½ÃÀ庸°í¼­
»óǰÄÚµå
1744689

¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, ¼Ö·ç¼Ç À¯Çüº°, ÀÚµ¿È­ ·¹º§º°, Â÷·®º°, ¿ëµµº°, Áö¿ªº°

HD Map for Autonomous Vehicle Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software, Services and Other Components), Solution Type, Level of Automation, Vehicle, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀåÀº 2025³â 40¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGR 32.9%·Î ¼ºÀåÇØ 2032³â±îÁö 297¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸ÊÀº ÀÚÀ²ÁÖÇà ±â¼úÀ» À§ÇÑ Á¤È®ÇÑ µµ·Î ¹× ȯ°æ µ¥ÀÌÅ͸¦ Á¦°øÇϱâ À§ÇØ ¼³°èµÈ °íÇØ»óµµ Áö¸®°ø°£ ¸Ê ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÚµ¿ ÁÖÇà ½Ã½ºÅÛÀÌ µµ·Î º¯È­¸¦ ¿¹ÃøÇϰí Àå¾Ö¹°À» °¨ÁöÇÏ°í ¾ÈÀüÇÑ ³×ºñ°ÔÀ̼ÇÀ» º¸ÀåÇÏ¸ç °í±Þ À̵¿¼º ¼Ö·ç¼Ç¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÕ´Ï´Ù.

5G Automotive Association(5GAA)¿¡ µû¸£¸é, ÀÌ ±â¼úÀº ¾ÕÀ¸·Î ¸¹Àº µðÁöÅÐ ÀÚµ¿Â÷ ¼­ºñ½º¿¡ ´õ ³ôÀº ǰÁúÀ» Á¦°øÇÒ °ÍÀÔ´Ï´Ù.

½Ç½Ã°£ ¸Ê ¾÷µ¥ÀÌÆ®¿¡ ´ëÇÑ °ü½É Áõ°¡

ÀÚÀ² ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ½Ç½Ã°£ HD ¸Ê ¾÷µ¥ÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ Ã³¸®ÀÇ Áøº¸·Î Áö¼ÓÀûÀÎ ¾÷µ¥ÀÌÆ®°¡ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÚÀ² À̵¿ÀÌ È®´ëµÊ¿¡ µû¶ó ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®´Â Â÷·®ÀÇ ÀÇ»ç °áÁ¤À» °­È­Çϰí, Ž»ö ¿À·ù¸¦ ÁÙÀ̰í, °æ·Î °èȹÀ» ÃÖÀûÈ­Çϰí È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

½Ç½Ã°£ Á¤º¸ ¹× µ¿Àû ¾÷µ¥ÀÌÆ®ÀÇ ºÎÁ·

µµ·Î »óȲÀº °ø»ç, »ç°í, ³¯¾¾ÀÇ º¯È­ µî¿¡ µû¶ó ÀÚÁÖ º¯È­Çϱ⠶§¹®¿¡ Ç×»ó °»½ÅÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ Å¸»ç ¸ÅÇÎ °ø±ÞÀÚ¿¡ µû¶ó ¾÷µ¥ÀÌÆ®°¡ Áö¿¬µÇ°í ³×ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÇ ½Å·Ú¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ½ÃÀå µµÀÔÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.

Å©¶ó¿ìµå¼Ò½ÌÀ» ÅëÇÑ ¸ÅÇÎ ¹× Â÷·® ÇнÀ

ÀÚÀ²ÁÖÇàÂ÷¿Í Ä¿³ØÆ¼µå Çø´Àº µµ·Î µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ¼öÁý ¹× °øÀ¯ÇÏ°í ¸ÊÀÇ Á¤È®µµ¿Í ÀÀ´ä¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. º¸´Ù ¸¹Àº Â÷·®ÀÌ ¸Ê ³×Æ®¿öÅ©¿¡ ±â¿©ÇÔÀ¸·Î½á HD ¸ÊÀÇ È®À强°ú Á¤È®¼ºÀÌ Çâ»óµÇ°í, ¼öµ¿ ¾÷µ¥ÀÌÆ®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ÁÙ¾îµé°í, ÀÚÀ² À̵¿À» À§ÇÑ ÀûÀÀÀûÀÎ ·çÆ® ÃÖÀûÈ­°¡ °¡´ÉÇÕ´Ï´Ù.

¹«Áöµµ ¶Ç´Â ¼¾¼­ Àü¿ë ÀÚÀ² ÁÖÇà Á¢±Ù ¹æ½ÄÀÇ »ó½Â

ÀϺΠÀÚÀ² ÁÖÇà ½Ã½ºÅÛÀº LiDAR, ·¹ÀÌ´õ ¹× ¿Âº¸µå AI¿¡¸¸ ÀÇÁ¸ÇÏ¿© ÁÖº¯ »óȲÀ» ½Ç½Ã°£À¸·Î ÇØ¼®ÇÏ¸ç »çÀü ¸ÅÇÎµÈ µ¥ÀÌÅͰ¡ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¿¹Ãø ºÒ°¡´ÉÇÑ È¯°æ¿¡¼­ÀÇ ÀûÀÀ¼ºÀ» Çâ»ó½ÃŰ´Â ¹Ý¸é, ƯÁ¤ ¿ëµµ¿¡¼­´Â HD ¸Ê ¼ö¿ä¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¼¾¼­ ±â¹Ý ³×ºñ°ÔÀ̼ÇÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó HD ¸Ê Á¦°ø¾÷ü´Â ¸Ê µ¥ÀÌÅÍ¿Í ½Ç½Ã°£ Áö°¢ ±â¼úÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ¿© Çõ½ÅÇÏ°í ½ÃÀåÀÇ Å¸´ç¼ºÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

ÆÒµ¥¹Í(¼¼°èÀû ´ëÀ¯Çà)Àº ºñÁ¢ÃË½Ä ¿î¼Û ¹× ¹°·ùÀÇ È¿À²È­¸¦ ¿ä±¸ÇÏ´Â »ê¾÷°è¿¡ ÀÚÀ²Çü ¸ðºô¸®Æ¼ ¹× µðÁöÅÐ ¸Ê ¼Ö·ç¼ÇÀÇ µµÀÔÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. Ãʱâ È¥¶õÀº ÁöµµÀÇ ÀÎÇÁ¶ó¿Í µ¥ÀÌÅÍ ¼öÁý¿¡ ¿µÇâÀ» ÁÖ¾úÁö¸¸, ÀÚµ¿ ³×ºñ°ÔÀ̼Ç, ½º¸¶Æ® ½ÃƼ ÅëÇÕ, AI ±â¹Ý À̵¿¼º¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷Àº ÀÚÀ²ÀûÀÎ ¹è¼Û ½Ã½ºÅÛ, ¶óÀÌµå ½¦¾î Ç÷§Æû, Áö´ÉÇü ±³Åë °ü¸®¿¡ ÅõÀÚÇÏ¿© Æ÷½ºÆ®ÆÒµ¥¹Í µµ½Ã °èȹ ¹× À̵¿¼º Àü·«¿¡¼­ HD ¸ÊÀÇ Á߿伺À» °­È­Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â AI¸¦ Ȱ¿ëÇÑ ¸ÅÇÎ, Ŭ¶ó¿ìµå ±â¹Ý ¾÷µ¥ÀÌÆ®, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ Áøº¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÀÚÀ² ÁÖÇà Â÷·® ½Ã½ºÅÛ°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ³»ºñ°ÔÀ̼ÇÀÇ Á¤È®¼º°ú ÀÇ»ç°áÁ¤À» °­È­ÇÕ´Ï´Ù. AI ±¸µ¿ ¾Ë°í¸®ÁòÀº ¸ÅÇÎ Á¤¹Ðµµ¸¦ Çâ»ó½ÃÄÑ Â÷·®ÀÌ µµ·Î »óȲÀ» È¿°úÀûÀ¸·Î ÇØ¼®ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ ¼ÒÇÁÆ®¿þ¾î ±â¹Ý HD ¸ÊÀº ¿¹Ãø ºÐ¼®À» ÃËÁøÇϰí ÀÚÀ² ÁÖÇà ½Ã½ºÅÛÀÌ Àå¾Ö¹°À» ¿¹ÃøÇÏ°í µ¿ÀûÀ¸·Î °æ·Î¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý HD ¸Ê ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý HD ¸Ê ºÐ¾ß´Â È®À强, Á¢±Ù¼º, Áö¼ÓÀûÀÎ ¾÷µ¥ÀÌÆ®°¡ ¿¬·á°¡ µÇ°í °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸ÊÀº ¿§Áö ÄÄÇ»ÆÃ°ú AI °­È­ 󸮸¦ Ȱ¿ëÇÏ¿© ±³Åë ÆÐÅÏ, µµ·Î »óȲ, ȯ°æ º¯È­ÀÇ Áï°¢ÀûÀÎ °»½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÌÀ¯´Â ÀÚÀ² ÁÖÇà Â÷·®ÀÇ º¸±Þ, Á¤ºÎ ±ÔÁ¦, ½º¸¶Æ® ¸ðºô¸®Æ¼ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ °ßÁ¶Çϱ⠶§¹®ÀÔ´Ï´Ù. ÀÚÀ² ÁÖÇàÀÇ ¾ÈÀü¼º°ú ½º¸¶Æ® ½ÃƼÀÇ ÅëÇÕÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÌ HD ¸ÊÀÇ Àü°³¸¦ °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ºÏ¹ÌÀÇ À§Ä¡´Â ½ÃÀåÀÇ È®´ë¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ­, ÀÚµ¿Â÷ »ý»ê Áõ°¡, AI¸¦ Ȱ¿ëÇÑ ¼ö¼Û ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÇÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÎÇÁ¶ó, AI¸¦ Ȱ¿ëÇÑ ¸ÅÇÎ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ ½Ç½ÃÇß½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀÏ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • Ä«¸Þ¶ó
    • LiDAR
    • ·¹ÀÌ´õ
    • GPS ¹× GNSS
    • IMU
    • ±âŸ
  • ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ Áý¾à ¹× ¸ÊÇÎ ¼ÒÇÁÆ®¿þ¾î
    • 3D ¸ÅÇÎ ¼ÒÇÁÆ®¿þ¾î
    • ÇöÁöÈ­ ¼ÒÇÁÆ®¿þ¾î
    • Áö°¢ ¼ÒÇÁÆ®¿þ¾î
    • °æ·Î °èȹ ¼ÒÇÁÆ®¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ® ¹× À¯Áö º¸¼ö
  • ¼­ºñ½º
    • ¸ÅÇÎ ¹× ÇöÁöÈ­ ¼­ºñ½º
    • ¾÷µ¥ÀÌÆ® ¹× À¯Áöº¸¼ö ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¼­ºñ½º
    • ±¤°í ¼­ºñ½º
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : ¼Ö·ç¼Ç À¯Çüº°

  • Ŭ¶ó¿ìµå ±â¹Ý HD ¸Ê
  • ÀÓº£µðµå HD ¸Ê

Á¦7Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : ÀÚµ¿È­ ¼öÁغ°

  • ¹Ý AV
    • ·¹º§ 2(ºÎºÐ ¿îÀü ÀÚµ¿È­)
    • ·¹º§ 3(Á¶°ÇºÎ ¿îÀü ÀÚµ¿È­)
  • ¿ÏÀü AV
    • ·¹º§ 4(°í±Þ ¿îÀü ÀÚµ¿È­)
    • ·¹º§ 5(¿ÏÀüÇÑ ¿îÀü ÀÚµ¿È­)
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : Â÷·®º°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
    • ¼ÒÇü »ó¿ëÂ÷(LCV)
    • ´ëÇü »ó¿ëÂ÷(HCV)

Á¦9Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : ¿ëµµº°

  • ÆÛ½º³Î ¸ðºô¸®Æ¼
  • »ó¿ë À̵¿¼º
  • ¸ÅÇÎ
  • ÇöÁöÈ­
  • Àå¾Ö¹° °ËÃâ
  • ÆÐ½ºÇ÷¡´×
  • ±³Åë°ü¸®
  • Çø´ °ü¸®
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • NVIDIA
  • TomTom
  • HERE Technologies
  • Waymo
  • Baidu
  • Dynamic Map Platform
  • NavInfo
  • Mapbox
  • Carmera
  • Zenrin
  • Civil Maps
  • Woven Planet Holdings(Toyota subsidiary)
  • Atlatec
  • Intel Mobileye
  • Mapillary
  • DeepMap
  • Sanborn Map Company
JHS 25.06.19

According to Stratistics MRC, the Global HD Map for Autonomous Vehicle Market is accounted for $4.0 billion in 2025 and is expected to reach $29.7 billion by 2032 growing at a CAGR of 32.9% during the forecast period. HD map for autonomous vehicles is a high-resolution, geospatial mapping system designed to provide precise road and environmental data for self-driving technology. These maps go beyond traditional navigation, offering detailed lane-level accuracy, 3D road structures, and real-time updates on traffic conditions. They integrate LiDAR, GPS, AI, and sensor fusion to enhance vehicle localization and route optimization. HD maps enable autonomous systems to anticipate road changes, detect obstacles, and ensure safe navigation, playing a crucial role in advanced mobility solutions.

According to the 5G Automotive Association (5GAA), this technology will offer even higher quality for many digital in-car services in the future. Thus, all these factors will directly propel the growth of HD mapping for the autonomous vehicles market in the near future.

Market Dynamics:

Driver:

Growing focus on real-time map updates

The increasing reliance on autonomous driving technology has heightened the demand for real-time HD map updates. These maps provide precise road conditions, traffic patterns, and environmental changes, ensuring seamless navigation for self-driving vehicles. Advancements in AI-driven mapping, sensor fusion, and cloud-based data processing are enabling continuous updates. As autonomous mobility expands, real-time updates will play a crucial role in enhancing vehicle decision-making, reducing navigation errors, and optimizing route planning for improved efficiency.

Restraint:

Lack of real-time information and dynamic updates

Road conditions frequently change due to construction, accidents, and weather variations, requiring constant updates. However, limitations in data collection, processing speed, and integration with vehicle systems can lead to outdated information, affecting autonomous vehicle performance. Additionally, reliance on third-party mapping providers may introduce delays in updates, impacting the reliability of navigation systems and slowing market adoption.

Opportunity:

Crowdsourced mapping and fleet learning

Autonomous vehicles and connected fleets can continuously collect and share road data, enhancing map accuracy and responsiveness. This approach leverages AI-driven analytics, vehicle sensors, and real-time feedback loops to refine navigation systems dynamically. As more vehicles contribute to mapping networks, the scalability and precision of HD maps improve, reducing dependency on manual updates and enabling adaptive route optimization for autonomous mobility.

Threat:

Rise of mapless or sensor-only autonomous driving approaches

Some autonomous systems rely solely on LiDAR, radar, and onboard AI to interpret surroundings in real time, eliminating the need for pre-mapped data. While this approach enhances adaptability in unpredictable environments, it may reduce demand for HD maps in certain applications. As sensor-based navigation evolves, HD map providers must innovate by integrating hybrid solutions that combine mapping data with real-time perception technologies to maintain market relevance.

Covid-19 Impact:

The pandemic accelerated the adoption of autonomous mobility and digital mapping solutions, as industries sought contactless transportation and logistics efficiency. While initial disruptions affected mapping infrastructure and data collection, the demand for automated navigation, smart city integration, and AI-driven mobility surged. Governments and enterprises invested in autonomous delivery systems, ride-sharing platforms, and intelligent traffic management, reinforcing the importance of HD maps in post-pandemic urban planning and mobility strategies.

The software segment is expected to be the largest during the forecast period

The software segment is expected to account for the largest market share during the forecast period driven by advancements in AI-powered mapping, cloud-based updates, and real-time data processing. These solutions enable seamless integration with autonomous vehicle systems, enhancing navigation accuracy and decision-making. AI-driven algorithms refine mapping precision, ensuring vehicles can interpret road conditions effectively. Additionally, software-based HD maps facilitate predictive analytics, allowing autonomous systems to anticipate obstacles and optimize routes dynamically.

The cloud-based HD maps segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cloud-based HD maps segment is predicted to witness the highest growth rate fueled by scalability, accessibility, and continuous updates. Cloud-based solutions provide real-time synchronization; ensuring autonomous vehicles receive the latest road data for optimized performance. These maps leverage edge computing and AI-enhanced processing, enabling instant updates on traffic patterns, road conditions, and environmental changes. The ability to integrate with connected vehicle ecosystems enhances operational efficiency, reducing reliance on static mapping systems.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed strong autonomous vehicle adoption, government regulations, and investments in smart mobility infrastructure. The region benefits from advanced AI research, high-tech automotive innovation, and strategic collaborations between mapping providers and automakers. Additionally, regulatory frameworks promoting autonomous driving safety and smart city integration are accelerating HD map deployment further strengthens market expansion, positioning North America.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR driven by rapid urbanization, increasing automotive production, and AI-driven transportation initiatives. Countries like China, Japan, and South Korea are investing heavily in autonomous mobility, smart infrastructure, and AI-powered mapping technologies. Government-backed initiatives supporting intelligent transportation systems and connected vehicle networks are fueling demand for HD maps.

Key players in the market

Some of the key players in HD Map for Autonomous Vehicle Market include NVIDIA, TomTom, HERE Technologies, Waymo, Baidu, Dynamic Map Platform, NavInfo, Mapbox, Carmera, Zenrin, Civil Maps, Woven Planet Holdings (Toyota subsidiary), Atlatec, Intel Mobileye, Mapillary, DeepMap, and Sanborn Map Company.

Key Developments:

In May 2025, NVIDIA unveiled NVLink Fusion, a new silicon technology enabling industries to build semi-custom AI infrastructure with the vast ecosystem of partners using NVIDIA NVLink. This advancement aims to enhance the performance and scalability of AI systems.

In May 2025, Waymo announced an investment in a new autonomous vehicle factory in Metro Phoenix, in partnership with Magna, to scale its fleet and meet growing U.S. ridership demand.

In April 2025, TomTom partnered with smart to provide enhanced navigation solutions for smart #1, #3, and #5 models, elevating the driving experience with industry-leading navigation technology.

Components Covered:

  • Hardware
  • Software
  • Services
  • Other Components

Solution Types Covered:

  • Cloud-Based HD Maps
  • Embedded HD Maps

Level of Automations Covered:

  • Semi-Autonomous Vehicles
  • Fully Autonomous Vehicles
  • Other Level of Automations

Vehicles Covered:

  • Passenger Vehicles
  • Commercial Vehicles

Applications Covered:

  • Personal Mobility
  • Commercial Mobility
  • Mapping
  • Localization
  • Obstacle Detection
  • Path Planning
  • Traffic Management
  • Fleet Management
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global HD Map for Autonomous Vehicle Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Cameras
    • 5.2.2 LiDAR
    • 5.2.3 Radar
    • 5.2.4 GPS/GNSS
    • 5.2.5 IMU (Inertial Measurement Unit)
    • 5.2.6 Other Hardwares
  • 5.3 Software
    • 5.3.1 Data Aggregation & Mapping Software
    • 5.3.2 3D Mapping Software
    • 5.3.3 Localization Software
    • 5.3.4 Perception Software
    • 5.3.5 Path Planning Software
    • 5.3.6 Update & Maintenance Software
  • 5.4 Services
    • 5.4.1 Mapping & Localization Services
    • 5.4.2 Updates & Maintenance Services
    • 5.4.3 Consulting Services
    • 5.4.4 Advertisement Services
  • 5.5 Other Components

6 Global HD Map for Autonomous Vehicle Market, By Solution Type

  • 6.1 Introduction
  • 6.2 Cloud-Based HD Maps
  • 6.3 Embedded HD Maps

7 Global HD Map for Autonomous Vehicle Market, By Level of Automation

  • 7.1 Introduction
  • 7.2 Semi-Autonomous Vehicles
    • 7.2.1 Level 2 (Partial Driving Automation)
    • 7.2.2 Level 3 (Conditional Driving Automation)
  • 7.3 Fully Autonomous Vehicles
    • 7.3.1 Level 4 (High Driving Automation)
    • 7.3.2 Level 5 (Full Driving Automation)
  • 7.4 Other Level of Automations

8 Global HD Map for Autonomous Vehicle Market, By Vehicle

  • 8.1 Introduction
  • 8.2 Passenger Vehicles
  • 8.3 Commercial Vehicles
    • 8.3.1 Light Commercial Vehicles (LCVs)
    • 8.3.2 Heavy Commercial Vehicles (HCVs)

9 Global HD Map for Autonomous Vehicle Market, By Application

  • 9.1 Introduction
  • 9.2 Personal Mobility
  • 9.3 Commercial Mobility
  • 9.4 Mapping
  • 9.5 Localization
  • 9.6 Obstacle Detection
  • 9.7 Path Planning
  • 9.8 Traffic Management
  • 9.9 Fleet Management
  • 9.10 Other Applications

10 Global HD Map for Autonomous Vehicle Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 NVIDIA
  • 12.2 TomTom
  • 12.3 HERE Technologies
  • 12.4 Waymo
  • 12.5 Baidu
  • 12.6 Dynamic Map Platform
  • 12.7 NavInfo
  • 12.8 Mapbox
  • 12.9 Carmera
  • 12.10 Zenrin
  • 12.11 Civil Maps
  • 12.12 Woven Planet Holdings (Toyota subsidiary)
  • 12.13 Atlatec
  • 12.14 Intel Mobileye
  • 12.15 Mapillary
  • 12.16 DeepMap
  • 12.17 Sanborn Map Company
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦