![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662681
ÀÚ¿¬¾î ÀÌÇØ(NLU) ½ÃÀå ¿¹Ãø( -2030³â) : À¯Çüº°, Á¦°øº°, Àü°³ ¹æ½Äº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Natural Language Understanding (NLU) Market Forecasts to 2030 - Global Analysis by Type (Rule-Based, Statistical and Hybrid), Offering, Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÀÚ¿¬¾î ÀÌÇØ(NLU) ½ÃÀåÀº 2024³â 224¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 22.2%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 746¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚ¿¬¾î ÀÌÇØ(NLU)´Â ÀΰøÁö´É(AI)°ú ÀÚ¿¬¾î ó¸®(NLP)ÀÇ ÇÑ ºÐ¾ß·Î, ·Îº¿ÀÌ Àΰ£ÀÇ ¾ð¾î¸¦ ÀÌÇØÇϰí, ÇØ¼®Çϰí, ÀÇ¹Ì ÀÖ´Â ¹æ½ÄÀ¸·Î ÀÀ´äÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ±¸¹®, ÀǹÌ, ¸Æ¶ô, Àǵµ¸¦ ÀÌÇØÇÔÀ¸·Î½á À½¼ºÀ̳ª ÅØ½ºÆ®¿Í °°Àº ºñ±¸Á¶ÈµÈ ¾ð¾î ÀÔ·ÂÀ» ±¸Á¶ÈµÈ µ¥ÀÌÅÍ·Î º¯È¯ÇÕ´Ï´Ù. °¨Á¤ ºÐ¼®, ¿£Æ¼Æ¼ ÀνÄ, ¾ð¾î ¹ø¿ª, Àǵµ ŽÁö µîÀº NLU°¡ °¡´ÉÇÏ°Ô ÇÏ´Â ÀÛ¾÷ Áß ÇϳªÀÔ´Ï´Ù.
AI žÀç ¾ÖÇø®ÄÉÀÌ¼Ç µµÀÔ È®´ë
AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀÇ »ç¿ëÀÌ Áõ°¡ÇÏ¸é¼ ÀÚ¿¬¾î ÀÌÇØ(NLU) ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, °¡»ó ºñ¼, 꺿, À½¼º ÀÎÅÍÆäÀ̽º¿Í °°Àº Áö´ÉÇü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀº »ç¿ëÀÚ Âü¿©¿Í ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Àΰ£ÀÇ ¾ð¾î¸¦ È¿À²ÀûÀ¸·Î ÀÐ°í ¹ÝÀÀÇÏ´Â NLU¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, NLUÀÇ ÅëÇÕÀº ÀÇ·á, ¼Ò¸Å, ±ÝÀ¶ µî AI ±â¹Ý Á¦Ç°À» ÀÚµ¿È ¹× °í°´ ¸ÂÃãÇü ´ëÈ¿¡ »ç¿ëÇÏ´Â »ê¾÷¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
Àΰ£ ¾ð¾îÀÇ º¹À⼺
Àΰ£ ¾ð¾îÀÇ º¹À⼺Àº ´Ù¾çÇÑ ¾ð¾î ÆÐÅÏ, °ü¿ëÀû °ü¿ë±¸, ¹®¸ÆÀû Àǹ̸¦ Á¦´ë·Î ÆÄ¾ÇÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µé¾î ÀÚ¿¬¾î ÀÌÇØ(NLU) ½ÃÀåÀ» ÀúÇØÇϰí ÀÖÀ¸¸ç, NLU ¸ðµ¨ÀÇ ¿ÀÇØ¿Í ½Ç¼ö´Â ¾ð¾î, ¾îÁ¶, ¼Ó¾îÀÇ º¯ÇüÀ¸·Î ÀÎÇØ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺À¸·Î ÀÎÇØ ´õ Å« µ¥ÀÌÅͼ¼Æ®, ´õ º¹ÀâÇÑ ¾Ë°í¸®Áò, Áö¼ÓÀûÀÎ ÈÆ·ÃÀÌ ÇÊ¿äÇϰí, °³¹ß ºñ¿ëÀÌ »ó½ÂÇϸç, NLU ±â¼úÀÇ ±¤¹üÀ§ÇÑ »ê¾÷À¸·ÎÀÇ µµÀÔÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ °¡¿ë¼º Çâ»ó
ÅØ½ºÆ®, À½¼º, ¼Ò¼È ¹Ìµð¾î¿Í °°Àº ´ë·®ÀÇ ºñÁ¤Çü µ¥ÀÌÅ͸¦ ±â°è ÇнÀ ¸ðµ¨ ÇнÀ ¹× °³¼±¿¡ Ȱ¿ëÇÔÀ¸·Î½á µ¥ÀÌÅÍ °¡¿ë¼ºÀÌ ³ô¾ÆÁö¸é¼ ÀÚ¿¬¾î ÀÌÇØ(NLU) »ê¾÷À» ÁÖµµÇϰí ÀÖÀ¸¸ç, NLU ½Ã½ºÅÛÀº dzºÎÇÑ µ¥ÀÌÅÍ ´öºÐ¿¡ ¹®¸Æ, ÀǹÌ, Àǵµ¸¦ º¸´Ù Á¤È®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ °¡»ó ºñ¼, 꺿, °¨Á¤ ºÐ¼® µµ±¸ µî Á¤±³ÇÑ ¾ÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. »ç¿ëÀÚ »ý¼º ÄÁÅÙÃ÷ÀÇ ²ÙÁØÇÑ È®´ë´Â NLU »ê¾÷ÀÇ Çõ½Å°ú ¼ö¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
³ôÀº µµÀÔ ºñ¿ë
ƯÈ÷ Áß¼Ò±â¾÷ÀÇ °æ¿ì, ³ôÀº µµÀÔ ºñ¿ëÀÌ »ê¾÷ ¼ºÀåÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. °í±Þ AI ¸ðµ¨ µµÀÔ, ±âÁ¸ ½Ã½ºÅÛ°úÀÇ ÅëÇÕ, ÀÎÇÁ¶ó À¯Áö¿¡ µû¸¥ ÁöÃâÀº ¾öû³ ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¹»ê»óÀÇ Àå¾Ö¹°Àº ƯÈ÷ ¿¹»êÀÌ ºÎÁ·ÇÑ ºÎ¹®¿¡¼ NLU ±â¼úÀÌ ³Î¸® Ȱ¿ëµÇÁö ¸øÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, µ¥ÀÌÅÍ ºÐ¼® ¹× °í°´ ¼ºñ½º ÀÚµ¿È¿Í °°Àº ºÎ¹®ÀÇ ÀáÀç·ÂÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
COVID-19 »çÅ·ΠÀÎÇØ ±â¾÷µéÀÌ ¿ø°Ý ¿î¿µ ¹× µðÁöÅÐ °í°´ Áö¿øÀ¸·Î ÀüȯÇÏ¸é¼ ÀÚ¿¬¾î ÀÌÇØ(NLU) ±â¼ú µµÀÔÀÌ °¡¼ÓȵǾú½À´Ï´Ù. 꺿, °¡»ó ºñ¼, ÀÚµ¿È ¼ºñ½º¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼ NLU ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ºÐ¾ß¿¡¼´Â ȯÀÚ¿ÍÀÇ ´ëÈ ¹× µ¥ÀÌÅÍ Ã³¸®¿¡ NLU°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀº È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ AI ¼Ö·ç¼ÇÀÇ Çʿ伺À» °Á¶Çϸç NLU ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿ ÄÚµù ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÚµ¿ ÄÚµù ºÎ¹®Àº NLU ½Ã½ºÅÛÀÇ ¹èÆ÷¸¦ °¡¼ÓÈÇÏ°í °³¹ßÀÇ º¹À⼺À» ÁÙÀ̱â À§ÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̸¦ ÅëÇØ À½¼º ºñ¼, 꺿, °¨Á¤ ºÐ¼® ½Ã½ºÅÛ°ú °°Àº AI ±â¹Ý Á¦Ç°À» º¸´Ù ºü¸£°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ ÄÚµùÀº È¿À²¼º°ú È®À强À» ³ô¿© ±â¾÷ÀÌ ÀÇ·á, °í°´ ¼ºñ½º µî ´Ù¾çÇÑ »ê¾÷¿¡¼ NLU¸¦ ½±°Ô Àû¿ëÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á º¸´Ù Æø³ÐÀº ¼ö¿ë°ú ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åë°è ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ¿¹ÃøÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åë°è ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ Ȱ¿ëÇÏ¿© ¾ð¾î ³» ÆÐÅÏ, È®·ü, °ü°è¸¦ ½Äº°ÇÏ°í °¨Á¤ ºÐ¼®, ±â°è ¹ø¿ª, Àǵµ Àνİú °°Àº NLU ¾ÖÇø®ÄÉÀ̼ÇÀ» °ÈÇϱ⠶§¹®ÀÔ´Ï´Ù. È÷µç ¸¶¸£ÄÚÇÁ ¸ðµ¨(HMM)°ú Á¶°ÇºÎ È®·üÀå(CRF)°ú °°Àº Åë°è ¸ðµ¨Àº º¹ÀâÇÑ ¾ð¾î ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÑ ÅºÅºÇÑ ±â¹ÝÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀº Çõ½ÅÀ» °¡¼ÓÈÇϰí, NLU ½Ã½ºÅÛÀ» º¸´Ù È¿°úÀûÀ̰í È®Àå °¡´ÉÇϸç, »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Æø³Ð°Ô äÅÃµÉ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÌÀ¯´Â ÀÇ·á ¹× °í°´ Áö¿ø°ú °°Àº »ê¾÷¿¡¼ AI ±â¹Ý ¼Ö·ç¼ÇÀÇ È°¿ëÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÷´Ü 꺿, °¡»ó ºñ¼, °¨Á¤ ºÐ¼® ±â¼úÀº ¼ÒºñÀÚ Âü¿©¿Í ¾÷¹« È¿À²À» ³ôÀ̱â À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó, AI ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ, ÀÚµ¿È ¹× ¸Ó½Å·¯´× Çõ½ÅÀÇ Á¶±â µµÀÔÀº ºÏ¹Ì NLU ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀÇ ¶Ç ´Ù¸¥ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â °í°´ ¼ºñ½º, ÀÇ·á, ±ÝÀ¶ µî ´Ù¾çÇÑ ºÎ¹®¿¡¼ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ºòµ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î NLUÀÇ ¿ª·®ÀÌ Çâ»óµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ½ÃÀå È®´ë´Â 꺿, À½¼º ºñ¼, ÀÚµ¿ÈµÈ °í°´ Áö¿ø ¼ºñ½ºÀÇ ÃâÇö°ú µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ÁöÃâ Áõ°¡·Î ÀÎÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ NLU ½ÃÀå È®´ë´Â AI °³¹ßÀ» Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥ÀÇ °á°úÀ̱⵵ ÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Natural Language Understanding (NLU) Market is accounted for $22.4 billion in 2024 and is expected to reach $74.6 billion by 2030 growing at a CAGR of 22.2% during the forecast period. Natural Language Understanding (NLU) is an area of artificial intelligence (AI) and natural language processing (NLP) that aims to help robots understand, interpret, and respond to human language in meaningful ways. By comprehending syntax, semantics, context, and intent, it transforms unstructured language input-like voice or text-into structured data. Sentiment analysis, entity recognition, language translation, and intent detection are among the tasks made possible by NLU.
Growing Adoption of AI-Powered Applications
The increased usage of AI-powered applications is driving the Natural Language Understanding (NLU) market, increasing demand for intelligent systems such as virtual assistants, chatbots, and voice interfaces. In order to improve user engagement and operational efficiency, these apps rely on NLU to efficiently read and react to human language. NLU integration is further fueled by industries like healthcare, retail, and finance that use AI-powered products for automation and tailored client interactions.
Complexity of Human Language
The complexity of human language impedes the Natural Language Understanding (NLU) market by making it difficult to properly grasp various linguistic patterns, idiomatic idioms, and contextual meanings. Misunderstandings and mistakes in NLU models can result from variations in language, tone, and slang. Larger datasets, more complicated algorithms, and ongoing training are necessary for this complexity, which raises development costs and delays the broad industry adoption of NLU technology.
Increased Data Availability
Increased data availability is driving the Natural Language Understanding (NLU) industry by supplying massive volumes of unstructured data, such as text, audio, and social media material, for training and improving machine learning models. NLU systems can comprehend context, semantics, and intent more accurately thanks to its abundance. Businesses use this data to create sophisticated apps such as virtual assistants, chatbots, and sentiment analysis tools. User-generated content's steady expansion encourages innovation and uptake in the NLU industry.
High Implementation Costs
High implementation costs are impeding the growth of the industry, particularly for small and medium-sized organizations (SMEs). The expenditures associated with implementing sophisticated AI models, integrating them into existing systems, and maintaining infrastructure might be prohibitive. These budgetary obstacles frequently prevent NLU technology from being widely used, particularly in sectors with tight budgets, which limits its promise in fields like data analysis and customer service automation.
The COVID-19 pandemic accelerated the adoption of Natural Language Understanding (NLU) technologies as businesses shifted to remote operations and digital customer support. Increased reliance on chatbots, virtual assistants, and automated services led to a surge in demand for NLU solutions. Moreover, the healthcare sector leveraged NLU for patient interaction and data processing. The pandemic highlighted the need for efficient, scalable AI solutions, driving growth in the NLU market.
The auto coding segment is expected to be the largest during the forecast period
The auto coding segment is expected to account for the largest market share during the forecast period because this speeds up the deployment of NLU systems and lowers the complexity of their development. It makes it possible to integrate AI-powered products like voice assistants, chatbots, and sentiment analysis systems more quickly. By increasing efficiency and scalability, auto coding makes it easier for companies to apply NLU in a variety of industries, such as healthcare, and customer service, which promotes wider acceptance and market expansion.
The statistical segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the statistical segment is predicted to witness the highest growth as these techniques leverage large datasets to identify patterns, probabilities, and relationships within language, enhancing NLU applications like sentiment analysis, machine translation, and intent recognition. Statistical models, such as Hidden Markov Models (HMM) and Conditional Random Fields (CRF), provide robust foundations for understanding complex linguistic structures. This data-driven approach accelerates innovation, making NLU systems more effective, scalable, and widely adopted across industries.
During the forecast period, the North America region is expected to hold the largest market share because AI-powered solutions are increasingly being utilized in industries including healthcare, and customer support. Advanced chatbots, virtual assistants, and sentiment analysis technologies are becoming more necessary to increase consumer engagement and operational efficiency. The region's strong technological infrastructure, investments in AI research, and early adoption of automation and machine learning innovations are further factors contributing to North America's rapid growth in the NLU market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to the need for AI-powered solutions across a range of sectors, such as customer service, healthcare, and finance. NLU's capabilities are being improved by developments in cloud computing, big data analytics, and machine learning. Market expansion is further aided by the emergence of chatbots, voice assistants, and automated customer support services as well as rising expenditures in digital transformation. The growing NLU market in the area is also a result of government programs encouraging AI development.
Key players in the market
Some of the key players in Natural Language Understanding (NLU) market include OpenAI, Google Cloud AI, IBM Watson, Microsoft Azure Cognitive Services, Amazon Web Services (AWS), Baidu Research, Facebook AI Research (FAIR), Hugging Face, Appen, Cohere, Tractable, Primer, Eleos Health, PolyAI, Rasa Technologies, Upstage, Cognigy, Deepgram and Kustomer.
In June 2023, IBM announced a new collaboration with will.i.am and FYI to leverage the transformative power of secure and trustworthy generative AI for creatives.
In May 2023, IBM has established a Center of Excellence for generative AI. It stands alongside IBM Consulting's existing global AI and Automation practice, which includes 21,000 data and AI consultants who have conducted over 40,000 enterprise client engagements.
In April 2021, IBM announced new capabilities for IBM Watson designed to help businesses build trustworthy AI. These capabilities further expand Watson tools designed to help businesses govern and explain AI-led decisions, increase insight accuracy, mitigate risks and meet their privacy and compliance requirements.