|
시장보고서
상품코드
1734935
마이크로셀룰러 플라스틱 시장 유형별, 가공 기술별, 용도별, 최종 사용자별, 지역별 분석, 예측(-2032년)Microcellular Plastics Market Forecasts to 2032 - Global Analysis By Type, Processing Technique, Application, End User and By Geography |
||||||
Stratistics MRC에 따르면 세계 마이크로셀룰러 플라스틱 시장은 2025년 592억 달러, 예측 기간 동안 CAGR은 9.2%를 나타내고 2032년에는 1,097억 달러에 이를 전망입니다.
마이크로셀룰러 플라스틱은 미세하고 균등하게 분산한 셀 구조를 특징으로 하는 경량으로 고성능 소재입니다. 특수한 발포 공정을 거쳐 제조되는 이 플라스틱은 기계적 강도와 내구성을 유지하면서 밀도를 저감하고 있습니다. 충격성, 에너지 흡수성을 높이고, 자동차, 포장, 바이오메디컬 용도에 이상적입니다. 또한, 마이크로셀룰러 플라스틱은 폴리머의 사용량을 최소한으로 억제해, 환경에 대한 영향을 저감해, 재활용성을 향상시킴으로써, 재료의 효율화에 공헌합니다.
에너지 효율이 높은 소재에 대한 선호도 향상
에너지 효율이 높은 소재에 대한 선호도가 높아지면서 다양한 산업에서 마이크로셀룰러 플라스틱의 채택을 뒷받침하고 있습니다.
인식과 기술적 전문지식 부족
많은 제조업체들은 특수한 설비와 지식을 필요로 하는 제조와 관련된 독특한 발포 공정에 익숙하지 않습니다.
3D 프린팅 및 라미네이트 모델링의 새로운 용도
이 소재는 가볍고 기계적 특성이 높고 폴리머를 효율적으로 사용할 수 있기 때문에 혁신적인 제조 기술에 매우 적합합니다. 비용을 줄이면서 설계 유연성을 향상시킬 수 있습니다.
플라스틱 폐기물에 대한 환경 문제
재료 효율과 고분자 소비 감소에도 불구하고 플라스틱 기반 솔루션으로 분류되어 남아 있기 때문에 지속가능성에 대한 우려가 커지고 있습니다. 플라스틱 폐기물을 억제하기 위한 규제 조치와 대중의 압력이 증가함에 따라 생분해성과 재활용이 가능한 제품을 보다 중시할 필요가 있습니다.
팬데믹은 세계 공급망을 혼란시켜 마이크로셀룰러 플라스틱 생산을 늦추고 시장 성장에 영향을 주었습니다.
폴리우레탄(PU) 부문이 예측 기간 동안 최대가 될 전망
폴리우레탄(PU) 부문은 뛰어난 기계적 특성과 산업용도에 있어서의 범용성에 의해 예측 기간 중에 최대 시장 점유율을 차지할 것으로 예측됩니다.
예측기간 동안 압출발포 분야가 가장 높은 CAGR이 예상됩니다.
예측기간 중 생산효율을 최적화하기 위해 선진 발포기술을 채용하는 제조업체가 증가하고 있기 때문에 압출발포 분야가 가장 높은 성장률을 보일 것으로 예측됩니다.
예측 기간 동안 북미는 기술의 진보, 강력한 산업 인프라, 경량 재료 수요 증가에 견인되어 최대 시장 점유율을 차지할 것으로 예측됩니다.
예측기간 중 아시아태평양이 가장 높은 CAGR을 나타낼 것으로 예상되지만, 이는 급속한 산업화와 소비재 및 포장재에 대한 용도 확대가 그 요인입니다.
According to Stratistics MRC, the Global Microcellular Plastics Market is accounted for $59.2 billion in 2025 and is expected to reach $109.7 billion by 2032 growing at a CAGR of 9.2% during the forecast period. Microcellular plastics are lightweight, high-performance materials characterized by their fine, evenly distributed cellular structure. Manufactured through specialized foaming processes, these plastics exhibit reduced density while maintaining mechanical strength and durability. Their unique composition enhances thermal insulation, impact resistance, and energy absorption, making them ideal for automotive, packaging, and biomedical applications. Additionally, microcellular plastics contribute to material efficiency by minimizing polymer usage, reducing environmental impact, and improving recyclability.
Growing preference for energy-efficient materials
The growing preference for energy-efficient materials is driving the adoption of microcellular plastics across multiple industries. These lightweight, high-performance materials reduce material consumption while maintaining mechanical integrity, making them ideal for automotive, aerospace, and packaging applications. The demand for sustainable solutions that enhance thermal insulation and reduce overall energy usage is pushing manufacturers to integrate microcellular plastics into their designs.
Lack of awareness and technical expertise
Many manufacturers are unfamiliar with the unique foaming processes involved in production, which require specialized equipment and knowledge. Additionally, the integration of these materials into existing manufacturing systems necessitates structural adjustments, adding complexity to implementation limiting market expansion despite the benefits microcellular plastics offer.
Emerging applications in 3D printing and additive manufacturing
The material's lightweight nature, enhanced mechanical properties, and efficient use of polymers make it highly suitable for innovative fabrication techniques. As industries embrace customized and rapid prototyping, microcellular plastics enable improved design flexibility while reducing production costs. Their potential in functional components, aerospace parts, and medical devices is attracting research investments, solidifying their role in the future of advanced manufacturing processes.
Environmental concerns about plastic waste
Despite their material efficiency and reduced polymer consumption, they remain categorized under plastic-based solutions, raising sustainability concerns. Increasing regulatory measures and public pressure to curb plastic waste necessitate greater emphasis on biodegradable or recyclable variants. Moreover stringent environmental policies and address consumer apprehensions regarding long-term waste accumulation further increases the cost hampering the market growth.
The pandemic disrupted global supply chains and slowed production of microcellular plastics, impacting market growth. However, the increased focus on lightweight and cost-effective materials in post-pandemic recovery efforts revitalized demand. Industries such as healthcare, packaging, and automotive sought efficient solutions to optimize costs while maintaining product performance.
The polyurethane (PU) segment is expected to be the largest during the forecast period
The polyurethane (PU) segment is expected to account for the largest market share during the forecast period due to its superior mechanical properties and versatility in industrial applications. PU-based microcellular plastics offer excellent durability, impact resistance, and flexibility, making them ideal for use in automotive, footwear, and consumer goods manufacturing. Additionally, advancements in PU foam processing have enhanced thermal insulation and energy efficiency, contributing to its widespread adoption.
The extrusion foaming segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the extrusion foaming segment is predicted to witness the highest growth rate as manufacturers increasingly adopt advanced foaming technologies to optimize production efficiency. Extrusion foaming enhances material uniformity, reduces polymer consumption, and allows precise control over cellular structures, improving mechanical strength and insulation properties. The expanding applications in packaging, transportation, and structural components are supporting this growth.
During the forecast period, the North America region is expected to hold the largest market share driven by technological advancements, strong industrial infrastructure, and rising demand for lightweight materials. The region's emphasis on sustainability and energy-efficient solutions is encouraging the adoption of microcellular plastics across sectors such as automotive, aerospace, and healthcare.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid industrialization and increasing applications in consumer goods and packaging. Countries like China, India, and Japan are expanding their manufacturing capacities, boosting demand for cost-effective and high-performance materials. Government initiatives promoting sustainable production and energy-efficient polymers are further accelerating regional growth.
Key players in the market
Some of the key players in Microcellular Plastics Market include BASF SE, Armacell International SA, Borealis AG, Dow Chemical Company, Evonik Industries AG, Gracious Living Innovations Inc., Horizon Plastics International, Inc., LAMATEK, Inc., LKAB Minerals AB, Mearthane Products Corporation, MicroGREEN Polymers, Inc., Mitsui Chemicals, Inc., N.E. Chemcat Corporation, Polycel Structural Foam, Inc., Reedy Chemical Foam & Specialty Additives, RPC Group plc, Sealed Air Corporation, Sekisui Chemical Co., Ltd., Sonoco Products Company and Trexel, Inc.
In April 2025, BASF launched "EcoFoam Ultra," a new generation of microcellular polymer foams designed for high-performance insulation in automotive and construction applications. This product offers a 30% improvement in thermal resistance while using 25% less raw material.
In April 2025, Evonik launched an upgraded version of its ROHACELL(R) structural foam under the EcoLine brand, using over 50% bio-based content. The new foam is specifically tailored for aerospace interior panels and medical imaging equipment where lightweight and strength are crucial.
In March 2025, Trexel introduced its latest MuCell(R) NXT Series, a next-generation microcellular injection molding system tailored for high-end automotive interior components. The new system reduces part weight by up to 20% while maintaining superior surface finish, solving a common trade-off in microcellular molding.