½ÃÀ庸°í¼­
»óǰÄÚµå
1636789

3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå ¿¹Ãø(-2030³â) : ±Ý¼Ó À¯Çüº°, Çü»óº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

3D Printing Metals Market Forecasts to 2030 - Global Analysis By Metal Type (Titanium, Nickel, Stainless Steel, Aluminum and Other Metal Types), Form, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀåÀº 2024³â 32¾ï 5,660¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 34.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 192¾ï 7,964¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

3D ÇÁ¸°ÆÃ ±Ý¼ÓÀº ÀûÃþ Á¦Á¶ ±â¼úÀ» »ç¿ëÇÏ¿© ±Ý¼Ó ºÎǰÀ̳ª ¹°Ã¼¸¦ Ãþº°·Î Á¶ÇüÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. ƼŸ´½, ½ºÅ×Àθ®½º ½ºÆ¿, ¾Ë·ç¹Ì´½, ÄÚ¹ßÆ® Å©·Ò µîÀÇ ºÐ¸» ±Ý¼ÓÀ» »ç¿ëÇÏ¿© ·¹ÀÌÀú ¿ëÀ¶, ÀüÀÚºö ¿ëÀ¶, ¹ÙÀδõÁ¬ÆÃ µîÀÇ ¹æ¹ýÀ¸·Î À¶ÇÕÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ±âÁ¸ÀÇ Á¦Á¶ ±â¼ú·Î´Â ¾î·Æ°Å³ª ºÒ°¡´ÉÇÑ º¹ÀâÇÑ Çü»ó, °í°­µµ ºÎǰ, °æ·® ±¸Á¶ÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

Ç×°ø¿ìÁÖ ¹× ¹æ»ê ºÐ¾ß ¼ö¿ä Áõ°¡

3D ÇÁ¸°ÆÃÀº ±âÁ¸ÀÇ Á¦Á¶ ¹æ¹ýÀ¸·Î´Â ½ÇÇöÇÒ ¼ö ¾ø¾ú´ø º¹ÀâÇÑ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ Á¦Á¶¾÷ü´Â °íÁ¤¹Ð ºÎǰÀÌ ÇÊ¿äÇϸç, ±Ý¼Ó 3D ÇÁ¸°ÆÃÀº À̸¦ È¿°úÀûÀ¸·Î ½ÇÇöÇÏ°í ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ¸¸ç, 3D ÇÁ¸°ÆÃ ±Ý¼ÓÀ» äÅÃÇÔÀ¸·Î½á ¹æÀ§ »ê¾÷Àº ÷´Ü ±â´ÉÀ» °®Ãá ºÎǰÀ» ´õ ºü¸£°í Àú·ÅÇÏ°Ô »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃÀº ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÌ ºÐ¾ßÀÇ »õ·Î¿î Çõ½ÅÀÌ ½ÃÀå¿¡ Ãâ½ÃµÇ´Â ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎ°¡Àû Á¦Á¶·ÎÀÇ ÀüȯÀº ±Ý¼Ó ÇÕ±ÝÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷ ºÐ¾ß¿¡¼­ ´õ¿í ¸Å·ÂÀûÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

Àç·á Á¦ÇÑ

ÀϺΠÀç·á´Â °¡°øÀÌ ¾î·Á¿ö ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ »ç¿ëÀÌ Á¦ÇѵǾî ÀÖ½À´Ï´Ù. Àç·á ºñ¿ëÀÌ ³ô°í Ư¼ö ÇÕ±ÝÀÇ °¡¿ë¼ºÀÌ Á¦ÇÑµÇ¾î ±¤¹üÀ§ÇÑ Ã¤ÅÃÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ, Àç·á Ư¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇÊ¿äÇÑ ÈÄó¸® ±â¼úÀº Á¾Á¾ °øÁ¤¿¡ ½Ã°£°ú ºñ¿ëÀ» Ãß°¡ÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ ¹®Á¦´Â ƯÁ¤ ±Ý¼Ó ºÐ¸»¿¡¼­ ¹Ì¼¼ÇÑ ÇØ»óµµ¿Í Àϰü¼ºÀ» ´Þ¼ºÇϱⰡ ¾î·Æ°í Àμ⠺ÎǰÀÇ Á¤È®µµ¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù´Â °ÍÀÔ´Ï´Ù. °á°úÀûÀ¸·Î ÀÌ·¯ÇÑ Àç·áÀÇ Á¦¾àÀ¸·Î ÀÎÇØ 3D ÇÁ¸°ÆÃ ±Ý¼ÓÀº Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ µîÀÇ ºÐ¾ß¿¡¼­ °í¼º´É ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ¾ø½À´Ï´Ù.

¿¡³ÊÁö ºÐ¾ß¿¡¼­ÀÇ È°¿ëµµ È®´ë

±Ý¼Ó 3D ÇÁ¸°ÆÃÀº º¹ÀâÇÑ ºÎǰÀ» Á¦Á¶ÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀÌ°í »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. dz·Â Åͺó, ž籤 ÆÐ³Î, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿ë °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» »ý»êÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ ºÐ¾ß¿¡¼­ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃÀº º¸´Ù ºü¸¥ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¿¡³ÊÁö ÀåºñÀÇ »ý»ê ÀÏÁ¤À» ´ÜÃàÇÒ ¼ö ÀÖÀ¸¸ç, 3D ÇÁ¸°ÆÃÀÇ Ä¿½ºÅ͸¶ÀÌ¡ ±â´ÉÀ» ÅëÇØ ¿¡³ÊÁö È¿À²À» ÃÖÀûÈ­ÇÏ´Â ºÎǰÀ» Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼®À¯ ¹× °¡½º ÆÄÀÌÇÁ¶óÀΰú °°Àº ¿¡³ÊÁö ÀÎÇÁ¶ó´Â Á¤¹Ðµµ¿Í ¼º´ÉÀÌ ¿ä±¸µÇ¾î ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

±âÁ¸ÀÇ Á¦Á¶ ¹æ½Ä°úÀÇ °æÀï

ÁÖÁ¶ ¹× ±â°è °¡°ø°ú °°Àº ÀüÅëÀûÀÎ ¹æ¹ýÀº ³·Àº »ý»ê ºñ¿ëÀ¸·Î ÀÎÇØ ¿À·§µ¿¾È È®¸³µÇ¾î ¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüÅëÀûÀÎ Á¦Á¶ ¹æ¹ýÀº Àß ±¸ÃàµÈ °ø±Þ¸Á°ú ³ôÀº ±Ô¸ðÀÇ °æÁ¦ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃÀº Çõ½ÅÀûÀÌÁö¸¸ Àç·áºñ°¡ ³ô°í »ý»ê ¼Óµµ°¡ ´À¸®±â ¶§¹®¿¡ ´ë·® »ý»ê¿¡´Â ÀûÇÕÇÏÁö ¾ÊÀ¸¸ç, ÀüÅëÀûÀÎ Á¦Á¶ ¾÷ü´Â ´õ ¸¹Àº Àç·á ¼±ÅñÇÀ» Á¦°øÇÏ°í »ý»ê ½Ã°£À» ´ÜÃàÇÏ¿© ºñ¿ë¿¡ ¹Î°¨ÇÑ »ê¾÷°è¿¡ È£¼ÒÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÅëÀûÀÎ ¹æ¹ýÀº º¸´Ù ½Å·ÚÇÒ ¼ö Àִ ǰÁú °ü¸® ¼ö´ÜÀ» °®Ãß°í ÀÖ¾î Æ¯Á¤ ºÐ¾ß¿¡ ´õ Å« ¸Å·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î 3D ÇÁ¸°ÆÃÀÌ ½ÃÀå¿¡¼­ ´õ Å« Á¡À¯À²À» Â÷ÁöÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ Àå¾Ö¹°À» ±Øº¹ÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ´ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀåÀ» Å©°Ô È¥¶õ¿¡ ºü¶ß·È°í, °ø±Þ¸Á Áö¿¬°ú Àç·á ºÎÁ·À» ÀÏÀ¸Ä×½À´Ï´Ù. Á¦Á¶ ºÎ¹®Àº ÀϽÃÀûÀÎ °¡µ¿ Áß´Ü¿¡ Á÷¸éÇÏ¿© 3D ÇÁ¸°ÆÃ ±Ý¼Ó ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ ÆÒµ¥¹ÍÀº ÀÇ·á±â±â ¹× ÀåºñÀÇ ½Å¼ÓÇÑ »ý»ê¿¡ 3D ÇÁ¸°ÆÃ ±â¼úÀÌ »ç¿ëµÇ´Â ÇコÄɾî¿Í °°Àº »ê¾÷¿¡¼­ 3D ÇÁ¸°ÆÃÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ¾÷°è°¡ »õ·Î¿î ¾÷¹« ±Ô¹ü¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ź·ÂÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ¼Ö·ç¼Ç¿¡ ÃÊÁ¡À» ¸ÂÃ߸鼭 3D ±Ý¼Ó ÇÁ¸°ÆÃ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ½ÃÀåÀº ȸº¹¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ÀÚµ¿È­ ¹× ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ Àü¸ÁÀÌ ¹à¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ƼŸ´½ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ƼŸ´½ ºÎ¹®Àº ¶Ù¾î³­ °­µµ ´ë Áß·® ºñÀ²°ú ³»½Ä¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƼŸ´½ ÇÕ±ÝÀº Ç×°ø¿ìÁÖ, ÀÇ·á, ÀÚµ¿Â÷ ¹× ±âŸ »ê¾÷¿¡¼­ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» ¸¸µé±â À§ÇØ Æ¼Å¸´½ Çձݿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ ¸ÂÃãÇü ÀÓÇöõÆ® ¹× º¸Ã¶¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó 3D ÇÁ¸°ÆÃ¿¡¼­ ƼŸ´½ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƼŸ´½ÀÇ »ýüÀûÇÕ¼ºÀº °íÁ¤¹Ð ÀÇ·á±â±â Á¦ÀÛ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ ºÐ¾ß´Â °¡È¤ÇÑ Á¶°ÇÀ» °ßµô ¼ö Àִ ƼŸ´½ÀÇ ´É·ÂÀ¸·Î ÀÎÇØ 3D ÇÁ¸°ÆÃ ÀÀ¿ë ºÐ¾ßÀÇ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ß´Â °¡º±°í º¹ÀâÇÑ ºÎǰÀ» Á¦Á¶ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬ºñ¿Í Â÷·® ¼º´É¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº 3D ÇÁ¸°ÆÃÀ» »ç¿ëÇÏ¿© °æ·®È­ ¹× °­µµ Çâ»óÀ» À§ÇÑ ºÎǰÀ» »ý»êÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¹®Çü ¸ÂÃãÇü ºÎǰÀ» ÁÖ¹®ÇüÀ¸·Î »ý»êÇÒ ¼ö ÀÖ¾î »ý»ê ÀÏÁ¤À» ´ÜÃàÇÏ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÀ¸¸ç, 3D ÇÁ¸°ÆÃÀº ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ½Å¼ÓÇÏ°Ô ¼³°è¸¦ Å×½ºÆ®ÇÏ°í ¼öÁ¤ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ ±â¼úÀº ¶ÇÇÑ °í¼º´É ¿£Áø ¹× Á¦µ¿ ½Ã½ºÅÛ¿ë ÷´Ü ¼ÒÀçÀÇ °³¹ßµµ Áö¿øÇÕ´Ï´Ù. Àü±âÀÚµ¿Â÷°¡ Á¡Á¡ ´õ ¸¹Àº ÃßÁø·ÂÀ» ¾òÀ½¿¡ µû¶ó Çõ½ÅÀûÀÌ°í °¡º­¿î ±Ý¼Ó ºÎǰ¿¡ ´ëÇÑ ¿ä±¸°¡ ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº ±â¼ú ¹ßÀü°ú »ê¾÷ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀÌ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼­ 3D ÇÁ¸°ÆÃÀ» ¼±µµÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ÀÌ Áö¿ªÀÇ °­·ÂÇÑ Á¦Á¶ ±â¹Ý°ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ·Î ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î´Â ¸ÂÃãÇü Á¦Ç°, Àç·á Æó±â¹° °¨¼Ò, ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶¿¡ ´ëÇÑ ¼ö¿ä¸¦ µé ¼ö ÀÖ½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ Ã¤ÅÃÀÌ È®´ëµÊ¿¡ µû¶ó ÇÁ·ÎÅäŸÀÌÇÎ ¹× ÃÖÁ¾ »ç¿ë ºÎǰ¿¡ ´ëÇÑ 3D ÇÁ¸°ÆÃÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀº 3D ÇÁ¸°ÆÃ Çõ½ÅÀÇ ¼¼°è ¸®´õ·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì´Â ÀûÃþ Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄɾî, ±¹¹æ µî ÁÖ¿ä »ê¾÷ÀÌ ±Ý¼Ó 3D ÇÁ¸°ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº °¡Àå Å« ½ÃÀå Ç÷¹À̾î·Î ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ±Ý¼Ó ÇÁ¸°ÆÃ ¿ª·®À» °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¸ÂÃãÇü ºÎǰ¿¡ ´ëÇÑ ¿ä±¸¿Í Á¦Á¶ ºñ¿ë Àý°¨À¸·Î ÀÎÇØ Á¦Á¶ °øÁ¤¿¡¼­ 3D ÇÁ¸°ÆÃÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº ±Ý¼Ó ÇÁ¸°ÆÃ ¼­ºñ½º¿Í ±â¼úÀ» °­È­Çϱâ À§ÇØ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ü°áÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù:

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå : ±Ý¼Ó À¯Çüº°

  • ƼŸ´½
  • ´ÏÄÌ
  • ½ºÅ×Àθ®½º°­
  • ¾Ë·ç¹Ì´½
  • ÄÚ¹ßÆ® Å©·Ò
  • ±âŸ ±Ý¼Ó À¯Çü

Á¦6Àå ¼¼°èÀÇ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå : Çü»óº°

  • ºÐ¸»
  • Çʶó¸àÆ®
  • ±âŸ Çü»ó

Á¦7Àå ¼¼°èÀÇ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå : ±â¼úº°

  • ÆÄ¿ì´õ º£µå ¿ëÀ¶ °áÇÕ¹ý(PBF)
    • ¼±ÅÃÀû ·¹ÀÌÀú ¿ëÀ¶(SLM)
    • Á÷Á¢ ±Ý¼Ó ·¹ÀÌÀú ¼Ò°á(DMLS)
    • ÀüÀÚºö ¿ëÇØ¹ý(EBM)
  • ÁöÇ⼺ ¿¡³ÊÁö ÅðÀû(DED)
  • ¹ÙÀδõ Á¦ÆÃ
  • Àç·á ¾ÐÃâ
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå : ¿ëµµº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ÇコÄɾî
    • Á¤Çü¿Ü°ú
    • Ä¡°ú ÀÓÇöõÆ®
  • °¡ÀüÁ¦Ç°
  • ¿¡³ÊÁö
  • °Ç¼³
  • ÁÖ¾ó¸®
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ 3D ÇÁ¸°ÆÃ ±Ý¼Ó ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • 3D Systems Corporation
  • Stratasys Ltd.
  • Renishaw plc
  • General Electric Company(GE)
  • Carpenter Technology Corporation
  • Materialise NV
  • Voxeljet AG
  • Sandvik AB
  • EOS GmbH Electro Optical Systems
  • The ExOne Company
  • Proto Labs, Inc.
  • SLM Solutions Group AG
  • Trumpf GmbH+Co. KG
  • Farsoon Technologies
  • Xact Metal
  • Velo3D
  • Desktop Metal
ksm 25.02.07

According to Stratistics MRC, the Global 3D Printing Metals Market is accounted for $3256.60 million in 2024 and is expected to reach $19279.64 million by 2030 growing at a CAGR of 34.5% during the forecast period. 3D Printing Metals refers to the process of creating metal parts and objects layer by layer using additive manufacturing technologies. It involves the use of powdered metals such as titanium, stainless steel, aluminum, or cobalt-chrome, which are fused together using methods like laser melting, electron beam melting, or binder jetting. This technology enables the production of complex geometries, high-strength components, and lightweight structures that are challenging or impossible to achieve with traditional manufacturing techniques.

Market Dynamics:

Driver:

Growing demand in aerospace & defense

3D printing allows for the creation of complex designs that traditional manufacturing methods cannot achieve. Aerospace manufacturers require high-precision parts, which 3D printing in metals can deliver effectively, enhancing performance and safety. By employing 3D printed metals, the defence industry can produce parts with advanced features faster and at a lower cost. Moreover, 3D printing allows for rapid prototyping, reducing the time-to-market for new innovations in these sectors. This shift towards additive manufacturing is further supported by advancements in metal alloys, increasing its appeal in aerospace and defense applications.

Restraint:

Material limitations

Some materials are also challenging to process, limiting their use in various industries. High material costs, coupled with limited availability of specialized alloys, restrict widespread adoption. Additionally, post-processing techniques needed to enhance material properties often add time and cost to the process. Another issue is the difficulty in achieving fine resolution and consistency with certain metal powders, affecting the precision of printed parts. As a result, these material constraints prevent 3D printing metals from being a viable solution for high-performance applications in sectors like aerospace and automotive.

Opportunity:

Expanding applications in energy sector

Metal 3D printing offers efficient, customizable, and cost-effective solutions for manufacturing complex components. The ability to produce lightweight yet durable parts for wind turbines, solar panels, and energy storage systems accelerates adoption in this field. Additionally, 3D printing enables faster prototyping, reducing production timelines for energy equipment. The customization capabilities of 3D printing allow for the creation of components that optimize energy efficiency. Furthermore, the demand for precision and performance in energy infrastructure, such as oil and gas pipelines, is boosting market growth.

Threat:

Competition from traditional manufacturing

Conventional methods, such as casting and machining, have long been established with lower production costs. These traditional processes also benefit from established supply chains and high economies of scale. Additionally, traditional manufacturers offer greater material options and faster production times, which appeal to cost-conscious industries. 3D printing, although innovative, often faces higher material costs and slower speeds, making it less competitive for mass production. Furthermore, traditional methods have more reliable quality control measures, which increase their appeal to certain sectors. As a result, 3D printing must overcome these hurdles to gain a larger share of the market.

Covid-19 Impact

The COVID-19 pandemic significantly disrupted the 3D printing metals market, causing supply chain delays and material shortages. Manufacturing sectors faced temporary shutdowns, which reduced the demand for 3D printed metal components. However, the pandemic accelerated the adoption of 3D printing in industries such as healthcare, where the technology was used for rapid production of medical devices and equipment. As industries adapted to new operational norms, the focus shifted to resilient, cost-effective manufacturing solutions, boosting interest in 3D metal printing. Post-pandemic, the market is recovering, with increased investments in automation and innovation leading to a brighter outlook.

The titanium segment is expected to be the largest during the forecast period

The titanium segment is expected to account for the largest market share during the forecast period, due to its exceptional strength-to-weight ratio and corrosion resistance. Titanium alloys are highly sought after in industries such as aerospace, medical, and automotive for creating lightweight, durable components. The growing demand for customized implants and prosthetics in healthcare has boosted the adoption of titanium in 3D printing. Additionally, titanium's biocompatibility makes it ideal for creating high-precision medical devices. The aerospace sector benefits from titanium's ability to withstand extreme conditions, driving its demand in 3D printing applications.

The automotive segment is expected to have the highest CAGR during the forecast period

The automotive segment is anticipated to witness the highest CAGR during the forecast period, as it enables the production of lightweight and complex parts. With the increasing demand for fuel efficiency and vehicle performance, manufacturers use 3D printing to create components with reduced weight and enhanced strength. Additionally, the ability to produce customized parts on-demand accelerates production timelines and reduces costs. 3D printing allows for rapid prototyping, enabling automotive companies to test and modify designs quickly. The technology also supports the development of advanced materials for high-performance engines and braking systems. As electric vehicles gain momentum, the need for innovative and lightweight metal components further fuels market expansion.

Region with largest share:

Asia Pacific is expected to hold the largest market share during the forecast period driven by technological advancements and increasing industrial demand. Countries like China, Japan, and South Korea are at the forefront, adopting 3D printing in sectors such as aerospace, automotive, and healthcare. The market benefits from the region's strong manufacturing base and significant investments in research and development. Key drivers include the demand for customized products, reduced material waste, and cost-effective manufacturing. With growing adoption of Industry 4.0 technologies, the use of 3D printing for prototyping and end-use parts is expanding. As the market matures, Asia Pacific is expected to remain a global leader in 3D printing innovations.

Region with highest CAGR:

North America is expected to have the highest CAGR over the forecast period, owing to advancements in additive manufacturing technologies. Key industries such as aerospace, automotive, healthcare and defense are driving the demand for metal 3D printing solutions. The United States is the largest market player, with significant investments in research and development, enhancing metal printing capabilities. The region's adoption of 3D printing in manufacturing processes is increasing due to the need for customized parts and reduced production costs. Additionally, major players in the market are forming strategic partnerships to enhance metal printing services and technology.

Key players in the market

Some of the key players profiled in the 3D Printing Metals Market include 3D Systems Corporation, Stratasys Ltd., Renishaw plc, General Electric Company (GE), Carpenter Technology Corporation, Materialise NV, Voxeljet AG, Sandvik AB, EOS GmbH Electro Optical Systems, The ExOne Company, Proto Labs, Inc., SLM Solutions Group AG, Trumpf GmbH + Co. KG, Farsoon Technologies, Xact Metal, Velo3D and Desktop Metal.

Key Developments:

In July 2024, 3D Systems announced collaboration with Precision Resource, a manufacturer of critical components for various industries, to advance metal additive manufacturing. As part of this partnership, Precision Resource integrated two 3D Systems DMP Flex 350 Dual printers into its manufacturing workflow to support high-criticality applications.

In September 2023, 3D Systems delivered a signed merger agreement to Stratasys, a leading 3D printing company, proposing a combination of the two companies. This merger aims to create a larger entity with enhanced capabilities in the 3D printing industry.

Metal Types Covered:

  • Titanium
  • Nickel
  • Stainless Steel
  • Aluminum
  • Cobalt-Chrome
  • Other Metal Types

Forms Covered:

  • Powder
  • Filament
  • Other Forms

Technologies Covered:

  • Powder Bed Fusion (PBF)
  • Directed Energy Deposition (DED)
  • Binder Jetting
  • Material Extrusion
  • Other Technologies

Applications Covered:

  • General Health & Wellness
  • Immune System Support
  • Skin, Hair, & Nail Health
  • Weight Management
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global 3D Printing Metals Market, By Metal Type

  • 5.1 Introduction
  • 5.2 Titanium
  • 5.3 Nickel
  • 5.4 Stainless Steel
  • 5.5 Aluminum
  • 5.6 Cobalt-Chrome
  • 5.7 Other Metal Types

6 Global 3D Printing Metals Market, By Form

  • 6.1 Introduction
  • 6.2 Powder
  • 6.3 Filament
  • 6.4 Other Forms

7 Global 3D Printing Metals Market, By Technology

  • 7.1 Introduction
  • 7.2 Powder Bed Fusion (PBF)
    • 7.2.1 Selective Laser Melting (SLM)
    • 7.2.2 Direct Metal Laser Sintering (DMLS)
    • 7.2.3 Electron Beam Melting (EBM)
  • 7.3 Directed Energy Deposition (DED)
  • 7.4 Binder Jetting
  • 7.5 Material Extrusion
  • 7.6 Other Technologies

8 Global 3D Printing Metals Market, By Application

  • 8.1 Introduction
  • 8.2 Aerospace & Defense
  • 8.3 Automotive
  • 8.4 Healthcare
    • 8.4.1 Orthopedics
    • 8.4.2 Dental Implants
  • 8.5 Consumer Electronics
  • 8.6 Energy
  • 8.7 Construction
  • 8.8 Jewelry
  • 8.9 Other Applications

9 Global 3D Printing Metals Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 3D Systems Corporation
  • 11.2 Stratasys Ltd.
  • 11.3 Renishaw plc
  • 11.4 General Electric Company (GE)
  • 11.5 Carpenter Technology Corporation
  • 11.6 Materialise NV
  • 11.7 Voxeljet AG
  • 11.8 Sandvik AB
  • 11.9 EOS GmbH Electro Optical Systems
  • 11.10 The ExOne Company
  • 11.11 Proto Labs, Inc.
  • 11.12 SLM Solutions Group AG
  • 11.13 Trumpf GmbH + Co. KG
  • 11.14 Farsoon Technologies
  • 11.15 Xact Metal
  • 11.16 Velo3D
  • 11.17 Desktop Metal
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦