½ÃÀ庸°í¼­
»óǰÄÚµå
1744566

¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, Àç·á, Àü¾Ð ¹üÀ§, ±â¼ú, ¿ëµµ, Áö¿ªº° ºÐ¼®

Power Transistor Market Forecasts to 2032 - Global Analysis By Type, Material, Voltage Range, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀåÀº 2025³â¿¡ 166¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2032³â¿¡´Â 264¾ï ´Þ·¯¿¡ À̸¦°ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 6.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

Àü·Â Æ®·£Áö½ºÅÍ´Â °íÀü·ù ¹× °íÀü¾ÐÀ» ó¸®Çϵµ·Ï ¼³°èµÈ ¹ÝµµÃ¼ ÀåÄ¡·Î, Àü·Â ÁõÆø, ½ºÀ§Äª, Á¶Àý ÀÀ¿ë ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù. ÀüÀÚ È¸·Î¿¡¼­ ½ºÀ§Ä¡³ª ÁõÆø±â ¿ªÇÒÀ» Çϸç, ÃÖ¼ÒÇÑÀÇ ¿¡³ÊÁö ¼Õ½Ç·Î ´ë·®ÀÇ Àü·ÂÀ» È¿À²ÀûÀ¸·Î Á¦¾îÇÕ´Ï´Ù. Àü·Â Æ®·£Áö½ºÅÍ´Â Àü¿ø °ø±Þ ÀåÄ¡, ¸ðÅÍ ÄÁÆ®·Ñ·¯, ¿Àµð¿À ÁõÆø±â µî ´Ù¾çÇÑ ÀåÄ¡¿¡ ÇʼöÀûÀÔ´Ï´Ù. °íÀü·Â ÀÛµ¿ ½Ã ¿­À» °ü¸®ÇÏ°í ¼Õ»óÀ» ¹æÁöÇϱâ À§ÇØ °ß°íÇÑ ±¸Á¶·Î Á¦À۵˴ϴÙ. ÁÖ¿ä À¯ÇüÀ¸·Î´Â ¾ç±Ø¼º Á¢ÇÕ Æ®·£Áö½ºÅÍ(BJT)¿Í ±Ý¼Ó »êÈ­¹° ¹ÝµµÃ¼ Çʵå È¿°ú Æ®·£Áö½ºÅÍ(MOSFET)°¡ ÀÖÀ¸¸ç, °¢°¢ ½ºÀ§Äª ¼Óµµ, È¿À²¼º, Àü·ù ó¸® ´É·Â¿¡ µû¶ó ´Ù¾çÇÑ ¼º´É ¿ä±¸»çÇ׿¡ ÀûÇÕÇÕ´Ï´Ù.

¿¡³ÊÁö È¿À²ÀûÀÎ ÀüÀÚ±â±â ¼ö¿ä Áõ°¡

¿¡³ÊÁö È¿À²ÀûÀÎ ÀüÀÚ±â±âÀÇ ¼ö¿ä Áõ°¡°¡ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå ¼ºÀåÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ¿Í »ê¾÷ÀÌ ¿¡³ÊÁö ¼Òºñ °¨¼Ò¿Í Áö¼Ó °¡´ÉÇÑ ±â¼úÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó Àü·Â È帧À» °ü¸®Çϰí ÃÖÀûÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ Àü·Â Æ®·£Áö½ºÅÍÀÇ Á߿伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±â±â, Àü±â Â÷·®, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ ºÐ¾ßÀÇ Çõ½ÅÀº ÀÌ Æ®·»µå¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº È¿À²¼º ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ °í±Þ ¹ÝµµÃ¼ Àç·á¿Í ¼³°è¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Àü·Â Æ®·£Áö½ºÅ͸¦ ¼¼°èÀÇ ¿¡³ÊÁö È¿À² ¼Ö·ç¼Ç ÀüȯÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸®¸Å±è½Ã۰í ÀÖ½À´Ï´Ù.

°í±Þ Àç·á(GaN, SiC)ÀÇ ³ôÀº ºñ¿ë

GaN°ú SiC¿Í °°Àº °í±Þ Àç·áÀÇ ³ôÀº ºñ¿ëÀº ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀåÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Á¦ÇÑÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» Å©°Ô ¹æÇØÇÕ´Ï´Ù. ÀÌ °¡°Ý À庮Àº Çõ½ÅÀ» Áö¿¬½Ã۰í ÀüÅëÀûÀÎ ½Ç¸®ÄÜ ±â¹Ý Æ®·£Áö½ºÅÍ¿ÍÀÇ °æÀï·ÂÀ» ¾àÈ­½ÃŰ¸ç ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÕ´Ï´Ù. Á¦Á¶¾÷üµéÀº °æÁ¦ÀûÀÎ ´ë·® »ý»êÀ» È®´ëÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ¾î ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô Àú·ÅÇÑ ¿É¼ÇÀ» Á¦°øÇÏ±â ¾î·Æ½À´Ï´Ù. °á°úÀûÀ¸·Î Àüü ½ÃÀå È®Àå ¹× ±â¼ú ħÅõ°¡ ºÎÁ¤ÀûÀ¸·Î ¿µÇâÀ» ¹Þ¾Æ ÀáÀçÀûÀÎ È¿À²¼º°ú ¼º´É °³¼±ÀÌ Áö¿¬µË´Ï´Ù.

Àü±âÀÚµ¿Â÷(EV) È®´ë

Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±Þ È®´ë°¡ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü·Â Æ®·£Áö½ºÅÍ´Â EVÀÇ È¿À²ÀûÀÎ ¿¡³ÊÁö º¯È¯, ¸ðÅÍ Á¦¾î, ¹èÅ͸® °ü¸®¿¡ ÇʼöÀûÀÔ´Ï´Ù. SiC¿Í GaN°ú °°Àº ±¤´ë¿ª °¸ ¹ÝµµÃ¼´Â ¿ì¼öÇÑ È¿À²¼º°ú ¼º´ÉÀ» °®Ãß°í ÀÖ¾î, ÀÌ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °³¹ß ¹× »ý»ê ¼Óµµ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Àü·Â Æ®·£Áö½ºÅÍ´Â ¼¼°èÀÇ Àü±âÂ÷ äÅðú ÇÔ²² °í±Þ Àü·Â ÀüÀÚ±â±â ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °­·ÂÇÑ ½ÃÀå È®ÀåÀ» À̲ø°í ÀÖ´Â ÇÙ½É ºÎǰÀÔ´Ï´Ù.

¿­ °ü¸® °úÁ¦

¿­ °ü¸®ÀÇ °úÁ¦´Â °ú¿­, ½Å·Ú¼º ÀúÇÏ, ÀåÄ¡ ¼ö¸í ´ÜÃàÀ¸·Î ÀÎÇØ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀåÀ» Å©°Ô ¹æÇØÇÕ´Ï´Ù. °úµµÇÑ ¿­Àº ¼º´É ÀúÇÏ, °íÀå·ü Áõ°¡, ³Ã°¢ ºñ¿ë »ó½ÂÀ» ÃÊ·¡ÇØ °íÃâ·Â ÀÀ¿ë ºÐ¾ß¿¡¼­ÀÇ Ã¤ÅÃÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ¼³°è º¹À⼺°ú Á¦Á¶ ºñ¿ëÀ» Áõ°¡½ÃÄÑ Çõ½ÅÀ» ÀúÇØÇÏ°í ½ÃÀå ¼ºÀåÀ» ´ÊÃä´Ï´Ù. °á°úÀûÀ¸·Î ºñÈ¿À²ÀûÀÎ ¿­ °ü¸® ¼Ö·ç¼ÇÀº Àü·Â Æ®·£Áö½ºÅÍÀÇ È¿À²¼º°ú È®À强À» Á¦ÇÑÇØ °ß°íÇÏ°í °í¼º´É ¹ÝµµÃ¼ ºÎǰ¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº °ø±Þ¸Á Áߴܰú »ê¾÷ ¼ö¿ä °¨¼Ò·Î ÀÎÇØ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀåÀ» ±³¶õ½ÃÄ×½À´Ï´Ù. Á¦Á¶ Áö¿¬°ú ¹°·ù ¹®Á¦·Î ÀϽÃÀûÀÎ °ø±Þ ºÎÁ·°ú Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ±×·¯³ª ¿ø°Ý ±Ù¹« ±â¼ú°ú Àç»ý ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ¼Õ½ÇÀ» ÀϺΠ»ó¼âÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ È¸º¹Àº ½ÃÀå ¼ºÀåÀ» ÃËÁøÇßÀ¸¸ç, Àü±â Â÷·®°ú ½º¸¶Æ® ±â±âÀÇ Ã¤Åà Áõ°¡°¡ Àü·Â Æ®·£Áö½ºÅÍ ¼ö¿ä¸¦ ÃËÁøÇß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÆÒµ¥¹ÍÀº ´Ü±âÀûÀÎ ¾î·Á¿òÀ» ÃÊ·¡ÇßÁö¸¸ Àå±âÀûÀÎ ½ÃÀå º¯ÇõÀ» °¡¼ÓÈ­Çß½À´Ï´Ù.

Åë½Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå ±Ô¸ð¸¦ Â÷ÁöÇÒ Àü¸Á

Åë½Å ºÎ¹®Àº ½º¸¶Æ®Æù, ±âÁö±¹, À§¼º ½Ã½ºÅÛ µî ÀåÄ¡¿¡ È¿À²ÀûÀÌ°í °íÁÖÆÄ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 4G/5G ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ È®ÀåÀ¸·Î Àü·Â Æ®·£Áö½ºÅÍ´Â ½Å·Ú¼º ÀÖ´Â ½ÅÈ£ Àü¼Û°ú ¿¡³ÊÁö È¿À²¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. µ¥ÀÌÅÍ Æ®·¡ÇȰú ¿¬°á¼º ¼ö¿äÀÇ ±ÞÁõÀº Çõ½Å°ú »ý»êÀ» ÃËÁøÇØ Åë½Å ºÐ¾ß°¡ ½ÃÀåÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀå°ú ±â¼ú ¹ßÀü¿¡ ÇÙ½É ±â¿©ÀÚ·Î ÀÚ¸®¸Å±èÇß½À´Ï´Ù.

´Ù¸µÅÏ Æ®·£Áö½ºÅÍ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ±â·ÏÇÒ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ´Ù¸µÅÏ Æ®·£Áö½ºÅÍ ºÎ¹®Àº »ê¾÷¿ë ¹× ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° ºÐ¾ß¿¡¼­ ´õ Å« ºÎÇϸ¦ ÀûÀº ÀÔ·Â Àü·ù·Î ó¸®ÇÒ ¼ö ÀÖ¾î Àü·Â ¾ÚÇÁ¿Í Á¦¾î ½Ã½ºÅÛ¿¡ ÀûÇÕÇϱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®Àº µÎ °³ÀÇ Æ®·£Áö½ºÅ͸¦ ´ÜÀÏ ÆÐŰÁö¿¡ ÅëÇÕÇÔÀ¸·Î½á ȸ·Î ¼³°è °£¼ÒÈ­¿Í ºÎǰ ¼ö °¨¼Ò¸¦ ½ÇÇöÇØ âÀǼº°ú ÄÄÆÑÆ® Á¦Ç° °³¹ßÀ» ÃËÁøÇß½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° ¼ö¿ä È®´ë¿Í ÀÚµ¿Â÷ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀº ¹ÝµµÃ¼ Á¦Á¶ ºÐ¾ß¿¡¼­ ¼±µµÀû À§Ä¡¸¦ Â÷ÁöÇϸç Çõ½Å°ú °ø±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ Â÷¿øÀÇ Àç»ý ¿¡³ÊÁö ¹× Àü±â Â÷·® Áö¿ø Á¤Ã¥Àº ½ÃÀå È®ÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÇØ´ç Áö¿ªÀÇ °­·ÂÇÑ Á¦Á¶ ÀÎÇÁ¶ó¿Í 5G ¹× IoT ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡µµ ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÄ Áö¼Ó °¡´ÉÇÑ ¹ßÀü°ú ¼¼°èÀÇ °æÀï·ÂÀ» È®º¸ÇÒ °ÍÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº Àü±â Â÷·®, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, °í±Þ »ê¾÷ ÀÚµ¿È­ÀÇ È®»êÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇØ´ç Áö¿ªÀÇ °­·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó¿Í ûÁ¤ ¿¡³ÊÁö ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥Àº È¿À²ÀûÀÎ Àü·Â °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ½ÃÀå Âü¿©¾÷üµéÀº Æ®·£Áö½ºÅÍ ¼º´É Çâ»óÀ» À§ÇØ ¿¬±¸°³¹ß(R&D)¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Çõ½Å°ú °æÀï·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±àÁ¤ÀûÀÎ Ãß¼¼´Â ºÏ¹Ì Áö¿ªÀ» Àü·Â ¹ÝµµÃ¼ ±â¼ú ¹ßÀüÀÇ ÇÙ½É Çãºê·Î ÀÚ¸®¸Å±è½Ã۰í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è ¹× ¿¹Ãø ¹× CAGR(Âü°í : ½ÇÇö °¡´É¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : À¯Çüº°

  • ¾ç±Ø¼º Á¢ÇÕ Æ®·£Áö½ºÅÍ(BJT)
  • ±Ý¼Ó »êÈ­¹° ¹ÝµµÃ¼ Çʵå È¿°ú Æ®·£Áö½ºÅÍ(MOSFET)
  • Àý¿¬ °ÔÀÌÆ® ¾ç±Ø¼º Æ®·£Áö½ºÅÍ(IGBT)
  • ´Ù¸µÅÏ Æ®·£Áö½ºÅÍ
  • Çʵå È¿°ú Æ®·£Áö½ºÅÍ
  • ÀÌÁ¾ Á¢ÇÕ ¾ç±Ø¼º Æ®·£Áö½ºÅÍ
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : Àç·áº°

  • ½Ç¸®ÄÜ
  • ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)
  • ÁúÈ­°¥·ý(GaN)
  • ±âŸ Àç·á

Á¦7Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : Àü¾Ð ¹üÀ§º°

  • ÀúÀü¾Ð(400V ÀÌÇÏ)
  • ÁßÀü¾Ð(400-1,000V)
  • °íÀü¾Ð(1,000V ÀÌ»ó)

Á¦8Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : ±â¼úº°

  • ÀúÀü¾Ð FET
  • RF ¹× ¸¶ÀÌÅ©·ÎÆÄ Àü·Â
  • °íÀü¾Ð FET
  • IGBT Æ®·£Áö½ºÅÍ

Á¦9Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : ¿ëµµº°

  • ¼ÒºñÀÚ ÀüÀÚ
  • ÀÚµ¿Â÷
  • »ê¾÷
  • Åë½Å
  • ¿¡³ÊÁö ¹× Àü·Â
  • Ç×°ø¿ìÁÖ ¹× ¹æ¾î
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ Àü·Â Æ®·£Áö½ºÅÍ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Infineon Technologies AG
  • STMicroelectronics
  • Texas Instruments Incorporated
  • Mitsubishi Electric Corporation
  • Toshiba Corporation
  • NXP Semiconductors NV
  • Renesas Electronics Corporation
  • Vishay Intertechnology, Inc.
  • ROHM Co., Ltd.
  • ON Semiconductor Corporation
  • Diodes Incorporated
  • RFMW Ltd.
  • Microchip Technology Inc.
  • Champion Microelectronics Corp.
  • Linear Integrated Systems Inc.
  • Semikron International GmbH
  • Torex Semiconductor Ltd.
  • Cuprite Semiconductor
HBR 25.06.19

According to Stratistics MRC, the Global Power Transistor Market is accounted for $16.6 billion in 2025 and is expected to reach $26.4 billion by 2032 growing at a CAGR of 6.8% during the forecast period. A power transistor is a semiconductor device designed to handle high current and voltage, commonly used in power amplification, switching, and regulation applications. It functions as a switch or amplifier in electronic circuits, efficiently controlling large amounts of power with minimal energy loss. Power transistors are integral in devices such as power supplies, motor controllers, and audio amplifiers. They are built with robust structures to manage heat and prevent damage during high-power operation. Typical types include bipolar junction transistors (BJTs) and metal-oxide-semiconductor field-effect transistors (MOSFETs), each suited to different performance needs based on switching speed, efficiency, and current-handling capabilities.

Market Dynamics:

Driver:

Rising Demand for Energy-Efficient Electronics

The rising demand for energy-efficient electronics is significantly driving growth in the power transistor market. As consumers and industries prioritize lower energy consumption and sustainable technologies, power transistors crucial for managing and optimizing power flow-are becoming essential. Innovations in smart devices, electric vehicles, and renewable energy systems further fuel this trend. Manufacturers are increasingly investing in advanced semiconductor materials and designs to meet efficiency standards, positioning power transistors as key enablers of the global shift toward energy-conscious solutions.

Restraint:

High Cost of Advanced Materials (GaN, SiC)

The high cost of advanced materials like GaN and SiC significantly hinders the power transistor market by limiting widespread adoption, especially in cost-sensitive applications. This price barrier slows innovation, reduces competitiveness against traditional silicon-based transistors, and restricts market growth. Manufacturers face challenges in scaling production economically, leading to fewer affordable options for end-users. Consequently, the overall market expansion and technology penetration are negatively impacted, delaying potential efficiency and performance improvements.

Opportunity:

Expansion of the Electric Vehicles (EVs)

The growing proliferation of electric vehicles (EVs) is propelling growth in the power transistor market. Power transistors are essential to EVs' effective energy conversion, motor control, and battery management. Wide bandgap semiconductors like SiC and GaN, which have superior efficiency and performance, are being developed and produced more quickly as a result of this growing demand. Power transistors are crucial components that are driving a strong and steady market expansion as the demand for sophisticated power electronics rises along with the global adoption of EVs.

Threat:

Thermal Management Challenges

Thermal management challenges significantly hinder the power transistor market by causing overheating, reduced reliability, and shorter device lifespan. Excess heat leads to performance degradation, increased failure rates, and higher cooling costs, limiting adoption in high-power applications. These issues raise design complexity and manufacturing expenses, deterring innovation and slowing market growth. Consequently, inefficient thermal solutions restrict power transistor efficiency and scalability, impacting industries reliant on robust, high-performance semiconductor components.

Covid-19 Impact

The Covid-19 pandemic disrupted the power transistor market due to supply chain interruptions and reduced industrial demand. Manufacturing slowdowns and logistical challenges caused temporary shortages and delays. However, increased demand for remote work technologies and renewable energy solutions partially offset losses. Post-pandemic recovery has driven market growth, with rising adoption of electric vehicles and smart devices boosting power transistor demand. Overall, the pandemic caused short-term setbacks but accelerated long-term market transformation.

The communication segment is expected to be the largest during the forecast period

The communication segment is expected to account for the largest market share during the forecast period, due to demand for efficient, high-frequency components in devices like smartphones, base stations, and satellite systems. With the rapid expansion of 4G/5G infrastructure, power transistors became crucial for ensuring reliable signal transmission and energy efficiency. This surge in data traffic and connectivity needs has fueled innovation and production, making the communication sector a key contributor to the market's sustained growth and technological advancement.

The darlington transistor segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the darlington transistor segment is predicted to witness the highest growth rate because it increased demand in the industrial and consumer electronics sectors by handling larger loads with less input current, making it perfect for power amplifiers and control systems. During its peak usage period, the market grew as a result of the integration of two transistors in a single package, which simplified circuit design and decreased the number of components. This encouraged creativity and compact product development.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to expanding consumer electronics demand, and advancements in automotive technologies. Countries like China, Japan, and South Korea lead in semiconductor manufacturing, fueling innovation and supply. Government initiatives supporting renewable energy and electric vehicles further accelerate market expansion. The region's strong manufacturing infrastructure and increasing investments in 5G and IoT technologies continue to positively impact the market, ensuring sustained development and global competitiveness.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to expanding adoption of electric vehicles, renewable energy systems, and advanced industrial automation. The region's strong technological infrastructure, coupled with government support for clean energy initiatives, is accelerating demand for efficient power management solutions. Additionally, key market players are investing in R&D to enhance transistor performance, fueling innovation and competitiveness. This positive momentum is positioning North America as a pivotal hub for power semiconductor advancements.

Key players in the market

Some of the key players profiled in the Power Transistor Market include Infineon Technologies AG, STMicroelectronics, Texas Instruments Incorporated, Mitsubishi Electric Corporation, Toshiba Corporation, NXP Semiconductors N.V., Renesas Electronics Corporation, Vishay Intertechnology, Inc., ROHM Co., Ltd., ON Semiconductor Corporation, Diodes Incorporated, RFMW Ltd., Microchip Technology Inc., Champion Microelectronics Corp., Linear Integrated Systems Inc., Semikron International GmbH, Torex Semiconductor Ltd. and Cuprite Semiconductor.

Key Developments:

In November 2024, GUS Technology has signed a Technical Assistance and License Agreement with Japan's Toshiba Corporation. This partnership aims to commercialize next-generation lithium-ion battery cells using Niobium Titanium Oxide (NTO) as the anode, delivering superior performance, enhanced safety, and cost-effective solutions, with a global market launch.

In May 2021, Toshiba Energy Systems & Solutions and GE Renewable Energy announced a strategic partnership to advance offshore wind energy in Japan. The collaboration focuses on localizing key manufacturing processes for GE's Haliade-X offshore wind turbine, aiming to support its commercialization and enhance competitiveness in Japan's growing offshore wind market.

Types Covered:

  • Bipolar Junction Transistor (BJT)
  • Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
  • Insulated-Gate Bipolar Transistor (IGBT)
  • Darlington Transistor
  • Field Effect Transistor
  • Heterojunction Bipolar Transistor
  • Other Types

Materials Covered:

  • Silicon
  • Silicon Carbide (SiC)
  • Gallium Nitride (GaN)
  • Other Materials

Voltage Ranges Covered:

  • Low Voltage (Below 400V)
  • Medium Voltage (400V - 1,000V)
  • High Voltage (Above 1,000V)

Technologies Covered:

  • Low-voltage FETs
  • RF and Microwave Power
  • High-Voltage FETs
  • IGBT Transistor

Applications Covered:

  • Consumer Electronics
  • Automotive
  • Industrial
  • Communication
  • Energy & Power
  • Aerospace & Defense
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power Transistor Market, By Type

  • 5.1 Introduction
  • 5.2 Bipolar Junction Transistor (BJT)
  • 5.3 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
  • 5.4 Insulated-Gate Bipolar Transistor (IGBT)
  • 5.5 Darlington Transistor
  • 5.6 Field Effect Transistor
  • 5.7 Heterojunction Bipolar Transistor
  • 5.8 Other Types

6 Global Power Transistor Market, By Material

  • 6.1 Introduction
  • 6.2 Silicon
  • 6.3 Silicon Carbide (SiC)
  • 6.4 Gallium Nitride (GaN)
  • 6.5 Other Materials

7 Global Power Transistor Market, By Voltage Range

  • 7.1 Introduction
  • 7.2 Low Voltage (Below 400V)
  • 7.3 Medium Voltage (400V - 1,000V)
  • 7.4 High Voltage (Above 1,000V)

8 Global Power Transistor Market, By Technology

  • 8.1 Introduction
  • 8.2 Low-voltage FETs
  • 8.3 RF and Microwave Power
  • 8.4 High-Voltage FETs
  • 8.5 IGBT Transistor

9 Global Power Transistor Market, By Application

  • 9.1 Introduction
  • 9.2 Consumer Electronics
  • 9.3 Automotive
  • 9.4 Industrial
  • 9.5 Communication
  • 9.6 Energy & Power
  • 9.7 Aerospace & Defense
  • 9.8 Other Applications

10 Global Power Transistor Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Infineon Technologies AG
  • 12.2 STMicroelectronics
  • 12.3 Texas Instruments Incorporated
  • 12.4 Mitsubishi Electric Corporation
  • 12.5 Toshiba Corporation
  • 12.6 NXP Semiconductors N.V.
  • 12.7 Renesas Electronics Corporation
  • 12.8 Vishay Intertechnology, Inc.
  • 12.9 ROHM Co., Ltd.
  • 12.10 ON Semiconductor Corporation
  • 12.11 Diodes Incorporated
  • 12.12 RFMW Ltd.
  • 12.13 Microchip Technology Inc.
  • 12.14 Champion Microelectronics Corp.
  • 12.15 Linear Integrated Systems Inc.
  • 12.16 Semikron International GmbH
  • 12.17 Torex Semiconductor Ltd.
  • 12.18 Cuprite Semiconductor
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦