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÀÚµ¿Â÷ ±â¼ú Çõ½ÅÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ģȯ°æ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡¿Í ¾ö°ÝÇÑ ¿¬ºñ ¹× ¹è±â°¡½º ±ÔÁ¦·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±Þ°ú ¼º´É Çâ»óÀ¸·Î ÀÎÇØ ¾Ë·ç¹Ì´½, °í°­µµ°­, ź¼Òº¹ÇÕÀç µî °æ·® ¼ÒÀçÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º, Çõ½Å, ÀÚµ¿Â÷ Á¦Á¶¿¡ ÁßÁ¡À» µÐ ºÏ¹Ì´Â °æ·®È­ ½ÃÀå ¼ºÀå¿¡ Áß¿äÇÑ Áö¿ªÀÔ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : ÀÚµ¿Â÷ ºÎǰº°

  • º¸µð & ¼¨½Ã
  • ÆÄ¿öÆ®·¹ÀÎ
  • ³»Àå ºÎǰ
  • ¿ÜÀå ºÎǰ
  • °æ·® ¹èÅ͸® ÀÎŬ·ÎÀú
  • ±âŸ ÀÚµ¿Â÷ ºÎǰ

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : Àç·áº°

  • ±Ý¼Ó
    • ¾Ë·ç¹Ì´½
    • °í°­µµ°­(HSS)
    • ¸¶±×³×½·
    • ƼŸ´½
  • º¹ÇÕÀç·á
    • ź¼Ò¼¶À¯ °­È­ ÇÃ¶ó½ºÆ½(CFRP)
    • À¯¸®¼¶À¯ °­È­ ÇÃ¶ó½ºÆ½(GFRP)
    • õ¿¬ ¼¶À¯ º¹ÇÕÀç
  • ÇÃ¶ó½ºÆ½°ú Æú¸®¸Ó
    • Æú¸®Ä«º¸³×ÀÌÆ®
    • Æú¸®ÇÁ·ÎÇÊ·»
    • ¿­°¡¼Ò¼º Æú¸®¿Ã·¹ÇÉ(TPO)
  • ±âŸ Àç·á

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : Á¦Á¶ ÇÁ·Î¼¼½ºº°

  • Àç·á ´ëü
  • ÷´Ü Á¦Á¶ ±â¼ú
    • 3D ÇÁ¸°ÆÃ/ÀûÃþÁ¦Á¶
    • »çÃ⼺Çü
    • ½ºÅÆÇÁ ¼ºÇü
    • ÁÖÁ¶¿Í ´ÜÁ¶
  • Á¢ÇÕ ±â¼ú
    • ·¹ÀÌÀú ¿ëÁ¢
    • ¸®º£ÆÃ
    • Á¢ÂøÁ¦¿¡ ÀÇÇÑ Á¢ÇÕ
  • ±âŸ Á¦Á¶ ÇÁ·Î¼¼½º

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : ¿ëµµº°

  • ¿¬ºñ È¿À²
  • ÆÛÆ÷¸Õ½º Çâ»ó
  • Áö¼Ó°¡´É¼º°ú ¹èÃ⠻谨
  • ºñ¿ë »è°¨
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • Àü±âÀÚµ¿Â÷(EV)
  • ÇÏÀ̺긮µåÂ÷
  • °í±ÞÂ÷
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷ °æ·®È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • BASF SE
  • Toyota Boshoku Corporation
  • ZF Friedrichshafen AG
  • Magna International Inc.
  • Constellium N.V.
  • Novelis Inc.
  • Hexcel Corporation
  • PPG Industries Inc.
  • Johnson Controls International
  • Honda Motor Corporation
  • Ford Motor Company
  • Faurecia S.A.
  • General Motors
  • Brembo S.p.A.
  • Alcoa Corporation
  • Robert Bosch
  • UACJ Corporation
  • Thyssenkrupp AG
  • Lear Corporation
  • SGL Carbon SE
KSA 24.12.12

According to Stratistics MRC, the Global Automotive Lightweighting Market is accounted for $76.28 billion in 2024 and is expected to reach $120.61 billion by 2030 growing at a CAGR of 8.5% during the forecast period. Automotive lightweighting refers to the practice of reducing the weight of vehicles by using lighter materials and optimizing design to improve fuel efficiency, reduce emissions, and enhance performance. Lightweighting strategies also focus on improving aerodynamics and structural design to minimize weight while maintaining safety and durability. The trend towards automotive lightweighting is driven by regulatory requirements, consumer demand for eco-friendly vehicles, and the industry's pursuit of technological innovation.

According to World AutoSteel, the automotive production cost is 60% more when materials such as aluminum are used.

Market Dynamics:

Driver:

Stringent emission regulations

Stringent emission regulations are a key driver of the automotive lightweighting, as they compel automakers to reduce vehicle weight in order to improve fuel efficiency and lower carbon emissions. Governments worldwide are enforcing stricter fuel economy standards and CO2 emission limits, pushing manufacturers to adopt lightweight materials. These materials enhance their fuel efficiency without compromising safety or performance. By meeting these regulations, automakers can avoid penalties, meet sustainability targets, and appeal to eco-conscious consumers, propelling market growth and innovation in lightweight materials.

Restraint:

Complex manufacturing processes

Complex manufacturing processes in automotive lightweighting arise due to the need for specialized techniques to integrate advanced materials into vehicle production. These materials often require different processing methods, such as molding, bonding, or welding, which can be more intricate and costly than traditional manufacturing. This complexity increases production time, costs, and the need for specialized equipment, making it challenging for automakers to scale lightweighting solutions. These factors can hamper market growth by raising overall vehicle manufacturing costs.

Opportunity:

Growth of electric vehicles (EVs)

Lightweight materials enhance EV performance by improving energy efficiency and extending battery range. EVs require lighter structures to offset the weight of their batteries, making lightweighting essential. By using materials like aluminum, carbon fiber, and high-strength steel, automakers can reduce overall vehicle weight, leading to better driving range and reduced energy consumption. Additionally, the transition to EVs is driven by environmental sustainability, where lightweighting plays a vital role in meeting stricter emissions regulations. Thus, the rise of EVs directly fuels demand for innovative lightweight materials and solutions.

Threat:

Material durability concerns

Material durability concerns in automotive lightweighting arise because some lightweight materials, such as carbon fiber and aluminum, may not offer the same level of strength and impact resistance as traditional steel. These materials can be more prone to damage from collisions, wear, or extreme conditions, potentially compromising vehicle safety and longevity. As a result, automakers must balance weight reduction with maintaining durability and safety standards. These concerns increase R&D costs, slow material adoption, and may limit the market growth.

Covid-19 Impact

The covid-19 pandemic significantly impacted the automotive lightweighting market, causing disruptions in production and supply chains. With factory closures and labor shortages, the manufacturing of lightweight materials, such as aluminum and composites, faced delays. However, the pandemic also accelerated the demand for fuel-efficient and eco-friendly vehicles. As the industry recovered, automakers increasingly focused on cost-effective lightweight materials to meet regulatory standards and consumer demand for sustainable vehicles, driving market growth post-pandemic.

The sustainability & emission reduction segment is expected to be the largest during the forecast period

The sustainability & emission reduction segment is predicted to secure the largest market share throughout the forecast period. Automotive lightweighting plays a crucial role in sustainability and emission reduction by reducing vehicle weight, which directly enhances fuel efficiency and lowers carbon emissions. Lighter vehicles require less energy to operate, leading to improved fuel economy and a smaller environmental footprint. This approach aligns with global efforts to meet stringent emission standards, reduce greenhouse gases, and support eco-friendly automotive innovations.

The commercial vehicles segment is expected to have the highest CAGR during the forecast period

The commercial vehicles segment is anticipated to witness the highest CAGR during the forecast period. Automotive lightweighting in commercial vehicles focuses on reducing weight to improve fuel efficiency, payload capacity, and overall performance. By using lightweight materials, manufacturers can enhance fuel economy, reduce operating costs, and increase the carrying capacity of trucks, buses, and delivery vehicles. Lightweighting also helps commercial vehicles meet stricter emission standards and contribute to sustainability goals, making it a key strategy in the commercial vehicle sector.

Region with largest share:

Asia Pacific is expected to register the largest market share during the forecast period due to increasing vehicle production, rising environmental concerns, and stringent emission regulations. Countries like China, Japan, and India are leading the demand for lightweight materials such as aluminum, carbon fiber, and high-strength steel in automotive manufacturing. The region's rapid industrialization and the shift towards electric vehicles further boost the adoption of lightweighting solutions, positioning Asia-Pacific as a key market for automotive innovation.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period due to stringent fuel efficiency and emission regulations, alongside increasing consumer demand for environmentally-friendly vehicles. The U.S. and Canada are major markets for lightweight materials like aluminum, high-strength steel, and carbon composites, driven by the push for electric vehicles (EVs) and improved performance. North America's focus on sustainability, technological innovation, and automotive manufacturing makes it a key region for the growth of the lightweighting market.

Key players in the market

Some of the key players profiled in the Automotive Lightweighting Market include BASF SE, Toyota Boshoku Corporation, ZF Friedrichshafen AG, Magna International Inc., Constellium N.V., Novelis Inc., Hexcel Corporation, PPG Industries Inc., Johnson Controls International, Honda Motor Corporation, Ford Motor Company, Faurecia S.A., General Motors, Brembo S.p.A., Alcoa Corporation, Robert Bosch, UACJ Corporation, Thyssenkrupp AG, Lear Corporation and SGL Carbon SE.

Key Developments:

In October 2024, Bosch introduced a novel ultrasonic self-piercing riveting technique that enables the joining of previously difficult-to-combine materials like carbon and steel or aluminum and magnesium. This method is particularly beneficial for lightweight automotive construction, offering more material combinations and reducing weight without compromising structural integrity.

In October 2024, General Motors (GM) worked in collaboration with RTP and Syensqo to create a new thermoplastic battery module for the hybrid Chevrolet Corvette E-Ray. This project is part of GM's broader strategy to reduce the weight of its hybrid and electric vehicles (EVs) by utilizing specialized materials and optimizing designs. This effort illustrates GM's commitment to lightweighting in pursuit of greater efficiency, especially for their growing fleet of hybrid and electric vehicles.

Vehicle Components Covered:

  • Body & Chassis
  • Powertrain
  • Interior Components
  • Exterior Components
  • Composites
  • Lightweight Battery Enclosures
  • Other Vehicle Components

Materials Covered:

  • Metals
  • Composites
  • Plastics & Polymers
  • Other Materials

Manufacturing Processes Covered:

  • Material Substitution
  • Advanced Manufacturing Technologies
  • Joining Technologies
  • Other Manufacturing Processes

Applications Covered:

  • Fuel Efficiency
  • Performance Enhancement
  • Sustainability & Emission Reduction
  • Cost Reduction
  • Other Applications

End Users Covered:

  • Passenger Cars
  • Commercial Vehicles
  • Electric Vehicles (EVs)
  • Hybrid Vehicles
  • Luxury Vehicles
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Lightweighting Market, By Vehicle Component

  • 5.1 Introduction
  • 5.2 Body & Chassis
  • 5.3 Powertrain
  • 5.4 Interior Components
  • 5.5 Exterior Components
  • 5.6 Lightweight Battery Enclosures
  • 5.7 Other Vehicle Components

6 Global Automotive Lightweighting Market, By Material

  • 6.1 Introduction
  • 6.2 Metals
    • 6.2.1 Aluminum
    • 6.2.2 High-Strength Steel (HSS)
    • 6.2.3 Magnesium
    • 6.2.4 Titanium
  • 6.3 Composites
    • 6.3.1 Carbon Fiber Reinforced Plastics (CFRP)
    • 6.3.2 Glass Fiber Reinforced Plastics (GFRP)
    • 6.3.3 Natural Fiber Composites
  • 6.4 Plastics & Polymers
    • 6.4.1 Polycarbonate
    • 6.4.2 Polypropylene
    • 6.4.3 Thermoplastic Polyolefin (TPO)
  • 6.5 Other Materials

7 Global Automotive Lightweighting Market, By Manufacturing Process

  • 7.1 Introduction
  • 7.2 Material Substitution
  • 7.3 Advanced Manufacturing Technologies
    • 7.3.1 3D Printing/Additive Manufacturing
    • 7.3.2 Injection Molding
    • 7.3.3 Stamp Forming
    • 7.3.4 Casting & Forging
  • 7.4 Joining Technologies
    • 7.4.1 Laser Welding
    • 7.4.2 Riveting
    • 7.4.3 Adhesive Bonding
  • 7.5 Other Manufacturing Processes

8 Global Automotive Lightweighting Market, By Application

  • 8.1 Introduction
  • 8.2 Fuel Efficiency
  • 8.3 Performance Enhancement
  • 8.4 Sustainability & Emission Reduction
  • 8.5 Cost Reduction
  • 8.6 Other Applications

9 Global Automotive Lightweighting Market, By End User

  • 9.1 Introduction
  • 9.2 Passenger Cars
  • 9.3 Commercial Vehicles
  • 9.4 Electric Vehicles (EVs)
  • 9.5 Hybrid Vehicles
  • 9.6 Luxury Vehicles
  • 9.7 Other End Users

10 Global Automotive Lightweighting Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 Toyota Boshoku Corporation
  • 12.3 ZF Friedrichshafen AG
  • 12.4 Magna International Inc.
  • 12.5 Constellium N.V.
  • 12.6 Novelis Inc.
  • 12.7 Hexcel Corporation
  • 12.8 PPG Industries Inc.
  • 12.9 Johnson Controls International
  • 12.10 Honda Motor Corporation
  • 12.11 Ford Motor Company
  • 12.12 Faurecia S.A.
  • 12.13 General Motors
  • 12.14 Brembo S.p.A.
  • 12.15 Alcoa Corporation
  • 12.16 Robert Bosch
  • 12.17 UACJ Corporation
  • 12.18 Thyssenkrupp AG
  • 12.19 Lear Corporation
  • 12.20 SGL Carbon SE
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦