½ÃÀ庸°í¼­
»óǰÄÚµå
1636680

¸Ó½ÅºñÀü ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Ò À¯Çü, Ä«¸Þ¶ó À¯Çü, Àü°³ ¸ðµå, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Machine Vision Market Forecasts to 2030 - Global Analysis By Component Type (Hardware, Software and Other Component Types), Camera Type, Deployment Mode, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀåÀº 2024³â¿¡ 117¾ï ´Þ·¯¸¦ Â÷ÁöÇß½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 9.7%·Î ¼ºÀåÇϸç 2030³â¿¡´Â 204¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¸Ó½ÅºñÀüÀº ÄÄÇ»ÅÍ¿Í ±â°è°¡ Ä«¸Þ¶ó¿Í ¼¾¼­¸¦ ÅëÇØ ½Ã°¢ Á¤º¸¸¦ ÇØ¼®Çϰí ó¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ´Â ±â¼ú ºÐ¾ßÀÔ´Ï´Ù. À̹ÌÁö¿Í µ¿¿µ»óÀ» ĸóÇÏ°í ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ºÐ¼®ÇÏ¿© ´ë»ó, ÆÐÅÏ ¹× ƯÁ¤ Ư¡À» °¨Áö, ½Äº° ¹× ´ëÀÀÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Á¦Á¶¾÷, ·Îº¿ °øÇÐ, ǰÁú °ü¸®, ÀÇ·á¿ë È­»ó ó¸® µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÛ¾÷ ÀÚµ¿È­, Á¤È®¼º È®º¸, È¿À²¼º Çâ»ó µîÀ» À§ÇØ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àΰ£ÀÇ ½Ã°¢À» ¸ð¹æÇÔÀ¸·Î½á, ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº ¸Ó½ÅÀÌ ½Ç½Ã°£À¸·Î ½Ã°¢ µ¥ÀÌÅÍ¿¡ ±âÃÊÇÏ¿© ÆÇ´ÜÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

±¹Åä±³Å뼺(Çѱ¹)ÀÌ ¹ßÇ¥ÇÑ º¸°í¼­¿¡ µû¸£¸é Çѱ¹¿¡¼­´Â 2022³â¿¡ ¾à 39¸¸´ëÀÇ Àü±âÂ÷°¡ µî·ÏµÇ¾î 2013³â ÀÌÈÄ ±ÞÁõÀ» ±â·ÏÇß½À´Ï´Ù. ÇÏÀ̺긮µåÂ÷¿Í ¼ö¼ÒÀÚµ¿Â÷¿Í ÇÕÄ¡¸é Çѱ¹ µî·Ï´ë¼ö Àüü¿¡¼­ Â÷ÁöÇϴ ȯ°æ´ëÀÀÂ÷ÀÇ ºñÀ²Àº ¾à 6.2%ÀÔ´Ï´Ù.

ÀÚµ¿È­ ¼ö¿ä Áõ°¡

½ÃÀå¿¡¼­ÀÇ ÀÚµ¿È­ ¼ö¿ä Áõ°¡´Â »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ È¿À²¼º, Á¤È®¼º, ºñ¿ë È¿°úÀÇ Çâ»ó¿¡ ´ëÇÑ ¿ä±¸°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ƯÈ÷ Á¦Á¶¾÷ ¹× »ê¾÷ ºÎ¹®¿¡¼­ ÀÎÀû ½Ç¼ö¸¦ ÁÙÀÌ°í »ý»ê ¼Óµµ¸¦ ³ôÀ̰í ÀϰüµÈ ǰÁú °ü¸®¸¦ º¸ÀåÇÕ´Ï´Ù. ±â¾÷ÀÌ º¸´Ù ³ôÀº »ý»ê¼º°ú Á¤È®¼ºÀ» Ãß±¸ÇÔ¿¡ µû¶ó, ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº ÀÚµ¿È­µÈ ÇÁ·Î¼¼½º¿¡ Á¡Á¡ ´õ ÅëÇյǰí ÀÖÀ¸¸ç, ÀÌ ±â¼úÀÇ Ã¤ÅÃÀÌ ¼¼°èÀûÀ¸·Î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

µµÀÔÀÇ º¹À⼺

¸Ó½ÅºñÀü ½Ã½ºÅÛ µµÀÔÀÇ º¹À⼺Àº ½ÃÀå¿¡ Å« ¾î·Á¿òÀ» ¾ß±âÇÕ´Ï´Ù. ³ôÀº µµÀÔ ºñ¿ë, Àü¹® Áö½ÄÀÇ Çʿ伺 ¹× ±âÁ¸ ÇÁ·Î¼¼½º¿ÍÀÇ ÅëÇÕÀº Á¾Á¾ Áß¼Ò±â¾÷ÀÌ ÀÌ ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ¸Á¼³ÀÌ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ¼³Ä¡ ¹× ±³Á¤ÀÌ º¹ÀâÇϱ⠶§¹®¿¡ ¼³Ä¡¿¡ ½Ã°£ÀÌ °É¸®°í ½Ã½ºÅÛ ¿À·ù°¡ ¹ß»ýÇÒ ¼ö ÀÖÀ¸¹Ç·Î À¯Áö º¸¼ö°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº ¸Ó½ÅºñÀüÀÇ º¸±ÞÀ» ¹æÇØÇÏ°í ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸Ó½ÅºñÀüÀÇ °¡´É¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù.

ǰÁú°ú ¾ÈÀü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½ÃÀå¿¡¼­ÀÇ Ç°Áú°ú ¾ÈÀü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Á¤¹ÐÇÑ °Ë»ç, °áÇÔ °ËÃâ, ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¾ö°ÝÇÑ Ç¥ÁØ ÁؼöÀÇ Çʿ伺¿¡ Èû¾²°í ÀÖ½À´Ï´Ù. ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº ǰÁú °ü¸®¸¦ ÀÚµ¿È­ÇÏ°í °áÇÔÀ» ½Äº°Çϰí À§ÇèÀ» ¹æÁöÇÔÀ¸·Î½á °íǰÁúÀÇ Á¦Ç°°ú ¾ÈÀüÇÑ ÀÛ¾÷ ȯ°æÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ƯÈ÷ Á¦Á¶, ÀÚµ¿Â÷, ÀÇ·á ºÐ¾ß¿¡¼­ µÎµå·¯Áö¸ç, ǰÁú°ú ¾ÈÀüÀ» À¯ÁöÇÏ´Â °ÍÀº ºñÁî´Ï½º ¼º°ø°ú ÄÄÇöóÀ̾𽺿¡ ÇʼöÀûÀÔ´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ

¸Ó½ÅºñÀü ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ °í¾×ÀÇ Ãʱâ ÅõÀÚ´Â ¸¹Àº ±â¾÷µé, ƯÈ÷ Áß¼Ò±â¾÷µé¿¡°Ô Å« À庮ÀÌ µË´Ï´Ù. Ä«¸Þ¶ó, ¼¾¼­, ¼ÒÇÁÆ®¿þ¾î, ÅëÇÕ¿¡´Â »ó´çÇÑ ºñ¿ëÀÌ µé±â ¶§¹®¿¡ Àڱݷ ÀÖ´Â ±â¾÷À¸·Î¸¸ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼±Çà ÅõÀÚ·Î ÀÎÇÑ °æÁ¦Àû ºÎ´ãÀº ä¿ëÀ» ´ÊÃß°í ¸Ó½ÅºñÀü ½ÃÀåÀÇ ¼ºÀåÀ» ¹æÇØÇÏ¸ç ¸¹Àº Á¶Á÷ÀÌ ÀÚµ¿È­ ¹× ǰÁú °ü¸® °­È­ÀÇ ÀáÀçÀûÀÎ ÀÌÁ¡À» ½ÇÇöÇÏ´Â °ÍÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô Çϰí ÇÁ·ÎÁ§Æ®ÀÇ ½Ç½Ã¸¦ ´ÊÃ߸鼭 Á¦Á¶, ÇコÄɾî, ¹°·ù µîÀÇ ¾÷°è¿¡¼­´Â ÀÚµ¿È­¿Í ºñÁ¢ÃË ±â¼úÀÇ Ã¤¿ëÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. È¿À²¼º, ¾ÈÀü¼º, »çȸÀû °Å¸®¸¦ Áß½ÃÇÏ´Â °æÇâÀÌ °­ÇØÁü¿¡ µû¶ó, ±â¾÷Àº ǰÁú °ü¸®, ¸ð´ÏÅ͸µ, ¿ø°Ý Á¶ÀÛÀ» À§ÇÑ ¸Ó½ÅºñÀü ½Ã½ºÅÛ¿¡ ÅõÀÚÇÏ°Ô µÇ¾î, À¯Çà ÀÌÈÄ ½ÃÀå ȸº¹À¸·Î À̾îÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¶óÀÎ ½ºÄµ Ä«¸Þ¶ó ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¶óÀÎ ½ºÄµ Ä«¸Þ¶ó ºÎ¹®Àº ¿òÁ÷ÀÌ´Â ¹°Ã¼ÀÇ °íÇØ»óµµ À̹ÌÁö¸¦ ÇÑ ÁٷΠĸóÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Ä«¸Þ¶ó´Â Á¦Á¶, Æ÷Àå, Àμâ¿Í °°Àº »ê¾÷¿¡¼­ À¥ °Ë»ç, ¼±º°, Ç¥¸é °áÇÔ °¨Áö µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¿Ö°îÀ» ÃÖ¼ÒÈ­ÇÏ°í »ó¼¼ÇÑ ¿¬¼Ó À̹ÌÁö¸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ °í¼Ó, °íÁ¤¹Ð ǰÁú °ü¸® ¹× ÀÚµ¿È­ ÇÁ·Î¼¼½º¿¡ ÇʼöÀûÀÔ´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ³ó¾÷ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó

³ó¾÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­ ±â°è ºñÀü ½Ã½ºÅÛÀº ÀÛ¹° ¸ð´ÏÅ͸µ, Áúº´ °ËÃâ, ÀâÃÊ ½Äº° ¹× ¼öÈ®·® ÃßÁ¤¿¡ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Ç½Ã°£ ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á ÀÚ¿ø Ȱ¿ë ÃÖÀûÈ­, ºñ¿ë Àý°¨, ÀÛ¹° ǰÁú Çâ»ó¿¡ µµ¿òÀÌ µË´Ï´Ù. Áö¼Ó°¡´ÉÇϰí È¿À²ÀûÀÎ ³ó¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¸Ó½ÅºñÀüÀº ³ó¾÷¿¡¼­ »ý»ê¼º°ú ÀÇ»ç°áÁ¤À» °³¼±Çϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ÀÚµ¿È­, ǰÁú°ü¸® ¼ö¿ä Áõ°¡, ÀÚµ¿Â÷, Á¦Á¶, ÇコÄÉ¾î µî »ê¾÷ÀÇ ±â¼ú Áøº¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº °ß°íÇÑ »ê¾÷ ±â¹Ý, Çõ½ÅÀûÀÎ ±â¼úÀÇ ³ôÀº ä¿ë·ü, È¿À²¼º°ú Á¤¹Ðµµ¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡ µîÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Ì±¹°ú ij³ª´ÙÀÇ ÁÖ¿ä ±â¾÷µéÀº Áö¼ÓÀûÀÎ Á¦Ç° Çõ½Å°ú Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ½ÃÀå È®´ë¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷, ÀÏ·ºÆ®·Î´Ð½º, ¼ÒºñÀç µîÀÇ Á¦Á¶¾÷¿¡ À־ÀÇ ÀÚµ¿È­ µ¿ÇâÀÇ °íÁ¶°¡ Å« ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI¿Í MLÀ» ¸Ó½ÅºñÀü ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¸é ÆÐÅÏ ÀνÄ, °áÇÔ °¨Áö, ¿¹Áö º¸Àü µîÀÇ º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Çâ»óµË´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº ·Îº¿ °øÇÐ, ÀÚÀ² ÁÖÇà Â÷·® ¹× °Ë»ç ½Ã½ºÅÛÀ» À§ÇÑ ¸Ó½ÅºñÀü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(Âü°í : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀå : ±¸¼º¿ä¼Ò À¯Çüº°

  • Çϵå¿þ¾î
    • Ä«¸Þ¶ó
    • ¼¾¼­
    • Á¶¸í
    • ÇÁ·Î¼¼¼­
    • ·»Áî¿Í ±¤ÇÐ
  • ¼ÒÇÁÆ®¿þ¾î
    • ¸Ó½ÅºñÀü ¼ÒÇÁÆ®¿þ¾î
    • ÀΰøÁö´É(AI)°ú µö·¯´× ¼ÒÇÁÆ®¿þ¾î
  • ±âŸ ±¸¼º¿ä¼Ò À¯Çü

Á¦6Àå ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀå : Ä«¸Þ¶ó À¯Çüº°

  • ¿µ¿ª ½ºÄµ Ä«¸Þ¶ó
  • ¶óÀÎ ½ºÄµ Ä«¸Þ¶ó
  • ½º¸¶Æ® Ä«¸Þ¶ó
  • 3D Ä«¸Þ¶ó

Á¦7Àå ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀå : Àü°³ ¸ðµåº°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå ±â¹Ý

Á¦8Àå ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀå : ¿ëµµº°

  • ·Îº¿ ºñÀü
  • ÀÚµ¿°Ë»ç
  • ¼±º°°ú µî±Þ
  • À¯µµ ½Ã½ºÅÛ
  • ÃøÁ¤°ú °èÃø
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°è ¸Ó½ÅºñÀü ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¹°·ù¡¤Ã¢°í
  • ³ó¾÷
  • ÇコÄÉ¾î ¹× ÀÇ·á À̹Ì¡
  • ÀÚµ¿Â÷
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ¸Ó½ÅºñÀü ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Zebra Technologies
  • Cognex Corporation
  • Keyence Corporation
  • Basler AG
  • Omron Corporation
  • Teledyne Technologies
  • National Instruments
  • Sony Corporation
  • SICK AG
  • Banner Engineering
  • Allied Vision Technologies
  • ABB Ltd.
  • Panasonic Corporation
  • KUKA AG
  • Toshiba Teli Corporation
  • Datalogic SpA
  • DENSO Corporation
KTH 25.02.26

According to Stratistics MRC, the Global Machine Vision Market is accounted for $11.7 billion in 2024 and is expected to reach $20.4 billion by 2030 growing at a CAGR of 9.7% during the forecast period. Machine vision is a field of technology that enables computers or machines to interpret and process visual information, typically through cameras or sensors. It involves capturing images or videos and analyzing them using algorithms to detect, identify, and respond to objects, patterns, or specific features. This technology is widely used in various industries, including manufacturing, robotics, quality control, and medical imaging, to automate tasks, ensure accuracy, and enhance efficiency. By mimicking human vision, machine vision systems enable machines to make decisions based on visual data in real-time.

According to a report published by the Ministry of Land, Infrastructure and Transport (South Korea), around 390 thousand electric vehicles were registered in South Korea in 2022, with a sharp increase recorded after 2013. Together with hybrid and hydrogen vehicles, the share of environment-friendly vehicles among the total number of registered vehicles in South Korea was about 6.2%.

Market Dynamics:

Driver:

Increased demand for automation

The growing demand for automation in the market is driven by the need for improved efficiency, accuracy, and cost-effectiveness across industries. Automation reduces human error, enhances production speed, and ensures consistent quality control, particularly in manufacturing and industrial sectors. As businesses strive for higher productivity and precision, machine vision systems are increasingly integrated into automated processes, leading to significant growth in the adoption of this technology globally.

Restraint:

Complexity of implementation

The complexity of implementing machine vision systems can pose significant challenges in the market. High installation costs, the need for specialized knowledge, and integration with existing processes often deter smaller companies from adopting the technology. Additionally, the complexity of setup and calibration can lead to longer deployment times, potential system errors, and increased maintenance requirements. These factors can hinder the widespread adoption and limit the full potential of machine vision in various industries.

Opportunity:

Growing demand for quality and safety

The rising demand for quality and safety in the market is fueled by the need for precise inspection, defect detection, and adherence to stringent standards across various industries. Machine vision systems help ensure high-quality products and safe working environments by automating quality control, identifying defects, and preventing hazards. This trend is particularly prominent in manufacturing, automotive, and healthcare sectors, where maintaining quality and safety is critical for operational success and compliance.

Threat:

High initial investment

The high initial investment required for machine vision systems can be a major barrier for many businesses, especially small and medium-sized enterprises. The cost of cameras, sensors, software, and integration can be substantial, limiting accessibility to only well-funded companies. This upfront financial burden can delay adoption and hinder the growth of the machine vision market, preventing many organizations from realizing the potential benefits of automation and enhanced quality control.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the market. While it disrupted supply chains and delayed project implementations, it also accelerated the adoption of automation and contactless technologies in industries like manufacturing, healthcare, and logistics. The increased focus on efficiency, safety, and social distancing pushed businesses to invest in machine vision systems for quality control, monitoring, and remote operations, leading to a post-pandemic market recovery.

The line scan cameras segment is expected to be the largest during the forecast period

The line scan cameras segment is anticipated to account for the largest market share during the projection period due to their ability to capture high-resolution images of moving objects in a single line. These cameras are ideal for applications like web inspection, sorting, and surface defect detection in industries such as manufacturing, packaging, and printing. Their ability to provide detailed, continuous imaging with minimal distortion makes them essential for high-speed, high-accuracy quality control and automation processes.

The agriculture segment is expected to have the highest CAGR during the forecast period

The agriculture segment is expected to have the highest CAGR during the extrapolated period. In agriculture, machine vision systems are used for crop monitoring, disease detection, weed identification, and yield estimation. These systems help optimize resource usage, reduce costs, and enhance crop quality by providing real-time insights. As the demand for sustainable and efficient farming practices grows, machine vision plays a crucial role in improving productivity and decision-making in agriculture.

Region with largest share:

North America region is anticipated to account for the largest market share during the forecast period due to increasing automation, demand for quality control, and technological advancements across industries like automotive, manufacturing, and healthcare. The region benefits from a strong industrial base, high adoption of innovative technologies, and a growing focus on efficiency and precision. Additionally, key players in the U.S. and Canada are driving market expansion through continuous product innovation and strategic partnerships.

Region with highest CAGR:

Asia Pacific is expected to register the highest growth rate over the forecast period. The increasing trend toward automation in manufacturing industries, particularly in automotive, electronics, and consumer goods, is a major driver. The integration of AI and ML with machine vision systems enhances their ability to perform complex tasks, such as pattern recognition, defect detection, and predictive maintenance. Additionally, Companies are increasingly investing in machine vision solutions for robotics, autonomous vehicles, and inspection systems.

Key players in the market

Some of the key players in Machine Vision market include Zebra Technologies, Cognex Corporation, Keyence Corporation, Basler AG, Omron Corporation, Teledyne Technologies, National Instruments, Sony Corporation, SICK AG, Banner Engineering, Allied Vision Technologies, ABB Ltd., Panasonic Corporation, KUKA AG, Toshiba Teli Corporation, Datalogic S.p.A. and DENSO Corporation.

Key Developments:

In July 2024, Kayence, a leading machine system and component manufacturer, launched its all-in-one 3D inspection system, the 3D laser snapshot sensor LJ-S8000 series, with a building scanning mechanism. It has versatile applications in 3D dimensional measurement, 3D appearance inspection, and 3D identification and differentiation.

In March 2024, Cognex, a prominent industrial MV System supplier, extended its product portfolio with a modern vision tunnel featuring a DataMan 380 barcode reader. The 380 modular vision offers high throughput and traceability with a 380 barcode reader and robust system architecture.

Component Types Covered:

  • Hardware
  • Software
  • Other Component Types

Camera Types Covered:

  • Area Scan Cameras
  • Line Scan Cameras
  • Smart Cameras
  • 3D Cameras

Deployment Modes Covered:

  • On-Premises
  • Cloud-Based

Applications Covered:

  • Robotic Vision
  • Automated Inspection
  • Sorting & Grading
  • Guidance Systems
  • Measurement & Gauging
  • Other Applications

End Users Covered:

  • Logistics & Warehousing
  • Agriculture
  • Healthcare & Medical Imaging
  • Automotive
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Machine Vision Market, By Component Type

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Cameras
    • 5.2.2 Sensors
    • 5.2.3 Lighting
    • 5.2.4 Processors
    • 5.2.5 Lenses and Optics
  • 5.3 Software
    • 5.3.1 Machine Vision Software
    • 5.3.2 Artificial Intelligence (AI) & Deep Learning Software
  • 5.3 Other Component Types

6 Global Machine Vision Market, By Camera Type

  • 6.1 Introduction
  • 6.2 Area Scan Cameras
  • 6.3 Line Scan Cameras
  • 6.4 Smart Cameras
  • 6.5 3D Cameras

7 Global Machine Vision Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 On-Premises
  • 7.3 Cloud-Based

8 Global Machine Vision Market, By Application

  • 8.1 Introduction
  • 8.2 Robotic Vision
  • 8.3 Automated Inspection
  • 8.4 Sorting & Grading
  • 8.5 Guidance Systems
  • 8.6 Measurement & Gauging
  • 8.7 Other Applications

9 Global Machine Vision Market, By End User

  • 9.1 Introduction
  • 9.2 Logistics & Warehousing
  • 9.3 Agriculture
  • 9.4 Healthcare & Medical Imaging
  • 9.5 Automotive
  • 9.6 Aerospace & Defense
  • 9.7 Other End Users

10 Global Machine Vision Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Zebra Technologies
  • 12.2 Cognex Corporation
  • 12.3 Keyence Corporation
  • 12.4 Basler AG
  • 12.5 Omron Corporation
  • 12.6 Teledyne Technologies
  • 12.7 National Instruments
  • 12.8 Sony Corporation
  • 12.9 SICK AG
  • 12.10 Banner Engineering
  • 12.11 Allied Vision Technologies
  • 12.12 ABB Ltd.
  • 12.13 Panasonic Corporation
  • 12.14 KUKA AG
  • 12.15 Toshiba Teli Corporation
  • 12.16 Datalogic S.p.A.
  • 12.17 DENSO Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦