![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662641
µöÆäÀÌÅ© AI ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, À¯Çüº°, °ËÃâ ¹æ¹ýº°, Àü°³ ¹æ½Äº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Deepfake AI Market Forecasts to 2030 - Global Analysis By Component (Software and Service), Type, Detection Methods, Deployment Mode, Technology, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µöÆäÀÌÅ© AI ½ÃÀåÀº 2024³â 8¾ï 761¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 43.5%ÀÇ CAGR·Î 2030³â¿¡´Â 70¾ï 5,208¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
µöÆäÀÌÅ© AI¶õ ÀΰøÁö´É, ƯÈ÷ GAN(Generative Adversarial Networks)°ú °°Àº µö·¯´× ±â¹ýÀ» »ç¿ëÇÏ¿© »çÁø, µ¿¿µ»ó, À½¼º µîÀÇ ÃÊÇö½ÇÀûÀÎ °¡°ø¹°À» ¸¸µå´Â °ÍÀ» ÀÏÄ´ ¿ë¾îÀÔ´Ï´Ù. µöÆäÀÌÅ© ±â¼úÀ» ÅëÇØ ÁøÂ¥Ã³·³ º¸ÀÌÁö¸¸ ¿ÏÀüÈ÷ °¡Â¥ÀÎ ÄÁÅÙÃ÷¸¦ »ý¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÚÁÖ °¡Â¥ Á¤º¸¸¦ Àü´ÞÇϰųª ´©±º°¡¸¦ »çĪÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. µöÆäÀÌÅ© ±â¼úÀº ±³À°À̳ª ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ Ȱ¿ëµÇ°í ÀÖÁö¸¸, º¸¾ÈÀ̳ª ÇÁ¶óÀ̹ö½Ã, ÇãÀ§ Á¤º¸ Ä·ÆäÀÎÀ̳ª »ç±â¿Í °°Àº ¾ÇÀÇÀûÀÎ ÇàÀ§¿¡ ¾Ç¿ëµÉ °¡´É¼º µî µµ´öÀû ¹®Á¦µµ Á¦±âµÇ°í ÀÖ½À´Ï´Ù.
AI¿Í ¸Ó½Å·¯´×ÀÇ ¹ßÀü
¸Ó½Å·¯´×°ú ÀΰøÁö´ÉÀÇ ¹ßÀüÀº µöÆäÀÌÅ© AI ½ÃÀåÀ» °ßÀÎÇÏ´Â Å« ¿äÀÎÀ¸·Î, µöÆäÀÌÅ© Á¦ÀÛÀÇ È¿À²¼º, Çö½Ç¼º, Á¤È®¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͷκÎÅÍ ÇнÀÀ» ÅëÇØ ÀÚµ¿ ÀÎÄÚ´õ¿Í GAN(Generative Adversarial Networks) µîÀÇ ±â¼úÀº ±â°è°¡ ³î¶øµµ·Ï »ç½ÇÀûÀÎ »çÁø, ¿µ»ó, À½¼ºÀ» »ý¼ºÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. µöÆäÀÌÅ©´Â ¸¶ÄÉÆÃ, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, °¡»ó üÇè µîÀÇ »ê¾÷¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í Àִµ¥, ÀÌ´Â ÀÌ·¯ÇÑ ¾Ë°í¸®ÁòÀÌ Çö½ÇÀÇ Á¤º¸¿¡ Àß ³ì¾Æµé ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ±â°è ÇнÀ ¸ðµ¨Àº Áö¼ÓÀûÀ¸·Î °³¼±µÇ°í ÀÖÀ¸¸ç, Àΰ£ÀÇ Æ¯Â¡°ú ÇൿÀ» Á¤È®ÇÏ°Ô ¸ð¹æÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ ½¬¿öÁö°í ÀÖ½À´Ï´Ù.
ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È À§Çè
µöÆäÀÌÅ© AI ºñÁî´Ï½º´Â »ç¶÷ÀÇ ¸ñ¼Ò¸®, ¿Ü¸ð, ÇൿÀ» ¸ð¹æÇÑ °¡Â¥ ÄÁÅÙÃ÷¸¦ ¸¸µå´Â µ¥ ±â¼úÀÌ »ç¿ëµÉ ¼ö Àֱ⠶§¹®¿¡ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù. Àû´ëÀûÀÎ ÇàÀ§ÀÚ°¡ ´Ù¾çÇÑ ÇØ·Î¿î ¸ñÀûÀ¸·Î µöÆäÀÌÅ©¸¦ »ç¿ëÇÏ°Ô µÇ¸é °³ÀÎÁ¤º¸ µµ¿ë, ±ÝÀüÀû »ç±â, ¸í¿¹ÈÑ¼Õ µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µöÆäÀÌÅ© ±â¼úÀº °³ÀÎÀÇ ÃÊ»óȸ¦ Çã°¡ ¾øÀÌ »ç¿ëÇÒ ¼ö ÀÖ°Ô ÇÏ¿© °³ÀÎÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ À§Çè¿¡ ºü¶ß¸± ¼ö ÀÖ½À´Ï´Ù. µöÆäÀÌÅ©´Â Á¶ÀÛ, Çù¹Ú, ÇãÀ§ Á¤º¸ÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁö±â ¶§¹®¿¡ ´õ Çö½ÇÀûÀÌ µÉ¼ö·Ï ½É°¢ÇÑ º¸¾È À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§Çù¿¡ ´ëºñÇÏ¿© »ç¶÷µéÀÇ ½Å¿ø È®Àΰú µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇØ µöÆäÀÌÅ© ŽÁö ½Ã½ºÅÛ, ¹ýÀû ¾ÈÀüÀåÄ¡, ÇÁ¶óÀ̹ö½Ã ¹ýÁ¦ µî °·ÂÇÑ ´ëÃ¥ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.
°¡»óÇö½Ç(VR) ¹× °ÔÀÓ ºÐ¾ß¿¡¼ÀÇ Ã¤Åà Ȯ´ë
µöÆäÀÌÅ© ±â¼úÀ» ÅëÇØ °³¹ßÀÚ´Â ¾Æ¹ÙŸ³ª ij¸¯ÅÍ ¸ðµ¨¿¡ »ç½ÇÀûÀΠǥÁ¤, Á¦½ºÃ³, ¸ñ¼Ò¸®·Î È®´ëÇÏ¿© ¸Å¿ì »ç½ÇÀûÀÌ°í ¸ôÀÔ°¨ ÀÖ´Â °¡»ó ȯ°æÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ij¸¯Å͸¦ ½ÇÁ¦ Àι°°ú À¯»çÇÏ°Ô ¸¸µé°Å³ª ¿ÏÀüÈ÷ »õ·Î¿î °¡»ó Æä¸£¼Ò³ª¸¦ »ý¼ºÇÏ¿© º¸´Ù °³ÀÎÈµÈ °ÔÀÓ °æÇèÀ» °¡´ÉÇÏ°Ô Çϸç, VR ¾ÖÇø®ÄÉÀ̼ǿ¡¼´Â µöÆäÀÌÅ©¸¦ »ç¿ëÇÏ¿© ÈÆ·Ã ȯ°æ, ÀÎÅÍ·¢Æ¼ºê ½Ã¹Ä·¹À̼Ç, ½ÇÁ¦ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÏ´Â µî ´Ù¾çÇÑ ¿ëµµ·Î Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. Çö½ÇÀûÀÎ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹ÀÌ¼Ç ÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç½ÇÀûÀ̰í ÀÎÅÍ·¢Æ¼ºêÇÑ °¡»ó ¼¼°è¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, µöÆäÀÌÅ© AI¸¦ VR°ú °ÔÀÓ¿¡ ÅëÇÕÇÔÀ¸·Î½á »ç¿ëÀÚ Âü¿©¸¦ ³ôÀ̰í Â÷¼¼´ë °æÇèÀ» âÃâÇÒ ¼ö ÀÖ´Â Èï¹Ì·Î¿î ±âȸ¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
À§Çè¿¡ ´ëÇÑ ¼ÒºñÀÚ ÀνÄÀÌ Á¦ÇÑÀû
½ºÇªÇÎ, ÇãÀ§ Á¤º¸, Á¤º¸ Á¶ÀÛ µî µöÆäÀÌÅ©°¡ ÃÊ·¡ÇÒ ¼ö ÀÖ´Â À§ÇèÀº ¸¹Àº »ç¶÷µé¿¡°Ô Àß ¾Ë·ÁÁ® ÀÖÁö ¾Ê½À´Ï´Ù. °í°´µéÀº µöÆäÀÌÅ© ±â¼úÀÌ ³î¶øµµ·Ï »ç½ÇÀûÀÌÁö¸¸ ¿ÏÀüÈ÷ °¡Â¥ ÀڷḦ ¸¸µé¾î³»´Â ´É·ÂÀ¸·Î ÀÎÇØ ¾ß±âµÇ´Â ½É°¢ÇÑ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È À§ÇùÀ» ÃæºÐÈ÷ ÀνÄÇÏÁö ¸øÇϰí ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹«Áö´Â ºÎÁÖÀÇ·Î ÀÎÇÑ °¡Â¥ Á¤º¸ÀÇ È®»êÀ¸·Î À̾îÁ® »ç¶÷µéÀÇ ÆòÆÇÀ» ÈѼÕÇϰí, ¿©·Ð¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, ¼±°Å¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. µöÆäÀÌÅ©°¡ ÃÊ·¡ÇÏ´Â À§ÇèÀ» ÁÙÀ̱â À§Çؼ´Â °¡Â¥ ¹Ìµð¾î¸¦ ±¸º°ÇÏ´Â ¹æ¹ý, ±× À±¸®Àû ¿µÇâÀÇ °¡´É¼º, ±â¼úÀ» Çö¸íÇÏ°Ô »ç¿ëÇÏ´Â °ÍÀÇ °¡Ä¡¿¡ ´ëÇØ ÀÏ¹Ý ´ëÁßÀ» ±³À°ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 »çÅ´ µöÆäÀÌÅ© AI ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â µðÁöÅÐ ¹Ìµð¾î¿Í ¿ø°Ý Ä¿¹Â´ÏÄÉÀ̼ǿ¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼ °¡»ó ȸÀÇ, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±³À°À» À§ÇØ µöÆäÀÌÅ©¸¦ Æ÷ÇÔÇÑ AI ±â¹Ý ÄÁÅÙÃ÷ Á¦ÀÛÀÇ È°¿ëÀÌ °¡¼ÓȵǾú½À´Ï´Ù. ´Ù¸¥ ÇÑÆíÀ¸·Î´Â ¿Àº¸, ƯÈ÷ ÆÒµ¥¹Í »óȲ¿¡¼ °¡Â¥ ´º½ºÀÇ È®»ê¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ µöÆäÀÌÅ© ±â¼úÀÇ ÀáÀçÀû À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ¿¡ µû¶ó µöÆäÀÌÅ© ŽÁö µµ±¸ÀÇ °³¹ß°ú À±¸®Àû °¡À̵å¶óÀÎÀÇ È®¸³¿¡ ´õ¿í ÁýÁßÇÏ°Ô µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI ±â¹Ý µöÆäÀÌÅ© ¼ÒÇÁÆ®¿þ¾î´Â GAN(Generative Adversarial Networks) ¹× ¸Ó½Å·¯´×°ú °°Àº ±â¼úÀ» Ȱ¿ëÇÏ¿© ¸Å¿ì »ç½ÇÀûÀÎ °¡Â¥ À̹ÌÁö, µ¿¿µ»ó, À½¼ºÀ» ½±°Ô »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ½±°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Àü¹®°¡¿Í ¼ÒºñÀÚ ¸ðµÎ¿¡°Ô Á¡Á¡ ´õ ½±°Ô Á¢±ÙÀÌ °¡´ÉÇØÁö°í ÀÖÀ¸¸ç, ÄÁÅÙÃ÷ Á¦ÀÛÀÚ, ¸¶ÄÉÆÃ ´ã´çÀÚ, ¿£ÅÍÅ×ÀÎ¸ÕÆ® »ê¾÷ÀÌ ¸ôÀÔ°¨ ÀÖ´Â °æÇèÀ» ¸¸µé¾î³¾ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î°¡ ´õ¿í Á¤±³ÇÏ°í »ç¿ëÀÚ Ä£ÈÀûÀ¸·Î ¹ßÀüÇÔ¿¡ µû¶ó ¹Ìµð¾î, ±¤°í, °ÔÀÓ µîÀÇ ºÐ¾ß¿¡¼ ³Î¸® äÅÃµÇ¾î µöÆäÀÌÅ© AI ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »çÀ̹ö º¸¾È ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »çÀ̹ö º¸¾È ºÎ¹®Àº µöÆäÀÌÅ© ±â¼úÀÇ ºÎ»óÀÌ µðÁöÅÐ º¸¾È¿¡ ½É°¢ÇÑ À§ÇùÀÌ µÉ °ÍÀ¸·Î ¿¹»óµÊ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µöÆäÀÌÅ©´Â ½ºÇªÇÎ, »ç±â, ¼Ò¼È ¿£Áö´Ï¾î¸µ °ø°Ý¿¡ Ȱ¿ëµÉ ¼ö ÀÖ¾î °·ÂÇÑ »çÀ̹ö º¸¾È ´ëÃ¥ÀÌ ÇʼöÀûÀÔ´Ï´Ù. µöÆäÀÌÅ©°¡ Á¡Á¡ ´õ ¼³µæ·ÂÀ» ¾òÀ¸¸é¼ ±â¾÷, Á¤ºÎ ¹× °³ÀÎÀº µöÆäÀÌÅ©ÀÇ ¾ÇÀÇÀûÀÎ »ç¿ëÀ» ½Äº°ÇÏ°í ¹æÁöÇϱâ À§ÇØ AI ±â¹Ý ŽÁö µµ±¸¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â µöÆäÀÌÅ© ŽÁö ±â¼ú °³¹ßÀ» ÃËÁøÇÏ°í »çÀ̹ö º¸¾È ºÎ¹®ÀÇ ½ÃÀå °³Ã´À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü, µðÁöÅÐ ÄÁÅÙÃ÷ ¼Òºñ Áõ°¡, ´Ù¾çÇÑ »ê¾÷¿¡¼ÀÇ AI µµÀÔ Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº AI ¿¬±¸¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, µöÆäÀÌÅ© ±â¼ú °³¹ßÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ °ÔÀÓ, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¹Ìµð¾î ºÎ¹®ÀÇ ºÎ»óÀ¸·Î ¸ôÀÔÇü ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µöÆäÀÌÅ©ÀÇ À§Çè¿¡ ´ëÀÀÇϱâ À§ÇÑ »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù¿¡¼ AI ¹× ¸Ó½Å·¯´× ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¹Ìµð¾î, °ÔÀÓ »ê¾÷¿¡¼ °·ÂÇÑ ÀÔÁö¸¦ È®º¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½Ç°¨Çü µðÁöÅÐ ÄÁÅÙÃ÷¿Í °¡»ó °æÇè¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¤°í, °¡»ó ÀÎÇ÷ç¾ð¼, ±³À° ºÐ¾ß¿¡¼ µöÆäÀÌÅ© AIÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¶ÇÇÑ µöÆäÀÌÅ© À§ÇùÀ» ŽÁöÇÏ°í ´ëÀÀÇϱâ À§ÇÑ »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â °ü·Ã ±â¼úÀÇ Çõ½Å°ú äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Deepfake AI Market is accounted for $807.61 million in 2024 and is expected to reach $7052.08 million by 2030 growing at a CAGR of 43.5% during the forecast period. Deepfake AI is the term used to describe the creation of hyper-realistic manipulated material, such as photos, movies, and audio, using artificial intelligence, specifically deep learning methods like Generative Adversarial Networks (GANs). It makes possible to create content that looks real but is completely fake, frequently to distribute false information or impersonate someone. Although deepfake technology has uses in education and entertainment, it also brings up moral questions about security, privacy, and the possibility of abuse in nefarious endeavors like disinformation campaigns and fraud.
Advancements in AI and machine learning
Machine learning and artificial intelligence developments are major factors propelling the deepfake AI market, greatly improving the efficiency, realism, and accuracy of deepfake production. By learning from enormous volumes of data, technologies such as auto encoders and Generative Adversarial Networks (GANs) allow machines to produce incredibly realistic photos, movies, and audio. Deepfakes are being used more and more in industries like marketing, entertainment, and virtual experiences as these algorithms get better at blending in with real information. Furthermore, machine learning models are always improving, making it easier for them to accurately mimic human characteristics and behavior.
Privacy and security risks
The deepfake AI business presents serious privacy and security issues since the technology may be used to create fake content that replicates a person's voice, look, or behavior. As a result of hostile actors using deepfakes for a variety of detrimental objectives, this can result in identity theft, financial fraud, and reputational injury. Furthermore, deepfake technology makes it possible for someone's likeness to be used without permission, endangering personal privacy. Deepfakes provide significant security risks as they get more realistic because of the increased potential for manipulation, extortion, and false information. Strong countermeasures, including deepfake detection systems, legal safeguards, and privacy legislation, are required in light of this expanding threat in order to protect people's identities and data.
Increased adoption in virtual reality (VR) and gaming
Deepfake technology allows developers to create highly realistic and immersive virtual environments by enhancing avatars and character models with lifelike facial expressions, gestures, and voices. This technology enables a more personalized gaming experience by tailoring characters to resemble real-life individuals or creating entirely new virtual personas. In VR applications, deepfakes can be used to simulate realistic scenarios, such as training environments or interactive simulations. As the demand for realistic and interactive virtual worlds grows, the integration of deepfake AI into VR and gaming offers exciting opportunities for enhancing user engagement and creating next-generation experiences.
Limited consumer awareness of risks
The possible risks of deepfakes, including identity theft, disinformation, and manipulation, are not well known to many people. Customers could fail to be fully aware of the serious privacy and security threats posed by deepfake technology's capacity to produce incredibly realistic but wholly fake material. This ignorance can result in the inadvertent dissemination of false information, harming people's reputations, affecting public opinion, or even influencing elections. In order to reduce the risks posed by deepfakes, it is imperative that the public be educated on how to spot fake media, its possible ethical ramifications, and the value of employing technology sensibly.
Covid-19 Impact
The COVID-19 pandemic had a mixed impact on the deepfake AI market. On one hand, the increased reliance on digital media and remote communication accelerated the use of AI-driven content creation, including deepfakes, for virtual meetings, entertainment, and education. On the other hand, concerns about misinformation, particularly regarding the spread of fake news during the pandemic, raised awareness about the potential risks of deepfake technology. This led to a greater focus on developing deepfake detection tools and establishing ethical guidelines.
The software segment is expected to be the largest during the forecast period
The software segment is expected to account for the largest market share during the forecast period. AI-powered deepfake software, leveraging technologies like Generative Adversarial Networks (GANs) and machine learning, enables the creation of highly realistic fake images, videos, and audio with ease. These tools are increasingly accessible to both professionals and consumers, enabling content creators, marketers, and entertainment industries to produce immersive experiences. As software becomes more sophisticated and user-friendly, its widespread adoption across sectors like media, advertising, and gaming continues to fuel the growth of the deepfake AI market.
The cybersecurity segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the cybersecurity segment is predicted to witness the highest growth rate, as the rise of deepfake technology poses significant threats to digital security. Deepfakes can be used for identity theft, fraud, and social engineering attacks, making robust cybersecurity measures essential. As deepfakes become more convincing, businesses, governments, and individuals are investing in AI-driven detection tools to identify and prevent malicious use of deepfakes. This growing need for security solutions fuels the development of deepfake detection technologies and promotes market growth in the cybersecurity sector.
During the forecast period, Asia Pacific region is expected to hold the largest market share, fuelled by, rapid technological advancements, growing digital content consumption, and increasing adoption of AI across various industries. Countries like China, Japan, and South Korea are leading in AI research, which accelerates the development of deepfake technology. Additionally, the rise of gaming, entertainment, and media sectors in the region boosts the demand for immersive content. Furthermore, the growing need for cybersecurity solutions to combat the risks of deepfakes is propelling market growth in the region.
During the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by advancements in AI and machine learning technologies, particularly in the United States and Canada. The region's strong presence in the entertainment, media, and gaming industries fuels the demand for realistic digital content and virtual experiences. Additionally, the increasing use of deepfake AI in advertising, virtual influencers, and education accelerates market growth. The region also invests heavily in cybersecurity solutions to detect and counter deepfake threats, further driving innovation and adoption of related technologies.
Key players in the market
Some of the key players profiled in the Deepfake AI Market include Attestiv Inc., Amazon Web Services, Deepware A.S., D-ID, Google LLC, iDenfyTM, Intel Corporation, Kairos AR, Inc., Microsoft, Oz Forensics, Reality Defender Inc., Resemble AI, Sensity AI, Truepic, and WeVerify,
In April 2024, Microsoft showcased its latest AI model, VASA-1, which can generate lifelike talking, faces from a single static image and an audio clip. This model is designed to exhibit appealing visual affective skills (VAS), enhancing the realism of digital avatars.
In March 2024, BiolD launched an updated version of its deepfake detection software, focusing on securing biometric authentication and digital identity verification. This software is designed to prevent identity spoofing by detecting manipulated images and videos and providing real-time analysis and feedback.
In January 2024, In May 2024, Google LLC introduced a new feature in its SynthID tool that allows for the labeling of AI-generated text without altering the content itself. This enhancement builds on SynthID's existing capabilities to identify AI-generated images and audio clips, now incorporating additional information into the large language model (LLM) during text generation.