½ÃÀ庸°í¼­
»óǰÄÚµå
1636712

´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°, À¯Çü, »ùÇà À¯Çü, ¿öÅ©ÇÃ·Î¿ì ½ºÅ×ÀÌÁö, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Single-Cell Analysis Transcriptomics Market Forecasts to 2030 - Global Analysis By Product, Analysis Type, Sample Type, Workflow Stage, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀåÀº 2024³â 52¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇß½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È CAGR 20.5%·Î ¼ºÀåÇØ 2030³â¿¡´Â 160¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐÀº °³º° ¼¼Æ÷ ¼öÁØ¿¡¼­ À¯ÀüÀÚ ¹ßÇöÀ» ¿¬±¸ÇÏ´Â ÃÖ÷´Ü Á¢±Ù¹ýÀÔ´Ï´Ù. À̰ÍÀº Èñ±ÍÇÑ ¼¼Æ÷ À¯Çü, ¼¼Æ÷ »óÅÂ, ºÐÈ­¿Í °°Àº µ¿Àû °úÁ¤ÀÇ ¹ß°ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ´Ù¾çÇÑ ±â¼úÀ» »ç¿ëÇÏ¿© ¿¬±¸ÀÚµéÀº °³¹ß, Áúº´ ¸ÞÄ¿´ÏÁò ¹× Ä¡·á Ç¥Àû¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» ¹àÈú ¼ö ÀÖÀ¸¸ç, º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» ´ÜÀÏ ¼¿ ºÐÇØ´ÉÀ¸·Î ÀÌÇØÇÏ´Â µ¥ ÀÖ¾î Àü·Ê ¾ø´Â Á¤È®µµ¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹¾ÏÇùȸÀÇ º¸°í¿¡ µû¸£¸é, 2022³â¿¡´Â ¹Ì±¹¿¡¼­ »õ·Ó°Ô 190¸¸¸íÀÇ ¾Ï ȯÀÚ°¡ Áø´ÜµÇ¾î 60¸¸ 9,360¸íÀÌ »ç¸ÁÇÑ °ÍÀ¸·Î ÃßÁ¤µÇ°í ÀÖ½À´Ï´Ù.

Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

Á¤¹ÐÀÇ·á´Â °³º° À¯ÀüÀû ¹× ºÐÀÚÀû ÇÁ·ÎÆÄÀÏÀ» ±â¹ÝÀ¸·Î Ä¡·á¸¦ Á¶Á¤ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ ´ÜÀÏ ¼¿ Àü»çüÇд ¼¼Æ÷ ÀÌÁú¼º¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ°í ¿¬±¸ÀÚ°¡ ¼¼Æ÷ ¼öÁØ¿¡¼­ Áúº´À» ¾î¶»°Ô ¹ßÇö½ÃŰ´ÂÁö¸¦ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ÀÇ ºÐÇØ´ÉÀ¸·Î À¯ÀüÀÚ ¹ßÇöÀ» ºÐ¼®ÇÔÀ¸·Î½á, ÀÌ ±â¼úÀº Èñ±Í ¼¼Æ÷ Áý´Ü, Áúº´ ¹ÙÀÌ¿À¸¶Ä¿, Ä¡·á Ç¥ÀûÀÇ µ¿Á¤À» µ½°í, ¸ÂÃã Ä¡·á Àü·«À» ÀüÁø½Ãŵ´Ï´Ù. Á¾¾çÇÐ, ¸é¿ªÇÐ ¹× Èñ±ÍÁúȯ¿¡ÀÇ ÀÀ¿ëÀº º¸´Ù Á¤È®ÇÑ Áø´Ü ¹× Ä¡·á ¿É¼ÇÀ» º¸ÀåÇÏ°í °Ç°­ °ü¸® ºÐ¾ß¿¡¼­ ¼ö¿ä¸¦ Áõ°¡½Ãŵ´Ï´Ù.

µ¥ÀÌÅÍ ºÐ¼®ÀÇ º¹À⼺

´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇп¡¼­ÀÇ µ¥ÀÌÅÍ ºÐ¼®ÀÇ º¹À⼺Àº »ý¼ºµÇ´Â ´ë·®ÀÇ µ¥ÀÌÅÍ¿¡ ±âÀÎÇϸç, ±× ÇØ¼®¿¡´Â °í±Þ °è»ê ±â¹ýÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¼Æ÷ °£ÀÇ ÆíÂ÷, Å»¶ô »ç°Ç, ¼ÒÀ½ÀÌ ÇÁ·Î¼¼½º¸¦ ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ¿¬±¸ÀÚµéÀº ´Ù¾çÇÑ »ùÇÿ¡ °ÉÄ£ µ¥ÀÌÅÍÀÇ ÅëÇÕ, Ŭ·¯½ºÅ͸µ, ÇØ¼®À» ó¸®ÇØ¾ß Çϸç, ÷´Ü ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Àü¹® Áö½ÄÀÌ ¿ä±¸µË´Ï´Ù. Ưº°ÇÑ µµ±¸¿Í °í¼º´É ÄÄÇ»ÆÃ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÏ´Ù´Â °Íµµ °úÁ¦¸¦ ´õ¿í Å©°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ´ÜÀÏ ¼¿ ±â¼úÀÇ º¸±ÞÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù.

À¯ÀüÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡

Á¤ºÎ, ¹Î°£ ´Üü ¹× º¥Ã³ ijÇÇÅ»¿¡¼­ ÀÚ±Ý Á¦°ø Áõ°¡´Â Àú°¡, °íÁ¤¹Ð, È®Àå °¡´ÉÇÑ ´ÜÀÏ ¼¿ ±â¼úÀÇ °³¹ßÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ ÅõÀÚ´Â À¯ÀüÀÚ ¹ßÇö, ºÐÈ­, Áúº´ ¸ÞÄ¿´ÏÁò°ú °°Àº º¹ÀâÇÑ »ý¹°ÇÐÀû °úÁ¤¿¡ ´ëÇÑ ±íÀº ÀÌÇØ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±× °á°ú, ¾Ï ¿¬±¸, ¸é¿ªÇÐ, Àç»ý ÀǷḦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ ½Ì±Û¼¿ Àü»çüÇÐÀÇ µµÀÔÀÌ °¡¼ÓµË´Ï´Ù. ¶ÇÇÑ ¿¬±¸±â°ü, »ý¸í°øÇбâ¾÷, À§Å¹¿¬±¸±â°ü °£ÀÇ Çù·Â°ü°è¸¦ ÃËÁøÇÏ¿© ½ÃÀåÀÇ ¼ºÀå°ú ÀÀ¿ëÀ» ´õ¿í ÃËÁøÇÕ´Ï´Ù.

À±¸®Àû ¿ì·Á

´ÜÀÏ ¼¼Æ÷ ºÐ¼® Àü»çüÇÐÀÇ À±¸®Àû ¿ì·Á´Â ÁÖ·Î Àΰ£ Á¶Á÷ÀÇ »ç¿ë, ƯÈ÷ À¯Àüº´, ¾Ï, »ý½Ä ÀÇ·á µî ¹Î°¨ÇÑ Á¶°ÇÀ» Æ÷ÇÔÇÑ Á¶»ç¿¡¼­ ¹ß»ýÇÕ´Ï´Ù. µ¿ÀÇ, ÇÁ¶óÀ̹ö½Ã, À¯ÀüÀÚ µ¥ÀÌÅÍÀÇ ¾Ç¿ë °¡´É¼º µîÀÇ °úÁ¦°¡ ±ÔÁ¦»óÀÇ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎÁ¤º¸³ª ƯÁ¤ °¡´ÉÇÑ µ¥ÀÌÅÍÀÇ Ãë±ÞÀÌ À±¸®ÀûÀ¸·Î º¹ÀâÇϱ⠶§¹®¿¡ µ¥ÀÌÅÍÀÇ ¾ÈÀü¼º¿¡µµ ¿ì·Á°¡ »ý±é´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº À±¸®Àû ½ÂÀÎÀ» ¾ò´Â µ¥ ÇÊ¿äÇÑ ºñ¿ë°ú ½Ã°£À» ´Ã¸®°í, Á¶»ç ¹üÀ§¸¦ Á¦ÇÑÇϰí, ¿¬±¸ ±â°ü°ú ¾÷°è °ü°èÀÚÀÇ Çù·ÂÀ» ¹æÇØÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» µÐÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ÆÒµ¥¹ÍÀº ´ÜÀÏ ¼¼Æ÷ ºÐ¼® Àü»çüÇÐÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ°í ¹ÙÀÌ·¯½º¿Í ¼÷ÁÖÀÇ »óÈ£ÀÛ¿ë°ú ¸é¿ª ¹ÝÀÀÀ» ¼¼Æ÷ ¼öÁØ¿¡¼­ ¿¬±¸Çϱâ À§ÇÑ °í±Þ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª ½ÃÀåÀº °ø±Þ¸Á È¥¶õ, ¿¬±¸ ÇÁ·ÎÁ§Æ® Áö¿¬, ºñ ÄÚºñµå ¿¬±¸¿¡ ´ëÇÑ ÀÚ±Ý Á¦°ø °¨¼Ò µîÀÇ °úÁ¦¿¡ Á÷¸éÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÁÂÀý¿¡µµ ºÒ±¸Çϰí, À¯ÇàÀº ¼¼°èÀÇ °Ç°­ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ´ÜÀÏ ¼¿ ±â¼úÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ´Â °ÍÀ» ºÎ°¢ÇÏ°í ½ÃÀåÀÇ Àå±â ¼ºÀåÀ» °¡¼ÓÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾Ï À¯Àüü ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á

¾Ï À¯ÀüÇÐ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» È®º¸ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇд Á¾¾çÀÇ ºÒ±ÕÀϼº, Ŭ·Ð ÁøÈ­, Á¾¾ç ¹Ì¼¼È¯°æ¿¡ ´ëÇÑ ºñ±³ÇÒ ¼ö ¾ø´Â ÅëÂûÀ» Á¦°øÇÔÀ¸·Î½á ¾Ï À¯ÀüüÇп¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº Èñ±Í ÇÑ ¾Ï¼¼Æ÷ÀÇ ÇÏÀ§ Áý´ÜÀ» È®ÀÎÇϰí Áúº´ÀÇ ÁøÇàÀ» ÃßÀûÇϸç Ä¡·á ³»¼º ¸ÞÄ¿´ÏÁòÀ» ¹àÈü´Ï´Ù. ÀÌ Á¤È®µµÀÇ ³ôÀ̰¡ ¾Ï »ý¹°ÇÐÀÇ ÀÌÇØ¸¦ ±í°Ô Çϰí, °³º°È­µÈ Ç¥Àû Ä¡·á °³ÀÔ¿¡ÀÇ ±æÀ» ¿¬´Ù.

¼öŹ¿¬±¸±â°ü(CRO) ºÎ¹®Àº ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

CRO(ÀǾàǰ °³¹ß ¾÷¹« À§Å¹ ±â°ü) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. CRO´Â ÀǾàǰ ¹× °³¹ßÀ» Áö¿øÇϱâ À§ÇØ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü¼Û ½ºÅ©¸³Æ® ¹Í½º¸¦ Ȱ¿ëÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ºÐÀÚ Ç¥ÀûÀÇ È®ÀÎ, Áúº´ ±âÀüÀÇ ÀÌÇØ, ¼¼Æ÷ ¼öÁØ¿¡¼­ÀÇ ¾àÈ¿ Æò°¡¿¡ µµ¿òÀÌ µË´Ï´Ù. ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½ºÀÇ Àü¹® Áö½Ä°ú ÷´Ü Ç÷§ÆûÀ» Á¦°øÇÔÀ¸·Î½á CRO´Â °íǰÁú °á°ú¸¦ º¸ÀåÇϰí Á¤¹Ð ÀǾàǰ °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº À¯ÀüüÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, °Ç°­ °ü¸® Áøº¸¸¦ À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, Á¤¹ÐÀÇ·á µµÀÔ Áõ°¡ µîÀ» ¹è°æÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ¿Í °°Àº ±¹°¡µéÀº ¿¬±¸ ÀÎÇÁ¶ó¿Í Çаè¿Í »ê¾÷°èÀÇ Çù·Â °ü°è È®´ë·Î ÀÌ Áö¿ªÀ» À̲ø°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¸¸¼º Áúȯ°ú ¾ÏÀÇ À¯º´·üÀÌ ³ô¾ÆÁö¸é ÷´Ü Æ®·£½ºÅ©¸³Æ® µµ±¸ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ±â¼úÀû Áøº¸¿Í ½ÃÀå È®´ë¿¡ ¾öû³­ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â °ß°íÇÑ ¿¬±¸ ÀÎÇÁ¶ó, ÷´Ü À¯Àüü ±â¼úÀÇ ³ôÀº ä¿ë·ü, Á¤¹ÐÀÇ·á ¹× À¯ÀüüÇи¦ À§ÇÑ °­·ÂÇÑ Á¤ºÎ ÀÚ±ÝÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹Àº ¾Ï, ¸é¿ªÇÐ, ½Å°æ »ý¹°Çп¡¼­ ±¤¹üÀ§ÇÑ Á¶»ç Ȱµ¿À¸·ÎÀÌ Áö¿ªÀ» ¼±µµÇϰí ÀÖÀ¸¸ç ÁÖ¿ä ±â¾÷°ú Çмú ±â°ü¿¡ ÀÇÇØ Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ij³ª´Ù´Â ¶ÇÇÑ »ý¸í°øÇп¡ ´ëÇÑ ÅõÀÚ°¡ È®´ëµÇ°í ÀÖÀ¸¸ç Áß¿äÇÑ °øÇå±¹À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º µµ±¸¿Í ¼÷·ÃµÈ Àü¹®°¡ÀÇ Á¸Àç°¡ ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(Âü°í : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : Á¦Ç°º°

  • ±â±â
    • ½ÃÄö¼­
    • ÇÃ·Î¿ì »çÀÌÅä¹ÌÅÍ
    • Çö¹Ì°æ
  • ¼Ò¸ðǰ
    • ½Ã¾à ¹× ŰƮ
    • ¸¶ÀÌÅ©·ÎÇ÷¹ÀÌÆ®
    • ºñµå

Á¦6Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : ÇØ¼® À¯Çüº°

  • À¯ÀüÀÚ ¹ßÇö ÇÁ·ÎÆÄÀϸµ
  • ¿¡ÇÇÀ¯ÀüüÇÐ
  • ´ë»çüÇÐ
  • ´Ü¹éÁúüÇÐ
  • ±âŸ ÇØ¼® À¯Çü

Á¦7Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : »ùÇà À¯Çüº°

  • ÀÎü ¼¼Æ÷
  • µ¿¹° ¼¼Æ÷
  • ¹Ì»ý¹° ¼¼Æ÷
  • ½Ä¹° ¼¼Æ÷
  • ±âŸ »ùÇà À¯Çü

Á¦8Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : ¿öÅ©ÇÃ·Î¿ì ½ºÅ×ÀÌÁöº°

  • »ùÇà Áغñ
  • »ùÇà ºÐ¸®
  • µ¥ÀÌÅÍ ºÐ¼®
  • µ¥ÀÌÅÍ ÇØ¼®
  • ±âŸ ¿öÅ©ÇÃ·Î¿ì ½ºÅ×ÀÌÁö

Á¦9Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : ±â¼úº°

  • Â÷¼¼´ë ½ÃÄö½Ì(NGS)
  • ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR)
  • ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • ´ÜÀÏ ¼¿ RNA ½ÃÄö½Ì(scRNA-Seq)
  • ÀλçÀÌÃò ÇÏÀ̺긮µåÈ­(ISH)
  • ±âŸ ±â¼ú

Á¦10Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : ¿ëµµº°

  • ¾Ï À¯Àüü °úÇÐ
  • ½Å°æÇÐ
  • ¸é¿ªÇÐ
  • Áٱ⼼Æ÷ ¿¬±¸
  • Áúº´ÀÇ Áø´Ü
  • ¸ÂÃãÇü ÀÇ·á
  • ¹ÙÀÌ¿À¸¶Ä¿ÀÇ ¹ß°ß
  • ±âŸ ¿ëµµ

Á¦11Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Çмú±â°ü ¹× ¿¬±¸±â°ü
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • º´¿ø ¹× Áø´Ü ½ÇÇè½Ç
  • °è¾à¿¬±¸±â°ü(CRO)
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦12Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® Àü»çüÇÐ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Thermo Fisher Scientific
  • Bio-Rad Laboratories
  • Becton, Dickinson and Company
  • QIAGEN NV
  • Illumina Inc.
  • PerkinElmer Inc.
  • Agilent Technologies
  • Pacific Biosciences
  • Sartorius AG
  • Promega Corporation
  • Luminex Corporation
  • Merck KGaA
  • Zephyrus Biosciences
  • Miltenyi Biotec
  • Oxford Nanopore Technologies
  • Novogene Corporation
  • Fluidigm Corporation
  • Cell Signaling Technology Inc.
  • 10x Genomics
  • NanoString Technologies
KTH 25.02.26

According to Stratistics MRC, the Global Single-Cell Analysis Transcriptomics Market is accounted for $5.22 billion in 2024 and is expected to reach $16.01 billion by 2030 growing at a CAGR of 20.5% during the forecast period. Single-cell analysis transcriptomics is a cutting-edge approach to studying gene expression at the individual cell level. It enables the discovery of rare cell types, cell states, and dynamic processes such as differentiation. By using various technologies, researchers can uncover critical insights into development, disease mechanisms, and therapeutic targets, offering unprecedented precision in understanding complex biological systems at a single-cell resolution.

According to the American Cancer Society report, in 2022, there were an estimated 1.9 million new cancer cases diagnosed and 609,360 cancer deaths in the U.S.

Market Dynamics:

Driver:

Rising demand for precision medicine

As precision medicine focuses on tailoring treatments based on individual genetic and molecular profiles, single-cell transcriptomics provides critical insights into cellular heterogeneity, enabling researchers to understand how diseases manifest at the cellular level. By analyzing gene expression at single-cell resolution, this technology helps identify rare cell populations, disease biomarkers, and therapeutic targets, advancing personalized treatment strategies. Its application in oncology, immunology, and rare diseases further fuels the market's expansion, ensuring more accurate diagnostics and treatment options, which boosts demand in the healthcare sector.

Restraint:

Complexity of data analysis

The complexity of data analysis in single-cell analysis transcriptomics arises from the large volume of data generated, which requires sophisticated computational methods to interpret. Variability between cells, dropout events, and noise further complicate the process. Researchers must handle data integration, clustering, and interpretation across diverse samples, demanding advanced bioinformatics expertise. The need for specialized tools and high-performance computing infrastructure adds to the challenge. This complexity thereby slowdowns widespread adoption of single-cell technologies

Opportunity:

Growing investments in genomics research

Increased funding from governments, private organizations, and venture capital firms supports the development of more affordable, precise, and scalable single-cell technologies. This investment enables better understanding of complex biological processes, such as gene expression, differentiation, and disease mechanisms. As a result, it accelerates the adoption of single-cell transcriptomics in diverse fields, including cancer research, immunology, and regenerative medicine. Moreover, it fosters collaborations between research institutions, biotechnology companies, and contract research organizations, further advancing the market's growth and application.

Threat:

Ethical concerns

Ethical concerns in single-cell analysis transcriptomics arise mainly from the use of human tissues, especially for research involving sensitive conditions like genetic diseases, cancer, and reproductive health. Issues like consent, privacy, and the potential for misuse of genetic data create regulatory challenges. The ethical complexity of handling personal and identifiable data also raises concerns about data security. These factors can slow market growth by increasing the costs and time required to obtain ethical approvals, limit the scope of research, and deter collaboration between institutions and industry players.

Covid-19 Impact

The covid-19 pandemic accelerated the adoption of single-cell analysis transcriptomics, driving demand for advanced tools to study viral-host interactions and immune responses at cellular resolution. However, the market faced challenges such as disrupted supply chains, delayed research projects, and reduced funding for non-covid studies. Despite these setbacks, the pandemic underscored the critical role of single-cell technologies in addressing global health challenges, fostering long-term market growth.

The cancer genomics segment is expected to be the largest during the forecast period

The cancer genomics segment is predicted to secure the largest market share throughout the forecast period. Single-cell analysis transcriptomics is revolutionizing cancer genomics by providing unparalleled insights into tumor heterogeneity, clonal evolution, and the tumor microenvironment. This approach identifies rare cancer cell subpopulations, tracks disease progression, and uncovers mechanisms of therapy resistance. This precision enhances understanding of cancer biology, paving the way for personalized and targeted therapeutic interventions.

The contract research organizations (CROs) segment is expected to have the highest CAGR during the forecast period

The contract research organizations (CROs) segment is anticipated to witness the highest CAGR during the forecast period. CROs are increasingly leveraging single-cell analysis transcriptomics to support drug discovery and development. This technology aids in identifying molecular targets, understanding disease mechanisms, and evaluating drug efficacy at a cellular resolution. By offering expertise in bioinformatics and advanced platforms, CROs ensure high-quality results, facilitating the development of precision medicines.

Region with largest share:

Asia Pacific is expected to register the largest market share during the forecast period fuelled by increasing investments in genomics research, government initiatives to advance healthcare, and the rising adoption of precision medicine. Countries like China, Japan, and India are leading the region with growing research infrastructure and collaborations between academia and industry. Additionally, the high prevalence of chronic diseases and cancer drives the demand for advanced transcriptomic tools. The region presents immense potential for technological advancements and market expansion.

Region with highest CAGR:

North America is expected to witness the highest CAGR over the forecast period driven by robust research infrastructure, high adoption of advanced genomic technologies, and strong government funding for precision medicine and genomics. The U.S. leads the region with extensive research activities in cancer, immunology, and neurobiology, supported by key players and academic institutions. Canada is also emerging as a significant contributor with growing investments in biotechnology. The presence of advanced bioinformatics tools and skilled professionals further accelerates market growth.

Key players in the market

Some of the key players profiled in the Single-Cell Analysis Transcriptomics Market include Thermo Fisher Scientific, Bio-Rad Laboratories, Becton, Dickinson and Company, QIAGEN N.V., Illumina Inc., PerkinElmer Inc., Agilent Technologies, Pacific Biosciences, Sartorius AG, Promega Corporation, Luminex Corporation, Merck KGaA, Zephyrus Biosciences, Miltenyi Biotec, Oxford Nanopore Technologies, Novogene Corporation, Fluidigm Corporation, Cell Signaling Technology Inc., 10x Genomics and NanoString Technologies.

Key Developments:

In October 2024, Cell Signaling Technology (CST) has announced the launch of InTraSeq(TM) Single Cell Analysis Reagents, a reliable, efficient and convenient way to simultaneously detect and study intracellular proteins and the transcriptome in a single-cell experiment, while guaranteeing a robust RNA signal.

In June 2024, Bio-Rad Laboratories, Inc. launched the ddSEQTM Single-Cell 3' RNA-Seq Kit and complementary Omnition v1.1 analysis software for single-cell transcriptome and gene expression research. Designed to be run on Bio-Rad's droplet-based single-cell isolation system, the ddSEQ Cell Isolator, the ddSEQ Single-Cell 3' RNA-Seq Kit delivers high-quality single-cell 3' RNA-Seq libraries in a fast, efficient, and affordable workflow, allowing researchers to easily conduct single-cell gene expression and regulation analyses.

Products Covered:

  • Instruments
  • Consumables

Analysis Types Covered:

  • Gene Expression Profiling
  • Epigenomics
  • Metabolomics
  • Proteomics
  • Other Analysis Types

Sample Types Covered:

  • Human Cells
  • Animal Cells
  • Microbial Cells
  • Plant Cells
  • Other Sample Types

Workflow Stages Covered:

  • Sample Preparation
  • Sample Isolation
  • Data Analysis
  • Data Interpretation
  • Other Workflow Stages

Technologies Covered:

  • Next-Generation Sequencing (NGS)
  • Polymerase Chain Reaction (PCR)
  • Microarrays
  • Single-Cell RNA Sequencing (scRNA-Seq)
  • In Situ Hybridization (ISH)
  • Other Technologies

Applications Covered:

  • Cancer Genomics
  • Neurology
  • Immunology
  • Stem Cell Research
  • Disease Diagnosis
  • Personalized Medicine
  • Biomarker Discovery
  • Other Applications

End Users Covered:

  • Academic & Research Institutions
  • Pharmaceutical & Biotechnology Companies
  • Hospitals & Diagnostic Laboratories
  • Contract Research Organizations (CROs)
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Single-Cell Analysis Transcriptomics Market, By Product

  • 5.1 Introduction
  • 5.2 Instruments
    • 5.2.1 Sequencers
    • 5.2.2 Flow Cytometers
    • 5.2.3 Microscopes
  • 5.3 Consumables
    • 5.3.1 Reagents & Kits
    • 5.3.2 Microplates
    • 5.3.3 Beads

6 Global Single-Cell Analysis Transcriptomics Market, By Analysis Type

  • 6.1 Introduction
  • 6.2 Gene Expression Profiling
  • 6.3 Epigenomics
  • 6.4 Metabolomics
  • 6.5 Proteomics
  • 6.6 Other Analysis Types

7 Global Single-Cell Analysis Transcriptomics Market, By Sample Type

  • 7.1 Introduction
  • 7.2 Human Cells
  • 7.3 Animal Cells
  • 7.4 Microbial Cells
  • 7.5 Plant Cells
  • 7.6 Other Sample Types

8 Global Single-Cell Analysis Transcriptomics Market, By Workflow Stage

  • 8.1 Introduction
  • 8.2 Sample Preparation
  • 8.3 Sample Isolation
  • 8.4 Data Analysis
  • 8.5 Data Interpretation
  • 8.6 Other Workflow Stages

9 Global Single-Cell Analysis Transcriptomics Market, By Technology

  • 9.1 Introduction
  • 9.2 Next-Generation Sequencing (NGS)
  • 9.3 Polymerase Chain Reaction (PCR)
  • 9.4 Microarrays
  • 9.5 Single-Cell RNA Sequencing (scRNA-Seq)
  • 9.6 In Situ Hybridization (ISH)
  • 9.7 Other Technologies

10 Global Single-Cell Analysis Transcriptomics Market, By Application

  • 10.1 Introduction
  • 10.2 Cancer Genomics
  • 10.3 Neurology
  • 10.4 Immunology
  • 10.5 Stem Cell Research
  • 10.6 Disease Diagnosis
  • 10.7 Personalized Medicine
  • 10.8 Biomarker Discovery
  • 10.9 Other Applications

11 Global Single-Cell Analysis Transcriptomics Market, By End User

  • 11.1 Introduction
  • 11.2 Academic & Research Institutions
  • 11.3 Pharmaceutical & Biotechnology Companies
  • 11.4 Hospitals & Diagnostic Laboratories
  • 11.5 Contract Research Organizations (CROs)
  • 11.6 Other End Users

12 Global Single-Cell Analysis Transcriptomics Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Thermo Fisher Scientific
  • 14.2 Bio-Rad Laboratories
  • 14.3 Becton, Dickinson and Company
  • 14.4 QIAGEN N.V.
  • 14.5 Illumina Inc.
  • 14.6 PerkinElmer Inc.
  • 14.7 Agilent Technologies
  • 14.8 Pacific Biosciences
  • 14.9 Sartorius AG
  • 14.10 Promega Corporation
  • 14.11 Luminex Corporation
  • 14.12 Merck KGaA
  • 14.13 Zephyrus Biosciences
  • 14.14 Miltenyi Biotec
  • 14.15 Oxford Nanopore Technologies
  • 14.16 Novogene Corporation
  • 14.17 Fluidigm Corporation
  • 14.18 Cell Signaling Technology Inc.
  • 14.19 10x Genomics
  • 14.20 NanoString Technologies
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦