½ÃÀ庸°í¼­
»óǰÄÚµå
1617224

ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Floating Nuclear Power Plant EPC Market Forecasts to 2030 - Global Analysis By Type (Small Modular Reactors, Molten Salt Reactors, Pressurized Water Reactors and Other Types), Component, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀåÀº 2024³â 75¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 8.1% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 121¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò(FNPP) EPC(¼³°è, Á¶´Þ, °Ç¼³)´Â ÇØ»ó Ç÷§Æû¿¡¼­ ÀÌ·¯ÇÑ ¹ßÀü¼Ò¸¦ °³¹ßÇÏ°í ¹èÄ¡Çϱâ À§ÇÑ Á¾ÇÕÀûÀÎ ÇÁ·ÎÁ§Æ® ½ÇÇà ¸ðµ¨À̸ç, EPC Á¢±Ù ¹æ½ÄÀº ¼³°èºÎÅÍ ½Ã¿îÀü±îÁö Àüü ÇÁ·ÎÁ§Æ® ¼ö¸íÁֱ⸦ Æ÷°ýÇÕ´Ï´Ù. ¿£Áö´Ï¾î¸µ ´Ü°è¿¡¼­´Â ¾ÈÀü, È¿À²¼º ¹× ÇØ¾ç Á¶°Ç¿¡ ´ëÇÑ ÀûÀÀ¼º¿¡ ÁßÁ¡À» µÓ´Ï´Ù. Á¶´Þ ´Ü°è¿¡¼­´Â Ư¼ö ºÎǰÀ» Á¶´ÞÇϰí ǰÁú ¹× ¿øÀÚ·Â ¾ÈÀü Ç¥ÁØÀ» ÁؼöÇÏ´ÂÁö È®ÀÎÇÕ´Ï´Ù. °Ç¼³ ´Ü°è¿¡¼­´Â ºÎÀ¯½Ä Ç÷§Æû¿¡¼­ Ç÷£Æ®¸¦ Á¶¸³ÇÏ°í ½Ã½ºÅÛÀ» ÅëÇÕÇÏ°í ¹èÄ¡ Áغñ¸¦ ÇÕ´Ï´Ù.

¿¡³ÊÁö ¼ö¿ä Áõ°¡¿Í Àúź¼Ò ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ ÃßÁø

µµ½ÃÈ­, »ê¾÷È­, Àα¸ Áõ°¡, ƯÈ÷ ½ÅÈï±¹À» Áß½ÉÀ¸·Î ÇÑ Àα¸ Áõ°¡´Â Àü ¼¼°è ¿¡³ÊÁö ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. °í¸³µÈ »ê¾÷ Áß½ÉÁö, ÇØ¾È Áö¿ª, ¿Üµý ¼¶Àº ¸ðµÎ ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±Þ¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, FNPP´Â ±âÁ¸ÀÇ Àü·Â¸Á ÀÎÇÁ¶ó¸¦ »ç¿ëÇÏÁö ¾Ê°íµµ ¾ÈÁ¤ÀûÀ̰í È®Àå °¡´ÉÇÑ ¹ßÀü·®À» Á¦°øÇÕ´Ï´Ù. ±¹°¡Àû Á¦·Î ¹èÃâ °ø¾à°ú ÆÄ¸®ÇùÁ¤°ú °°Àº ±¹Á¦ Çù¾àÀ¸·Î ÀÎÇØ ¿¡³ÊÁö »ê¾÷ÀÇ Å»Åº¼ÒÈ­°¡ °­Á¶µÇ¸é¼­ FNPP ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â EPC °è¾à¾÷ü¿¡°Ô »õ·Î¿î Àü¸ÁÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ ±ÔÁ¦ ȯ°æ

ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò(FNPP)¿¡ ´ëÇÑ ¸íÈ®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ¾ø¾î ÀÌÇØ°ü°èÀڵ鿡°Ô ºÒÈ®½Ç¼ºÀ» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ±ÔÁ¦´Â ÁÖ·Î À°»ó ¿øÀڷ¹ßÀü¼Ò¸¦ ´ë»óÀ¸·Î Çϰí ÀÖÀ¸¸ç, ºÎÀ¯½Ä ¿øÀÚ·ÎÀÇ Æ¯¼öÇÑ ¹®Á¦¸¦ ´Ù·çÁö ¾Ê´Â °ø¹éÀÌ Á¸ÀçÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº FNPP ÇÁ·ÎÁ§Æ®¸¦ °í·ÁÇÏ´Â ÅõÀÚÀÚ¿Í ±â¾÷ÀÌ ±ÔÁ¤ Áؼö ¿ä°Ç°ú ÀáÀçÀû Ã¥ÀÓ¿¡ ´ëÇÑ È®½ÅÀ» °®Áö ¸øÇϰí ÁÖÀúÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FNPP¿¡ ´ëÇÑ ¿©·ÐÀÇ ¹Ý´ë´Â Ãß°¡ÀûÀÎ ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã¿Í ÇÁ·ÎÁ§Æ® Áß´Ü ¶Ç´Â º¯°æÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

¿øÀÚ·Â ±â¼úÀÇ ¹ßÀü

ÆÐ½Ãºê ¾ÈÀü ½Ã½ºÅÛ ¹× ¼ÒÇü ¸ðµâÇü ¿øÀÚ·Î(SMR)¿Í °°Àº ÃֽŠ¿øÀÚ·Â ±â¼úÀº »ç°í ¹× Àθí ÇÇÇØ À§ÇèÀ» ÁÙÀÓÀ¸·Î½á FNPPÀÇ ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖÀ¸¸ç, EPC °è¾àÀÚ¿¡°Ô´Â ¹èÄ¡ ±â°£À» ´ÜÃàÇÏ°í ±¹Á¦ Ç¥ÁØ Áؼö¸¦ °£¼ÒÈ­ÇÏ¿© ÇÁ·ÎÁ§Æ® ½ÂÀÎÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÇÁ·ÎÁ§Æ® ½ÂÀÎÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. µðÁöÅÐ Æ®À© ±â¼ú°ú ¿¹Áöº¸Àü ½Ã½ºÅÛÀ» ÅëÇØ ¿øÀÚ·ÎÀÇ ¼º´ÉÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí ÃÖÀûÈ­ÇÏ¿© ¿î¿µ À§ÇèÀ» ÁÙÀÓÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

³ôÀº ÀÚº» ºñ¿ë

FNPP ÇÁ·ÎÁ§Æ®ÀÇ ³ôÀº ÀÚº»ºñ¿ë°ú ±ä °Ç¼³±â°£Àº ƯÈ÷ °æÁ¦ ¹× ¿¡³ÊÁö ¼ö¿ä Áõ°¡°¡ ºÒÅõ¸íÇÑ Áö¿ª¿¡¼­ ÅõÀÚÀÚ¿Í ±ÝÀ¶±â°ü¿¡°Ô °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ôÀº Ãʱ⠺ñ¿ë°ú ±ä °Ç¼³ ±â°£À¸·Î ÀÎÇØ ÅõÀÚ È¸¼ö ±â°£ÀÌ ±æ¾îÁö°í, Àç»ý¿¡³ÊÁö¿Í °°Àº ´õ ºü¸£°í ºñ¿ë È¿À²ÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ¼±È£ÇÏ´Â ºñ»óÀå ±â¾÷À̳ª Á¤ºÎ¿¡°Ô FNPP ÇÁ·ÎÁ§Æ®ÀÇ ¸Å·ÂÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº ¼¼°è °ø±Þ¸Á È¥¶õ°ú ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇÑ ÇÁ·ÎÁ§Æ® ÀÏÁ¤ Áö¿¬À¸·Î ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò(FNPP) EPC ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿©Çà Á¦ÇѰú ºÀ¼â´Â °Ç¼³ ¹× Á¶´Þ Ȱµ¿À» ¹æÇØÇÏ¿© ºñ¿ë Áõ°¡¿Í ÇÁ·ÎÁ§Æ® ÀÏÁ¤ÀÇ Àå±âÈ­¸¦ ÃÊ·¡Çß½À´Ï´Ù. °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀº FNPP¸¦ Æ÷ÇÔÇÑ ´ë±Ô¸ð ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¨¼Ò½ÃÄ×½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇü ¸ðµâ·Î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼ÒÇü ¸ðµâÇü ¿øÀڷδ °íµµÀÇ ¾ÈÀü ±â´ÉÀ» °®Ãß°í ¼³Ä¡ ¸éÀûÀÌ À۱⠶§¹®¿¡ ºÎÀ¯½Ä ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀÌ»óÀûÀÔ´Ï´Ù. SMRÀº ¶ÇÇÑ °³¼±µÈ ¾ÈÀü ÇÁ·ÎÅäÄÝ·Î ÀÎÇØ ¿øÀÚ·Â ¿¡³ÊÁö¿¡ ´ëÇÑ ´ëÁßÀÇ ¿ì·Á¸¦ ÁÙÀÌ°í ±ÔÁ¦ À庮À» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¸ðµâ½ÄÀ̱⠶§¹®¿¡ °Ç¼³ÀÌ ¿ëÀÌÇϰí È®À强ÀÌ ¶Ù¾î³ª °í¸³µÈ Áö¿ªÀ̳ª ÇØ»ó¿¡¼­ »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÷´Ü ¿øÀÚ·Î ¼³°è ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼±Áø ¿øÀÚ·Î ¼³°èÀÇ ¸ðµâ½Ä °Ç¼³ ±â¼úÀº ÅëÁ¦µÈ ȯ°æ¿¡¼­ Á¶¸³½Ä °Ç¼³À» °¡´ÉÇÏ°Ô ÇÏ¿© °Ç¼³ ÀÏÁ¤À» ´ÜÃàÇϰí ÇöÀå Á¶¸³À» ÃÖ¼ÒÈ­Çϱ⠶§¹®¿¡ ¼±Áø ¿øÀÚ·Î ¼³°è ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̴ ƯÈ÷ ÇØ¾ç ¹× ¿Üµý Áö¿ª¿¡ ¼³Ä¡µÇ´Â FNPP¿¡ À¯¸®Çϸç, EPC ȸ»ç´Â ÇÁ·ÎÁ§Æ®¸¦ ´õ »¡¸® ¿Ï·áÇϰí À§Çè°ú ºñ¿ëÀ» ÁÙÀ̸鼭 ¿¡³ÊÁö ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ÇÙ¿¬·á Æç¸´ Ç÷£Æ®(FNPP) ½ÃÀåÀº ¿øÀڷ±ÔÁ¦À§¿øÈ¸°¡ ÀÎÇã°¡¸¦ °¨µ¶Çϰí ij³ª´Ù ¿øÀڷ¾ÈÀüÀ§¿øÈ¸°¡ ¾ÈÀü°ú ÀÎÇã°¡¸¦ ±ÔÁ¦ÇÏ´Â º¹ÀâÇÑ ±ÔÁ¦ ÇÁ·Î¼¼½º¿¡ Á÷¸éÇØ Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÷´Ü ¿øÀÚ·Î ¼³°è´Â ÀÌ·¯ÇÑ ±â°üÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ÇÑÆí, ºÏ¹Ì Á¤ºÎ´Â ¿¬¹æÁ¤ºÎ ÇýÅÃ, ¼¼¾× °øÁ¦, ¿¬±¸ ÀÚ±Ý Áö¿ø µî ¿øÀÚ·ÂÀ» ûÁ¤¿¡³ÊÁö¿øÀ¸·Î À°¼ºÇϱâ À§ÇÑ Á¤Ã¥À» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

Áß±¹, Àεµ, ÀϺ», Çѱ¹ µî ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡µéÀº Áõ°¡ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ Àúź¼Ò ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, FNPP·Î ±¸µ¿µÇ´Â ÷´Ü ¿øÀÚ·Î ¼³°è´Â ź¼Ò¸¦ Á÷Á¢ ¹èÃâÇÏÁö ¾Ê±â ¶§¹®¿¡ ÀÌµé ±¹°¡¿¡ ÀûÇÕÇÑ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ¿¡³ÊÁö ÀÚ¸³ÀÇ Çʿ伺Àº È­¼®¿¬·á ¼öÀÔ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿¡³ÊÁö ¾Èº¸¸¦ °­È­Çϱâ À§ÇØ ÀÌµé ±¹°¡µéÀÌ FNPP¿Í °°Àº ´ëü ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ¸ð»öÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå : À¯Çüº°

  • ¼ÒÇü ¸ðµâ ¿øÀÚ·Î
  • ¿ëÀ¶¿°·Î
  • °¡¾Ð¼öÇü ¿øÀÚ·Î
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¿øÀÚ·Â ¼¶
  • ÅÍºó ¼¶
  • º¸Á¶ ½Ã½ºÅÛ
  • ÇÃ·ÎÆÃ Ç÷§Æû
  • Á¦¾î ¹× °èÃø ½Ã½ºÅÛ
  • ±âŸ ±¸¼º¿ä¼Ò

Á¦7Àå ¼¼°èÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå : ±â¼úº°

  • ÷´Ü ¿øÀÚ·Î ¼³°è
  • ºÎÀ¯½Ä Ç÷§Æû ¼³°è
  • ÆÐ½Ãºê ¼¼ÀÌÇÁƼ ½Ã½ºÅÛ
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå : ¿ëµµº°

  • ¿¡³ÊÁö °ø±Þ
  • ¹° ´ã¼öÈ­
  • Á¤ºÎ¿Í ¹æÀ§
  • »ó¾÷¿ë
  • »ê¾÷¡¤À¯Æ¿¸®Æ¼
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò EPC ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • China National Nuclear Corporation
  • Areva
  • Rosatom
  • Westinghouse Electric Company
  • Korea Electric Power Corporation
  • Vattenfall
  • Siemens
  • NuScale Power
  • TerraPower
  • Holtec International
  • Babcock and Wilcox
  • General Electric
  • Mitsubishi Heavy Industries
  • Toshiba
  • Korea Electric Power Corporation
ksm 25.01.08

According to Stratistics MRC, the Global Floating Nuclear Power Plant EPC Market is accounted for $7.5 billion in 2024 and is expected to reach $12.1 billion by 2030 growing at a CAGR of 8.1% during the forecast period. A Floating Nuclear Power Plant (FNPP) EPC (Engineering, Procurement, and Construction) is a comprehensive project execution model for developing and deploying these power plants on maritime platforms. The EPC approach covers the entire lifecycle of the project, from design to commissioning. The Engineering phase focuses on safety, efficiency, and adaptability for marine conditions. The Procurement phase involves sourcing specialized components, ensuring quality and compliance with nuclear safety standards. The Construction phase involves assembling the plant on a floating platform, integrating systems, and preparing it for deployment.

Market Dynamics:

Driver:

Increasing energy demands and the push for low-carbon energy solutions

Urbanization, industrialization, and population growth particularly in emerging economies are driving up global energy demand. Isolated industrial centers, coastal regions, and remote islands all have challenges in obtaining consistent electricity. FNPPs provide reliable and scalable power generation without using conventional grid infrastructure. With national pledges to attain net-zero emissions and international accords such as the Paris Agreement, the emphasis on decarbonizing the energy industry has increased which increases demand for FNPP projects and opens up new prospects for EPC contractors.

Restraint:

Complex regulatory environment

The lack of a clear regulatory framework for floating nuclear power plants (FNPPs) creates uncertainty for stakeholders, as existing regulations primarily focus on land-based nuclear power plants, leaving gaps that don't address the unique challenges posed by floating reactors. This uncertainty can lead to hesitation among investors and companies considering FNPP projects, as they may be unsure about compliance requirements and potential liabilities. Moreover, public opposition to FNPPs can potentially lead to additional regulatory scrutiny and project cancellations or modifications.

Opportunity:

Advances in nuclear technologies

Modern nuclear technologies, such as passive safety systems and Small Modular Reactors (SMRs), have greatly increased the safety and dependability of FNPPs by reducing the dangers of accidents and human involvement. For EPC contractors, these technologies expedite deployment times and facilitate project approval by streamlining compliance with international norms. Reactor performance is continuously monitored and optimized thanks to digital twin technology and predictive maintenance systems, their by lower operational risks propelling the growth of the market.

Threat:

High capital costs

High capital costs and extended construction timelines for FNPP projects can deter investors and financial institutions, especially in regions with uncertain economic or energy demand growth. This restricts deployment to wealthier or economically stable regions, narrowing the overall market and the combination of high initial costs and extended construction timelines can lead to prolonged ROI periods, reducing the attractiveness of FNPP projects for private companies and governments who prefer faster, more cost-effective energy solutions like renewable.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the Floating Nuclear Power Plant (FNPP) EPC market by causing delays in project timelines due to disrupted global supply chains and workforce shortages. Travel restrictions and lockdowns hampered construction and procurement activities, increasing costs and prolonging project schedules. Economic uncertainty reduced investments in large-scale energy infrastructure, including FNPPs.

The small modular reactors segment is expected to be the largest during the forecast period

The small modular reactors is expected to be the largest during the forecast period because small modular reactors, designed with advanced safety features and smaller footprints, are ideal for floating applications. Their modular nature allows for easier construction and scalability, making them suitable for isolated or offshore areas. SMRs also have improved safety protocols, reducing public concerns about nuclear energy and potentially easing regulatory hurdles.

The advanced reactor designs segment is expected to have the highest CAGR during the forecast period

The advanced reactor designs segment is expected to have the highest CAGR during the forecast period owing to modular construction techniques in advanced reactor designs enable pre-fabrication in controlled environments, accelerating construction timelines and minimizing on-site assembly. This is especially beneficial for FNPPs deployed in offshore or remote areas, enabling EPC companies to complete projects faster and meet increasing energy demands with reduced risk and cost.

Region with largest share:

North America is projected to hold the largest market share during the forecast period because nuclear fuel pellet plant (FNPP) market faces complex regulatory processes, with the Nuclear Regulatory Commission overseeing approvals and the Canadian Nuclear Safety Commission regulating safety and licensing. Advanced reactor designs must comply with these bodies' requirements. On the other hand North American governments are exploring policies to advance nuclear power as a clean energy source, including federal incentives, tax credits, and research funding.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period owing to Asia Pacific countries, including China, India, Japan, and South Korea, are focusing on low-carbon energy solutions to meet rising energy demand. Advanced nuclear reactor designs, powered by FNPPs, produce no direct carbon emissions, making them a suitable option for these countries. Geopolitical tensions and the need for energy independence have also driven these countries to explore alternative energy solutions, such as FNPPs, to reduce reliance on fossil fuel imports and strengthen energy security.

Key players in the market

Some of the key players in Floating Nuclear Power Plant EPC market include China National Nuclear Corporation, Areva, Rosatom, Westinghouse Electric Company, Korea Electric Power Corporation, Vattenfall, Siemens, NuScale Power, TerraPower, Holtec International, Babcock and Wilcox, General Electric, Mitsubishi Heavy Industries, Toshiba and Korea Electric Power Corporation.

Key Developments:

In November 2024, Mitsubishi Heavy Industries, Ltd. (MHI) and Hokuetsu Corporation, one of Japan's leading paper manufacturers, launched a CO2 capture demonstration test at Niigata Mill (Niigata City), in November. This demonstration test aims to capture CO2 from a chemical recovery boiler that produces the steam and electricity needed for paper manufacturing.

In November 2024, GE Aerospace announced its official launch as an independent public company defining the future of flight, following the completion of the GE Vernova spin-off. GE Aerospace will trade on the New York Stock Exchange (NYSE) under the ticker "GE".

Types Covered:

  • Small Modular Reactors
  • Molten Salt Reactors
  • Pressurized Water Reactors
  • Other Types

Components Covered:

  • Nuclear Island
  • Turbine Island
  • Auxiliary System
  • Floating Platform
  • Control & Instrumentation Systems
  • Other Components

Technologies Covered:

  • Advanced Reactor Designs
  • Floating Platform Designs
  • Passive Safety Systems
  • Other Technologies

Applications Covered:

  • Energy Supply
  • Water Desalination
  • Government & Defense
  • Commercial
  • Industrial & Utility
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Floating Nuclear Power Plant EPC Market, By Type

  • 5.1 Introduction
  • 5.2 Small Modular Reactors
  • 5.3 Molten Salt Reactors
  • 5.4 Pressurized Water Reactors
  • 5.5 Other Types

6 Global Floating Nuclear Power Plant EPC Market, By Component

  • 6.1 Introduction
  • 6.2 Nuclear Island
  • 6.3 Turbine Island
  • 6.4 Auxiliary System
  • 6.5 Floating Platform
  • 6.6 Control & Instrumentation Systems
  • 6.7 Other Components

7 Global Floating Nuclear Power Plant EPC Market, By Technology

  • 7.1 Introduction
  • 7.2 Advanced Reactor Designs
  • 7.3 Floating Platform Designs
  • 7.4 Passive Safety Systems
  • 7.5 Other Technologies

8 Global Floating Nuclear Power Plant EPC Market, By Application

  • 8.1 Introduction
  • 8.2 Energy Supply
  • 8.3 Water Desalination
  • 8.4 Government & Defense
  • 8.5 Commercial
  • 8.6 Industrial & Utility
  • 8.7 Other Applications

9 Global Floating Nuclear Power Plant EPC Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 China National Nuclear Corporation
  • 11.2 Areva
  • 11.3 Rosatom
  • 11.4 Westinghouse Electric Company
  • 11.5 Korea Electric Power Corporation
  • 11.6 Vattenfall
  • 11.7 Siemens
  • 11.8 NuScale Power
  • 11.9 TerraPower
  • 11.10 Holtec International
  • 11.11 Babcock and Wilcox
  • 11.12 General Electric
  • 11.13 Mitsubishi Heavy Industries
  • 11.14 Toshiba
  • 11.15 Korea Electric Power Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦