½ÃÀ庸°í¼­
»óǰÄÚµå
1775348

¼¼°èÀÇ ´ÙÀÌ·ºÆ® ¸ÞÅ» ·¹ÀÌÀú ¼Ò°á ¹æ½Ä 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : ¿¹Ãø(2025-2030³â)

Direct Metal Laser Sintering 3D Printing Technology Market - Forecasts from 2025 to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 146 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ´ÙÀÌ·ºÆ® ¸ÞÅ» ·¹ÀÌÀú ¼Ò°á ¹æ½Ä 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå ±Ô¸ð´Â CAGR 20.25%·Î, 2025³â 1¾ï 8,656¸¸ 6,000´Þ·¯¿¡¼­ 2030³â¿¡´Â 4¾ï 6,916¸¸ 2,000´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Á÷Á¢ ±Ý¼Ó ·¹ÀÌÀú ¼Ò°á(DMLS)Àº ¼±ÅÃÀû ·¹ÀÌÀú ¿ëÀ¶(SLM)À̶ó°íµµ Çϸç, °í¹Ðµµ ·¹ÀÌÀú¸¦ »ç¿ëÇÏ¿© ±Ý¼Ó ºÐ¸»À» Ãþº°·Î ³ì¿© Á¤¹ÐÇÑ 3D ÇÁ¸°ÆÃ ºÎǰÀ» Á¦ÀÛÇϴ ÷´Ü ÀûÃþÁ¦Á¶ ±â¼úÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ÇÁ·ÎÅäŸÀÌÇΰú ÃÖÁ¾ ¿ëµµ ¸ðµÎ¿¡ ÀûÇÕÇÑ °ß°íÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» »ý»êÇÕ´Ï´Ù. ´Ù¿ëµµ·Î º¹ÀâÇÑ Çü»óÀ» Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, Ç×°ø¿ìÁÖ, ¹æÀ§, ÀÇ·á, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ DMLS´Â Ä¡°ú¿ë ÀÓÇöõÆ®, ¼ö¼ú¿ë ±â±â, Ç×°ø¿ìÁÖ ºÎǰ µî º¹ÀâÇÑ ºÎǰ Á¦Á¶¿¡ »ç¿ëµÇ¸ç, NASA, SpaceX µîÀÇ Á¶Á÷¿¡¼­ äÅÃÇϰí ÀÖ½À´Ï´Ù. ij³ª´Ù¸ÞÀÌÅ©½ºÀÇ ±Ý¼Ó ÀûÃþ ÇÁ·Î±×·¥°ú °°Àº ¾÷°è ±¸»óÀº DMLS ±â¼úÀÇ ¹ßÀüÀ» ´õ¿í Áö¿øÇÏ°í ±â¼ú Çõ½Å°ú ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

ºñ¿ë È¿À²ÀûÀÎ ¿øÀç·áÀÇ ¹ßÀü

DMLS ÇÁ¸°ÅÍ¿Í Àμ⿡ ÇÊ¿äÇÑ ±Ý¼Ó ºÐ¸»ÀÇ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ DMLS ÇÁ¸°ÅÍ´Â ÀûÃþÁ¦Á¶¸¦ ÅëÇØ Á¦Ç° °³¹ß ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ±¸¸Å ¹× ¿î¿µ ºñ¿ëÀÌ ºñ½Î´Ù´Â Á¡ÀÌ º¸±ÞÀÇ °É¸²µ¹·Î ÀÛ¿ëÇØ ¿Ô½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ´Â Áß¿äÇÑ µ¹ÆÄ±¸°¡ Àεµ°úÇבּ¸¿ø(IISc) ±â°è°øÇаú ¿¬±¸Áø¿¡ ÀÇÇØ Á¦½ÃµÇ¾ú½À´Ï´Ù. 2024³â, ¿¬±¸ÁøÀº ±âÁ¸ ¹æ¹ýº¸´Ù ÈξÀ ´õ ºñ¿ë È¿À²ÀûÀÎ ¸¶¸ð ±â¹Ý ±â¼úÀ» »ç¿ëÇÏ¿© ±Ý¼Ó ºÐ¸»À» Á¦Á¶ÇÏ´Â »õ·Î¿î ¹æ¹ýÀ» °³¹ßÇß´Ù°í IISc´Â ¹àÇû½À´Ï´Ù. ÀÌ ºÐ¸»Àº Á¤¹Ðµµ¿Í Àç·áÀÇ ¹«°á¼ºÀÌ Áß¿äÇÑ Ç×°ø ¹× ÀÚµ¿Â÷ »ê¾÷°ú °°Àº °í¼º´É ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº DMLS äÅÿ¡ ´ëÇÑ °æÁ¦Àû À庮À» ³·Ãß°í, ÀÌ ±â¼úÀ» º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µé°í, ±Ý¼Ó 3D ÇÁ¸°ÆÃ °øÁ¤ÀÇ ÃÑ ºñ¿ëÀ» Àý°¨ÇÏ¿© ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ÀÇ º¸±Þ È®´ë

DMLS ±â¼úÀº Á¤È®ÇÏ°í º¹ÀâÇÏ¸ç ¿À·ù ¾ø´Â ±Ý¼Ó ºÎǰÀ» ½Å¼ÓÇÏ°Ô »ý»êÇÒ ¼ö ÀÖÀ¸¹Ç·Î Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. NASA´Â DMLS¸¦ »ç¿ëÇÏ¿© º¹ÀâÇÑ ºÎǰ Çü»óÀ» Á¦Á¶Çϰí, SpaceX´Â ·ÎÄÏ ÇÁ·Î±×·¥, ƯÈ÷ µå·¡°ï ¿ìÁÖ¼± ¹öÀü 2¿Í À¯ÀÎ ¿ìÁÖ ºñÇà °èȹ¿¡ »ç¿ëµÇ´Â Àç»ý ³Ã°¢½Ä SuperDraco ¿£Áø è¹ö¿¡ DMLS¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. SuperDraco ¿£Áø½Ç¿¡ ÀÌ ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

Relativity Space´Â ´ëÇü DMLS ÇÁ¸°Å͸¦ »ç¿ëÇÏ¿© ·ÎÄÏÀ» Á¦ÀÛÇÏ´Â ¾ß½ÉÂù ÇÁ·ÎÁ§Æ®¸¦ ÅëÇØ ÀÌ ±â¼úÀÇ ÀáÀç·ÂÀ» ÀÔÁõÇßÀ¸¸ç, 2024³â À§¼º º°ÀÚ¸® ¹èÄ¡ ¹× º¸±Þ ÀÓ¹«¸¦ À§ÇÑ ·ÎÄϰú ·ÎÄÏ ¿£ÁøÀ» Á¦ÀÛÇϱâ À§ÇØ DMLS¸¦ »ç¿ëÇϱâ·Î Çß½À´Ï´Ù. Relativity´Â 100°³ ÀÌ»óÀÇ ºÎǰÀ¸·Î ±¸¼ºµÈ ÀÌ¿Â1 ·ÎÄÏ ¿£ÁøÀÇ º¹ÀâÇÑ ºÎǰ Á¦Á¶¿¡ DMLS¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ È¸»ç´Â Áß·® ´ëºñ ·ÎÄÏÀÇ ÃÖ¼Ò 95% ÀÌ»óÀ» ÀûÃþÁ¦Á¶ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, DMLS¿Í ÀÚü °³¹ßÇÑ Stargate ÇÁ¸°ÅͰ¡ °¢°¢ ºÎǰÀÇ Àý¹ÝÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ DMLS¿Í °°½Ç¹ö ÆÄ¿ì´õÃþ Àμ⠱â¼úÀÇ Ã¤Åà Áõ°¡´Â °æ·®È­ ¹× °í°­µµ ºÎǰ¿¡ ´ëÇÑ ¾÷°è ¼ö¿ä¸¦ ¹Ý¿µÇÏ¿© ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

Áö¿ªÀû Àü¸Á

Áß¿äÇÑ ½ÃÀåÀ¸·Î¼­ÀÇ ºÏ¹Ì

ºÏ¹Ì´Â źźÇÑ Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷¿¡ ÈûÀÔ¾î DMLS ÇÁ¸°ÅÍ »ý»ê ¹× ¼ÒºñÀÇ ÁÖ¿ä °ÅÁ¡À¸·Î¼­, 2024³â DMLS ½ÃÀåÀÇ ¼±µÎÁÖÀÚÀÎ EOS´Â ¹Ì±¹³» 1,000¹øÂ° DMLS ÇÁ¸°Å͸¦ Ç÷θ®´Ù¿¡ º»»ç¸¦ µÐ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ¼Ö·ç¼Ç Àü¹® 3D ÇÁ¸°ÆÃ ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õÀÎ ½ÅŸºñ¾Æ(Sintavia)¿¡ ³³Ç°Çß½À´Ï´Ù. EOSÀÇ ¼º°øÀº Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ±â°èÀÇ ½Å·Ú¼º, »ê¾÷ ±Ô¸ðÀÇ »ý»ê Áö¿ø ´É·ÂÀ¸·Î ÀÎÇØ ÁÖ¿ä Ç×°ø¿ìÁÖ ±â¾÷ÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â ÆÄÆ®³Ê°¡ µÇ¾úÀ¸¸ç, ÀÌ´Â EOSÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ±â°è ½Å·Ú¼º, »ê¾÷ ±Ô¸ð »ý»ê Áö¿ø ´É·Â¿¡ ±âÀÎÇÕ´Ï´Ù.

¶ÇÇÑ ºÏ¹Ì DMLS ½ÃÀå¿¡¼­´Â »ç¿ì½ºÄ³·Ñ¶óÀ̳ª¿¡ º»»ç¸¦ µÐ 3D Systems°¡ ¸ÅÃâ ±âÁØÀ¸·Î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ìÀ§´Â ÷´Ü »ê¾÷ »ýŰè¿Í ÀûÃþÁ¦Á¶ ±â¼ú, ƯÈ÷ Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷ ºÐ¾ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿¡ ÈûÀÔÀº ¹Ù Å®´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ °íÁ¤¹Ð ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºÏ¹Ì´Â DMLS ±â¼ú¿¡ ÀÖÀ¸¸ç, Áß¿äÇÑ ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ Áß Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

°á·Ð

DMLS 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀåÀº ºñ¿ë È¿À²ÀûÀÎ ±Ý¼Ó ºÐ¸» Á¦Á¶ÀÇ Çõ½Å°ú Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ÀÇ Ã¤Åà Áõ°¡·Î ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, IIScÀÇ ¸¶¸ð ±â¹Ý ºÐ¸» Á¦Á¶¿Í °°Àº ¹ßÀüÀÌ ºñ¿ë À庮À» ÇØ°áÇϰí, ÀÌ ±â¼úÀÇ Á¤È®¼º°ú ¹ü¿ë¼ºÀÌ ·ÎÄÏ Á¦Á¶ ¹× Ç×°ø¿ìÁÖ ºÎǰ Á¦Á¶¿Í °°Àº Áß¿äÇÑ ¿ëµµ·ÎÀÇ ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. EOS ¹× 3D Systems¿Í °°Àº ÁÖ¿ä ¾÷üµéÀÇ ºÏ¹Ì ½ÃÀå ¸®´õ½ÊÀº ºÏ¹Ì°¡ DMLS ±â¼ú ¹ßÀü¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ½À» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ È¿À²¼º, Á¤È®¼º, Çõ½Å¿¡ ´ëÇÑ ¿ì¼±¼øÀ§¸¦ °è¼Ó ³ô¿©°¡°í ÀÖ´Â °¡¿îµ¥, DMLS´Â ÀûÃþÁ¦Á¶¿¡¼­ Çõ½ÅÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÌ º¸°í¼­ÀÇ ÁÖ¿ä ÀåÁ¡

  • ÀλçÀÌÆ® ºÐ¼® : ÁÖ¿ä Áö¿ª ¹× ½ÅÈï Áö¿ª, °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷, ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃá ½ÉÃþÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.
  • °æÀï ±¸µµ: ¼¼°è ÁÖ¿ä ±â¾÷ÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû ¿òÁ÷ÀÓÀ» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È: ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¸ÅÃâÀ» ¹ß±¼Çϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤¿¡ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÕ´Ï´Ù.
  • ±¤¹üÀ§ÇÑ »ç¿ëÀÚ Áö¿ø: ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù.

º¸°í¼­ÀÇ ÁÖ¿ä Ȱ¿ë ¹æ¹ý

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÃâ Àü·«, Áö¿ªÀû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

Á¶»ç ¹üÀ§

  • 2022-2024³â ½ÇÀû µ¥ÀÌÅÍ ¹× 2025-2030³â ¿¹Ãø µ¥ÀÌÅÍ
  • ¼ºÀå ±âȸ, °úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, µ¿Ç⠺м®
  • °æÀï»ç Æ÷Áö¼Å´×, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • ºÎ¹® ¹× ±¹°¡¸¦ Æ÷ÇÔÇÑ Áö¿ªº° ¸ÅÃâ ¼ºÀå ¹× ¿¹Ãø ºÐ¼®
  • ±â¾÷ °³¿ä(ÁÖ·Î Àü·«, Á¦Ç°, À繫 Á¤º¸, ÁÖ¿ä ¹ßÀü µî)

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ½ÃÀå ½º³À¼ô

  • ½ÃÀå °³¿ä
  • ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­

Á¦3Àå ºñÁî´Ï½º »óȲ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • Á¤Ã¥°ú ±ÔÁ¦
  • Àü·«Àû Á¦¾È

Á¦4Àå ±â¼ú Àü¸Á

Á¦5Àå ´ÙÀÌ·ºÆ® ¸ÞÅ» ·¹ÀÌÀú ¼Ò°á ¹æ½Ä 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : Àç·á À¯Çüº°

  • ¼­·Ð
  • ƼŸ´½
  • ¾Ë·ç¹Ì´½
  • ´ÏÄÌ
  • ½ºÅ×Àθ®½º°­
  • ÄÚ¹ßÆ®
  • ±âŸ

Á¦6Àå ´ÙÀÌ·ºÆ® ¸ÞÅ» ·¹ÀÌÀú ¼Ò°á ¹æ½Ä 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • Ç×°ø¿ìÁÖ
  • ÀÇ·á
  • ÀÚµ¿Â÷
  • ±âŸ ¿ëµµ

Á¦7Àå ´ÙÀÌ·ºÆ® ¸ÞÅ» ·¹ÀÌÀú ¼Ò°á ¹æ½Ä 3D ÇÁ¸°ÆÃ ±â¼ú ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ½ºÆäÀÎ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • Àεµ³×½Ã¾Æ
    • ű¹
    • ±âŸ

Á¦8Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´¡¤Àμö¡¤ÇùÁ¤¡¤Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦9Àå ±â¾÷ °³¿ä

  • EOS Group
  • 3D Systems, Inc.
  • SLM Solutions Group AG
  • Renishaw plc
  • Sisma SpA
  • General Electric(Owns 2 companies, namely Concept Laser GmbH and Acram AB)
  • Additive Industries
  • Trumpf
  • Sculpteo

Á¦10Àå ºÎ·Ï

  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁØ¿¬µµ¿Í ¿¹Ãø¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡
  • Á¶»ç ¹æ¹ý
  • ¾à¾î
KSA 25.07.30

The direct metal laser sintering 3D printing technology market is expected to grow from USD 186.566 million in 2025 to USD 469.162 million in 2030, at a CAGR of 20.25%.

Direct Metal Laser Sintering (DMLS), also referred to as Selective Laser Melting (SLM), is an advanced additive manufacturing technology that employs a high-density laser to melt metal powder, layer by layer, to create precise 3D printed components. This technology produces robust and durable parts suitable for both prototyping and end-use applications. Its versatility enables the production of complex geometries, making it ideal for industries such as aerospace, defense, medical, and automotive. DMLS is used to manufacture intricate components like dental implants, surgical devices, and aerospace parts, with notable adoption by organizations like NASA and SpaceX. Industry initiatives, such as Canada Makes' Metal Additive Program, further support the advancement of DMLS technology, fostering innovation and market growth.

Market Drivers

Advancements in Cost-Effective Raw Materials

The high cost of DMLS printers and the metal powders required for printing has historically been a barrier to widespread adoption. These machines are expensive to purchase and operate, despite their ability to reduce product development costs through additive manufacturing. A significant breakthrough addressing this challenge comes from researchers at the Indian Institute of Science (IISc) Department of Mechanical Engineering. In 2024, they developed a novel method for producing metal powders using an abrasion-based technique, which is substantially more cost-effective than traditional methods. According to IISc, these powders are suitable for high-performance applications in industries such as aviation and automotive, where precision and material integrity are critical. This advancement is expected to lower the financial barriers to DMLS adoption, making the technology more accessible and driving market expansion by reducing the overall cost of metal 3D printing processes.

Growing Prevalence in the Aerospace Industry

DMLS technology is increasingly integral to the aerospace sector due to its ability to produce accurate, complex, and error-free metal components rapidly. Its precision makes it a preferred choice for manufacturing intricate parts that meet the stringent requirements of aerospace applications. NASA has leveraged DMLS to fabricate complex component geometries, while SpaceX has utilized the technology in its rocket programs, notably for the regeneratively cooled SuperDraco Engine Chamber used in the Dragon Version 2 spacecraft and crewed spaceflight initiatives.

Relativity Space has further demonstrated the technology's potential through its ambitious project to manufacture rockets using large-scale DMLS printers. In 2024, the company advanced its efforts to produce a launcher and rocket engine for satellite constellation deployment and resupply missions. Relativity employs DMLS to create intricate components for its Aeon 1 rocket engine, which comprises over 100 parts. The company aims to produce at least 95% of its rockets by weight using additive manufacturing, with DMLS and its proprietary Stargate printers each contributing half of the components. The increasing adoption of powder-bed printing technologies like DMLS in aerospace reflects the industry's demand for lightweight, high-strength parts, driving market growth.

Geographical Outlook

North America as a Significant Market

North America remains a leading hub for DMLS printer manufacturing and consumption, driven by its robust aerospace and defense sectors. In 2024, EOS, a key player in the DMLS market, marked a milestone by delivering its 1,000th DMLS printer in the United States to Sintavia, a Florida-based 3D printing service provider specializing in aerospace and defense solutions. EOS's success is attributed to its continuous innovation, machine reliability, and ability to support industrial-scale production, making it a trusted partner for leading aerospace companies.

Additionally, 3D Systems, based in South Carolina, holds the largest market share in revenue within the North American DMLS market. The region's dominance is underpinned by its advanced industrial ecosystem and significant investments in additive manufacturing technologies, particularly for aerospace and defense applications. The growing demand for high-precision components in these industries positions North America as a critical market for DMLS technology, with expectations of sustained growth throughout the forecast period.

Conclusion

The DMLS 3D printing technology market is poised for growth, driven by innovations in cost-effective metal powder production and increasing adoption in the aerospace industry. Advancements such as the IISc's abrasion-based powder production method address cost barriers, while the technology's precision and versatility fuel its integration into high-stakes applications like rocket manufacturing and aerospace component production. North America's leadership in the market, supported by key players like EOS and 3D Systems, underscores the region's pivotal role in advancing DMLS technology. As industries continue to prioritize efficiency, precision, and innovation, DMLS is set to play a transformative role in additive manufacturing.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data from 2022 to 2024 & forecast data from 2025 to 2030
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries

Company Profiling (Strategies, Products, Financial Information, and Key Developments among others.

Segmentation

By Material Type

  • Titanium
  • Aluminum
  • Nickel
  • Stainless Steel
  • Cobalt
  • Others

By Application

  • Aerospace
  • Medical
  • Automotive
  • Other End Users

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • UK
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Taiwan
  • Thailand
  • Indonesia
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study
  • 2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. DIRECT METAL LASER SINTERING 3D PRINTING TECHNOLOGY MARKET BY MATERIAL TYPE

  • 5.1. Introduction
  • 5.2. Titanium
  • 5.3. Aluminum
  • 5.4. Nickel
  • 5.5. Stainless Steel
  • 5.6. Cobalt
  • 5.7. Others

6. DIRECT METAL LASER SINTERING 3D PRINTING TECHNOLOGY MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Aerospace
  • 6.3. Medical
  • 6.4. Automotive
  • 6.5. Other End Users

7. DIRECT METAL LASER SINTERING 3D PRINTING TECHNOLOGY MARKET BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. North America
    • 7.2.1. USA
    • 7.2.2. Canada
    • 7.2.3. Mexico
  • 7.3. South America
    • 7.3.1. Brazil
    • 7.3.2. Argentina
    • 7.3.3. Others
  • 7.4. Europe
    • 7.4.1. Germany
    • 7.4.2. France
    • 7.4.3. United Kingdom
    • 7.4.4. Spain
    • 7.4.5. Others
  • 7.5. Middle East and Africa
    • 7.5.1. Saudi Arabia
    • 7.5.2. UAE
    • 7.5.3. Others
  • 7.6. Asia Pacific
    • 7.6.1. China
    • 7.6.2. India
    • 7.6.3. Japan
    • 7.6.4. South Korea
    • 7.6.5. Indonesia
    • 7.6.6. Thailand
    • 7.6.7. Others

8. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Market Share Analysis
  • 8.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 8.4. Competitive Dashboard

9. COMPANY PROFILES

  • 9.1. EOS Group
  • 9.2. 3D Systems, Inc.
  • 9.3. SLM Solutions Group AG
  • 9.4. Renishaw plc
  • 9.5. Sisma SpA
  • 9.6. General Electric (Owns 2 companies, namely Concept Laser GmbH and Acram AB)
  • 9.7. Additive Industries
  • 9.8. Trumpf
  • 9.9. Sculpteo

10. APPENDIX

  • 10.1. Currency
  • 10.2. Assumptions
  • 10.3. Base and Forecast Years Timeline
  • 10.4. Key benefits for the stakeholders
  • 10.5. Research Methodology
  • 10.6. Abbreviations
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦