½ÃÀ庸°í¼­
»óǰÄÚµå
1716439

¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, ÀúÀå ¹æ¹ý, ÇüÅÂ, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Solid State Hydrogen Storage Materials Market Forecasts to 2032 - Global Analysis By Product Type, Storage Method, Form, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, °íü ¼ö¼Ò ÀúÀå Àç·á ¼¼°è ½ÃÀåÀº 2025³â¿¡ 14¾ï 3,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 9.5% ¼ºÀåÇÏ¿© 2032³â¿¡´Â 27¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°íü ¼ö¼Ò ÀúÀå Àç·á´Â ¹°¸®Àû ¶Ç´Â È­ÇÐÀû Èí¼ö °øÁ¤À» ÀÌ¿ëÇÏ¿© ¼ö¼Ò¸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ ÷´Ü ¼Ö·ç¼ÇÀÔ´Ï´Ù. ±Ý¼Ó¼ö¼ÒÈ­¹°À̳ª ´Ù°ø¼º °ñ°Ý°ú °°Àº ÀÌ·¯ÇÑ Àç·á´Â ±¸Á¶ ³»¿¡ ¼ö¼Ò¸¦ °áÇÕÇÏ¿© ¾ÈÀüÇϰí ÄÄÆÑÆ®ÇÏ°Ô ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ±âü ¹× ¾×ü ÀúÀå ¹æ½Ä°ú ´Þ¸® °íü ½Ã½ºÅÛÀº ºÎÇÇ ¹Ðµµ°¡ ³ô°í, ¾ÈÀü¼ºÀÌ Çâ»óµÇ¸ç, ¿î¼Û Áß ¿¡³ÊÁö ¼Õ½ÇÀÌ °¨¼ÒÇÕ´Ï´Ù. ±âÈÄ º¯È­¿Í ¿¡³ÊÁö ¾Èº¸¿Í °°Àº µµÀü¿¡ ´ëÀÀÇÏ°í ¼ö¼Ò¸¦ ûÁ¤ ¿¡³ÊÁö ¿î¹Ýü·Î¼­ ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ¼¼°è Àüȯ

Á¤ºÎ¿Í »ê¾÷°è°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¼ö¼Ò´Â Áß¿äÇÑ Ã»Á¤ ¿¡³ÊÁö ij¸®¾î·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±Ý¼Ó¼ö¼ÒÈ­¹°°ú °°Àº °íü ¹°ÁúÀº ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÀúÀåÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Àç»ý °¡´É ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ¼ö¼ÒÀÇ Ã¤ÅÃÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Û ¹× °íÁ¤½Ä Àü·Â ¿ëµµ¿¡¼­ ¼ö¼Ò ¿¬·áÀüÁöÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °íü ¼ö¼Ò ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶, ÀúÀå ¹× À¯ÅëÀ» Æ÷ÇÔÇÑ ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ¼ö¼Ò º¸±Þ ¹× À¯Åë ÀÎÇÁ¶ó ºÎÁ·

ÇÑÁ¤µÈ ¼ö¼ÒÃæÀü¼ÒÀÇ ¼ö´Â ¼ö¼Ò¸¦ ¿¬·á·Î ÇÏ´Â ÀÚµ¿Â÷ ¹× ½Ã½ºÅÛÀÇ º¸±ÞÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íü ÀúÀå ¹°ÁúÀÇ Á¦Á¶¿Í °ü·ÃµÈ º¹ÀâÇÑ Á¦Á¶ °øÁ¤Àº ºñ¿ë »ó½ÂÀ» ÃÊ·¡ÇÏ¿© °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ´À¸° ¼ö¼Ò Èí¼ö ¹× Å»¸® ¼Óµµ, ÀϺΠ¼ÒÀçÀÇ °æ¿ì ÀúÀå ¿ë·®ÀÌ Á¦ÇÑÀûÀ̶ó´Â ¹®Á¦´Â È®À强À» ÀúÇØÇÏ°í ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¼ö¼Ò¿¬·áÀüÁö ÀÚµ¿Â÷¿¡ ´ëÇÑ °ü½É Áõ°¡

ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¹«°øÇØ ¸ðºô¸®Æ¼¸¦ ½ÇÇöÇϱâ À§ÇØ ¼ö¼Ò ¿¬·áÀüÁö¸¦ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â È¿À²ÀûÀÎ ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ³ª³ë ±¸Á¶ Àç·áÀÇ ÅëÇÕ°ú °°Àº ±â¼ú ¹ßÀüÀº ÀúÀå ¼º´É°ú È®À强À» Çâ»ó½Ãŵ´Ï´Ù. ±¹Á¦ Çù·Â°ú Á¤ºÎ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î ±×¸° ¼ö¼Ò Á¦Á¶¸¦ ÃßÁøÇϸé ÀúÀå Àç·áÀÇ ±â¼ú Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ°í »õ·Î¿î äÅÃÀÇ ±æÀ» ¿­ ¼ö ÀÖ½À´Ï´Ù.

´ëü ÀúÀå ¹æ¹ý°úÀÇ °æÀï

ÀüÅëÀûÀÎ ¹æ¹ýÀº ³Î¸® È®¸³µÇ¾î ÀÖÀ¸¸ç, ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼­ ºñ¿ë È¿À²¼ºÀÌ ³ôÀº °ÍÀ¸·Î ÀνĵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÁöÁ¤ÇÐÀû À§Çè°ú ¹«¿ª Á¦ÇÑÀ¸·Î ÀÎÇØ °íü ÀúÀå ½Ã½ºÅÛ Á¦Á¶¿¡ ÇÊ¿äÇÑ ÇÙ½É ¿øÀÚÀç °ø±Þ¸Á¿¡ È¥¶õÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò °ü·Ã ÀÎÇÁ¶óÀÇ »çÀ̹ö º¸¾È Ãë¾à¼ºÀº ´õ Å« ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Åµ´Ï´Ù. ¼ö¼Ò ÀúÀå ±â¼úÀÇ ¾ÈÀü¼º°ú È¿À²¼º¿¡ ´ëÇÑ »çȸÀû ȸÀÇ·ÐÀÌ ½ÃÀå ¼ö¿ëÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ:

Äڷγª19 ÆÒµ¥¹ÍÀº Àü ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·È°í, °íü¼ö¼Ò ÀúÀå Àç·áÀÇ »ý»ê°ú À¯Åë¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹Í Ãʱ⿡´Â Á¦Á¶ Áߴܰú ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ® Áö¿¬À¸·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀÌ µÐÈ­µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Á߿伺À» °­Á¶ÇÏ°í ¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ ÀçÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ÀÌÈÄ °¢±¹ Á¤ºÎ¿Í ±â°üµéÀº ÆÒµ¥¹Í ÀÌÈÄ º¹±¸ °èȹÀÇ ÀÏȯÀ¸·Î Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ½À´Ï´Ù. ±×¸° ¼ö¼Ò ÀÌ´Ï¼ÅÆ¼ºêÀÇ °¡¼ÓÈ­¿Í ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±Ý¼Ó¼ö¼ÒÈ­¹° ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±Ý¼Ó¼ö¼ÒÈ­¹° ºÎ¹®Àº ³ôÀº ÀúÀå ¹Ðµµ¿Í ¾ÈÀü¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Ý¼Ó¼ö¼ÒÈ­¹°Àº °íÁ¤½Ä ¹× À̵¿½Ä ¼ö¼Ò ÀúÀå ¿ëµµ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ½Å·Ú¼º°ú ÄÄÆÑÆ®ÇÔÀ» Á¦°øÇÕ´Ï´Ù. Àç·á °úÇÐÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ¼ö¼Ò Èí¼ö ¹× ¹æÃâ ´É·ÂÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. »ó´ëÀûÀ¸·Î ³·Àº ¾Ð·ÂÀ¸·Î ¼ö¼Ò¸¦ ÀúÀåÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ¼ö¼ÒÀÇ ¸Å·ÂÀ» ´õ¿í ³ôÀÌ°í ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ¼ö¼ÒÈ­ ó¸® ºÎ¹®

¿¹Ãø ±â°£ µ¿¾È ¼ö¼ÒÈ­ °øÁ¤Àº ÀúÀå È¿À² Çâ»ó¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼ÒÈ­ °øÁ¤Àº °¡¿ªÀûÀÎ ¼ö¼Ò Èí¼ö ¹× ¹æÃâÀ» °¡´ÉÇÏ°Ô ÇÏ¿© È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ã˸ŠÀç·á¿Í ³ª³ë±â¼úÀÇ ¹ßÀüÀ¸·Î ¼ö¼ÒÈ­ °øÁ¤ÀÌ °³¼±µÇ¾î ´õ¿í È¿À²ÀûÀ̰í È®À强ÀÌ ³ô¾ÆÁ³½À´Ï´Ù. °í¼º´É ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö¼ÒÈ­ ó¸® ºÐ¾ß´Â ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼ö¼Ò ÀÎÇÁ¶ó ¹× Àç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀϺ», Áß±¹, Çѱ¹ µîÀÇ ±¹°¡µéÀº Á¤ºÎÀÇ °­·ÂÇÑ Áö¿ø°ú Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ ¹ÙÅÁÀ¸·Î ¼ö¼Ò äÅÃÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °­·ÂÇÑ Á¦Á¶°ÅÁ¡°ú Àç·á °úÇÐ ºÐ¾ßÀÇ ±â¼ú Àü¹® Áö½ÄÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, À̴ ûÁ¤ ¿¡³ÊÁö Àüȯ°ú ¼ö¼Ò °æÁ¦¿¡ ´ëÇÑ ³ë·Â¿¡ ÃÊÁ¡À» ¸ÂÃß°í Àֱ⠶§¹®À¸·Î ºÐ¼®µË´Ï´Ù. ÁÖ¿ä ¿¬±¸ ±â°üÀÇ Á¸Àç¿Í Á¤ºÎÀÇ °­·ÂÇÑ Àμ¾Æ¼ºê°¡ °íü ¼ö¼Ò ÀúÀå Àç·áÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿î¼Û »ê¾÷ ¿¡³ÊÁö ½Ã½ºÅÛ, ÈÞ´ë¿ë Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ Àû¿ë È®´ë´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ¼ö¼Ò ÀÎÇÁ¶ó °³¹ß¿¡¼­ ¹Ì±¹°ú ij³ª´ÙÀÇ Çù·Â °ü°è´Â ÀÌ Áö¿ª ½ÃÀåÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : Á¦Ç° À¯Çüº°

  • ±Ý¼Ó ¼ö¼ÒÈ­¹°
  • º¹ÇÕ ¼ö¼ÒÈ­¹°
  • È­ÇÐ ¼ö¼ÒÈ­¹°
  • ź¼Ò°è Àç·á
  • °øÀ¯°áÇÕ¼º À¯±â ±¸Á¶Ã¼(COF)
  • ±Ý¼Ó À¯±â ±¸Á¶Ã¼(MOF)
  • ±Ý¼Ó°£ È­ÇÕ¹°
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : ÀúÀå ¹æ¹ýº°

  • ¹°¸® ÈíÂø
  • È­ÇÐ ÈíÂø
  • ¼ö¼ÒÈ­

Á¦7Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : Çüź°

  • ºÐ¸»
  • °ú¸³
  • Æç¸´
  • º¹ÇÕÀç·á
  • ±âŸ ÇüÅÂ

Á¦8Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : ¿ëµµº°

  • ¿¬·áÀüÁöÂ÷(FCV)
  • ÈÞ´ë¿ë Àü·Â ½Ã½ºÅÛ
  • °íÁ¤Çü Àü·Â ÀúÀå
  • »ê¾÷¿ë ¼ö¼Ò ÀúÀå
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷
  • Ç×°ø¿ìÁÖ
  • ¿¡³ÊÁö
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ÀÇ·á
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ °íü ¼ö¼Ò ÀúÀå Àç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Air Liquide Advanced Technologies
  • Ballard Power Systems
  • BMW Group
  • Daimler AG
  • General Motors Company
  • H2GO Power
  • Hexagon Composites ASA
  • Horizon Fuel Cell Technologies
  • HyGear
  • Hyundai Motor Company
  • ITM Power plc
  • Linde plc
  • McPhy Energy
  • Plug Power Inc.
  • Quantum Fuel Systems LLC
  • Toyota Motor Corporation
LSH 25.05.27

According to Stratistics MRC, the Global Solid State Hydrogen Storage Materials Market is accounted for $1.43 billion in 2025 and is expected to reach $2.71 billion by 2032 growing at a CAGR of 9.5% during the forecast period. Solid-state hydrogen storage materials are advanced solutions designed to store hydrogen efficiently by utilizing physical or chemical absorption processes. These materials, such as metal hydrides and porous frameworks, enable safe and compact storage by binding hydrogen within their structures. Unlike traditional gas or liquid storage methods, solid-state systems offer higher volumetric density, improved safety, and reduced energy loss during transportation. They are pivotal in advancing hydrogen as a clean energy carrier, addressing challenges like climate change and energy security.

Market Dynamics:

Driver:

Global shift towards sustainable energy sources

As governments and industries aim to reduce carbon emissions, hydrogen is emerging as a vital clean energy carrier. Solid-state materials, such as metal hydrides, enable safe and efficient storage, supporting the adoption of hydrogen in renewable energy systems. The rising adoption of hydrogen fuel cells in transportation and stationary power applications enhances the demand for solid-state hydrogen storage solutions. Moreover, increasing investments in hydrogen infrastructure, including production, storage, and distribution, further drive market growth.

Restraint:

Lack of comprehensive hydrogen refueling and distribution infrastructure

Limited availability of hydrogen fueling stations restricts the widespread adoption of hydrogen-powered vehicles and systems. Additionally, the complex manufacturing processes involved in producing solid-state storage materials lead to elevated costs, impacting affordability. Challenges such as slow hydrogen absorption/desorption rates and limited storage capacities in some materials further hinder scalability impeding the market growth.

Opportunity:

Growing interest in hydrogen fuel cell vehicles

Automotive manufacturers are increasingly adopting hydrogen fuel cells for zero-emission mobility, boosting demand for efficient storage solutions. Technological advancements, such as the integration of nanostructured materials, improve storage performance and scalability. The push for green hydrogen production, supported by international collaborations and government incentives, accelerates innovation in storage materials opens new avenues for adoption.

Threat:

Competition from alternative storage methods

Traditional methods are widely established and often perceived as more cost-effective for certain applications. Geopolitical risks and trade restrictions may disrupt the supply chain of critical raw materials needed for manufacturing solid-state storage systems. Cybersecurity vulnerabilities in hydrogen-related infrastructure create additional concerns. Public skepticism regarding the safety and efficiency of hydrogen storage technologies could hinder market acceptance.

Covid-19 Impact:

The COVID-19 pandemic disrupted global supply chains, affecting the production and distribution of solid-state hydrogen storage materials. Manufacturing shutdowns and delays in infrastructure projects slowed market growth during the initial phases of the pandemic. However, the crisis underscored the importance of clean energy solutions, prompting renewed investments in hydrogen technologies. Governments and organizations have since prioritized sustainable energy systems as part of post-pandemic recovery plans. The acceleration of green hydrogen initiatives and the increased focus on energy security have positively impacted the market.

The metal hydrides segment is expected to be the largest during the forecast period

The metal hydrides segment is expected to account for the largest market share during the forecast period due to its high storage density and safety features. Metal hydrides are widely used in stationary and mobile hydrogen storage applications, offering reliability and compactness. Continuous advancements in material science have improved their hydrogen absorption and release capabilities. Their ability to store hydrogen at relatively low pressures further enhances their appeal, driving their dominance in the market.

The hydrogenation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hydrogenation segment is predicted to witness the highest growth rate driven by its critical role in enhancing storage efficiency. Hydrogenation processes allow for reversible hydrogen absorption and release, enabling efficient energy storage. Advancements in catalytic materials and nanotechnology have improved the hydrogenation process, making it more efficient and scalable. As demand for high-performance storage systems rises, the hydrogenation segment is poised for rapid expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by significant investments in hydrogen infrastructure and renewable energy projects. Countries such as Japan, China, and South Korea are leading in hydrogen adoption, with robust government support and strategic initiatives. The region's strong manufacturing base and technological expertise in materials science further boost market growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR supported by increasing focus on clean energy transitions and hydrogen economy initiatives. The presence of leading research institutions and strong government incentives drive innovation in solid-state hydrogen storage materials. Expanding applications in transportation industrial energy systems, and portable power solutions further fuel market growth. Collaboration between the U.S. and Canada on hydrogen infrastructure development strengthens the regional market.

Key players in the market:

Some of the key players in Solid State Hydrogen Storage Materials Market include ir Liquide Advanced Technologies, Ballard Power Systems, BMW Group, Daimler AG, General Motors Company, H2GO Power, Hexagon Composites ASA, Horizon Fuel Cell Technologies, HyGear, Hyundai Motor Company, ITM Power plc, Linde plc, McPhy Energy, Plug Power Inc., Quantum Fuel Systems LLC and Toyota Motor Corporation.

Key Developments:

In December 2024, Horizon announced the development of the world's first 5MW Anion Exchange Membrane (AEM) electrolyzer, targeting large-scale green hydrogen projects. This innovation aims to reduce the cost of green hydrogen production.

In October 2023, Hyundai signed a memorandum of understanding with various partners to establish a hydrogen-based mobility ecosystem in Saudi Arabia. The collaboration focuses on promoting hydrogen fuel cell commercial vehicles and exploring joint research opportunities in hydrogen mobility.

In May 2024, Quantum launched a new generation of hydrogen storage systems for heavy-duty trucks at the Advanced Clean Transportation Expo. These Type 4 composite material tanks store hydrogen at 700 bar and offer flexible mounting options, accommodating between 54 and 80 kg of hydrogen fuel.

Product Types Covered:

  • Metal Hydrides
  • Complex Hydrides
  • Chemical Hydrides
  • Carbon-based Materials
  • Covalent Organic Frameworks (COFs)
  • Metal-Organic Frameworks (MOFs)
  • Intermetallic Compounds
  • Other Products Types

Storage Methods Covered:

  • Physisorption
  • Chemisorption
  • Hydrogenation

Forms Covered:

  • Powder
  • Granules
  • Pellets
  • Composites
  • Other Forms

Applications Covered:

  • Fuel Cell Vehicles (FCVs)
  • Portable Power Systems
  • Stationary Power Storage
  • Industrial Hydrogen Storage
  • Other Applications

End Users Covered:

  • Automotive
  • Aerospace
  • Energy
  • Electronics & Semiconductors
  • Medical
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Solid State Hydrogen Storage Materials Market, By Product Type

  • 5.1 Introduction
  • 5.2 Metal Hydrides
  • 5.3 Complex Hydrides
  • 5.4 Chemical Hydrides
  • 5.5 Carbon-based Materials
  • 5.6 Covalent Organic Frameworks (COFs)
  • 5.7 Metal-Organic Frameworks (MOFs)
  • 5.8 Intermetallic Compounds
  • 5.9 Other Products Types

6 Global Solid State Hydrogen Storage Materials Market, By Storage Method

  • 6.1 Introduction
  • 6.2 Physisorption
  • 6.3 Chemisorption
  • 6.4 Hydrogenation

7 Global Solid State Hydrogen Storage Materials Market, By Form

  • 7.1 Introduction
  • 7.2 Powder
  • 7.3 Granules
  • 7.4 Pellets
  • 7.5 Composites
  • 7.6 Other Forms

8 Global Solid State Hydrogen Storage Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Fuel Cell Vehicles (FCVs)
  • 8.3 Portable Power Systems
  • 8.4 Stationary Power Storage
  • 8.5 Industrial Hydrogen Storage
  • 8.6 Other Applications

9 Global Solid State Hydrogen Storage Materials Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive
  • 9.3 Aerospace
  • 9.4 Energy
  • 9.5 Electronics & Semiconductors
  • 9.6 Medical
  • 9.7 Other End Users

10 Global Solid State Hydrogen Storage Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Air Liquide Advanced Technologies
  • 12.2 Ballard Power Systems
  • 12.3 BMW Group
  • 12.4 Daimler AG
  • 12.5 General Motors Company
  • 12.6 H2GO Power
  • 12.7 Hexagon Composites ASA
  • 12.8 Horizon Fuel Cell Technologies
  • 12.9 HyGear
  • 12.10 Hyundai Motor Company
  • 12.11 ITM Power plc
  • 12.12 Linde plc
  • 12.13 McPhy Energy
  • 12.14 Plug Power Inc.
  • 12.15 Quantum Fuel Systems LLC
  • 12.16 Toyota Motor Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦