½ÃÀ庸°í¼­
»óǰÄÚµå
1766037

³ª³ëÀç·á ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, ±¸Á¶ À¯Çü, Àç·á À¯Çü, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Nanomaterials Market Forecasts to 2032 - Global Analysis By Product Type (Nanoparticles, Nanofibers, Nanotubes and Nanowires), Structure Type (Non-polymer Organic Nanomaterials and Polymeric Nanomaterials), Material Type, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀåÀº 2025³â¿¡ 170¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)Àº 17.0%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 510¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

³ª³ë¹°ÁúÀº 100 ³ª³ë¹ÌÅÍ ÀÌÇÏÀÇ ±¸Á¶ ¼ººÐÀ» °¡Áø ¹°Áú·Î, ¹úÅ© ¹°Áú¿¡ ºñÇØ µ¶Æ¯ÇÑ ¹°¸®Àû, È­ÇÐÀû, »ý¹°ÇÐÀû Ư¼ºÀ» º¸ÀÔ´Ï´Ù. ³ª³ë¹°ÁúÀº ÃʼÒÇü Å©±â¿Í ³ôÀº Ç¥¸éÀû ´ë ºÎÇǺñ·Î ÀÎÇØ ³ôÀº ¹ÝÀÀ¼º, Àü±âÀüµµµµ Çâ»ó, °æ·®È­, °­µµ Çâ»óÀ» ÀÚÁÖ ³ªÅ¸³À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Æ¯¼ºÀº ÄÚÆÃ, ÀüÀÚ, ÀÇ·á, ¿¡³ÊÁö ÀúÀå, ȯ°æ Á¤È­ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ À¯¿ëÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹ ±¹°¡³ª³ë±â¼úÁøÈï°èȹ(NNI)¿¡ µû¸£¸é, 2025³â±îÁö ¹Ì±¹ ¿¬¹æÁ¤ºÎ´Â ³ª³ë±â¼ú ¿¬±¸¿¡ 450¾ï ´Þ·¯ ÀÌ»óÀ» ÅõÀÚÇϰí, 17¸¸ ¸í ÀÌ»óÀÇ ³ª³ë±â¼ú °ü·Ã °í¿ëÀ» Áö¿øÇϸç, ³ª³ë±â¼ú ¿¬±¸°³¹ß·Î ºÐ·ùµÇ´Â ¾à 1,600°³ ±â¾÷¿¡¼­ 445¾ï ´Þ·¯ÀÇ ¼öÀÍÀ» âÃâÇÒ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù. ¿Ã¸®°í ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ ¹× ÀüÀÚÁ¦Ç° ¼ö¿ä Áõ°¡

±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, Àº³ª³ë¿ÍÀ̾î¿Í °°Àº ³ª³ë¹°ÁúÀº ´õ ÀÛ°í, ´õ ºü¸£°í, ´õ ÀûÀº ¿¡³ÊÁö·Î ÀÛµ¿ÇÏ´Â µð¹ÙÀ̽ºÀÇ ½ÇÇöÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÀüÀÚ»ê¾÷¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. À̵éÀº ÀμâÀüÀÚ, Ç÷º¼­ºí µð½ºÇ÷¹ÀÌ, °íÈ­Áú TV¿¡ Ȱ¿ëµÇ´Â ¾çÀÚÁ¡¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÷´Ü ÄÄÇ»ÆÃ°ú »ç¹°ÀÎÅͳÝ(IoT) ¿ëµµ´Â ¹ÝµµÃ¼ÀÇ Æ®·£Áö½ºÅÍ ¹Ðµµ Çâ»ó°ú Àü·Â ¼Òºñ °¨¼Ò¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ºñ¼ÒÀç°¡ À̸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ Áß±¹, Çѱ¹, ´ë¸¸ µî ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡¸¦ Áß½ÉÀ¸·Î ÃÖ±Ù ¼¼°è ÀüÀÚÁ¦Ç° »ý»ê·®ÀÌ ±ÞÁõÇÔ¿¡ µû¶ó ºñ¼ÒÀç ½ÃÀåµµ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾öû³­ »ý»ê ¹× °¡°ø ºñ¿ë

³ª³ë ¹°ÁúÀÇ »ý»ê, ƯÈ÷ »ó¾÷Àû ±Ô¸ðÀÇ »ý»êÀº ¿ì¼öÇÑ Ç°Áú¿¡µµ ºÒ±¸ÇÏ°í º¹ÀâÇÏ°í ºñ½Î°í ¿¡³ÊÁö Áý¾àÀûÀÎ ÀýÂ÷¸¦ ¼ö¹ÝÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. °íÁ¤¹Ð ºÐ¼â, Á¹-°Ö ÇÕ¼º, È­ÇÐ ±â»ó ¼ºÀå µîÀº Ư¼ö °ø±¸, ¼ø¼öÇÑ Àç·á, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦°¡ ÇÊ¿äÇÑ °øÁ¤ÀÇ ÇÑ ¿¹ÀÔ´Ï´Ù. Á¦Á¶ ½Ã ÀÔÀÚ Å©±âÀÇ ±ÕÀϼºÀ» À¯ÁöÇϰí ÀÀÁýÀ» ÇÇÇϱâ À§ÇØ ºñ¿ëÀº ´õ¿í »ó½ÂÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ³ôÀº ÀÚº» ºñ¿ë°ú ¿î¿µ ºñ¿ëÀº °¡°Ý¿¡ ¹Î°¨ÇÑ »ê¾÷¿¡¼­ ³Î¸® äÅõDZ⿡´Â Á¦¾àÀÌ µÇ¸ç, ƯÈ÷ Áß¼Ò±â¾÷(SME)ÀÇ °æ¿ì, ³ª³ë ¼ÒÀçÀÇ °æÁ¦¼º°ú Á¢±Ù¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù.

ģȯ°æÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ³ª³ë±â¼ú¿¡ ´ëÇÑ °ü½É Áõ°¡

³ª³ë¼ÒÀç´Â ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ģȯ°æÀûÀÎ ¼Ö·ç¼ÇÀÌ °­Á¶µÇ¸é¼­ Æó±â¹° Á¤È­, °ø±â ¿©°ú, ¼öÁú Á¤È­ µîÀÇ ºÐ¾ß¿¡¼­ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á߱ݼÓ, º´¿ø±Õ, À¯±â¿À¿°¹°ÁúÀº ±¤Ã˸гª³ëÀÔÀÚ ¹× ³ª³ë±¸Á¶¸·À» ÀÌ¿ëÇÏ¿© ¼ö¿ø¿¡¼­ Á¦°ÅµÇ°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ±Ý¼Ó »êÈ­¹°°ú ź¼Ò ³ª³ëÀÔÀÚ´Â °íµµÀÇ °ø±â ¿©°ú ½Ã½ºÅÛÀ» ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ģȯ°æ ³ª³ë¼ÒÀçÀÇ ÀÀ¿ëÀº ³ì»ö±â¼ú°ú ¼øÈ¯°æÁ¦ÀÇ ¿øÄ¢À» ÁöÁöÇÏ´Â Á¤ºÎ ¹× ±¹Á¦±â±¸ÀÇ ÅõÀÚ¸¦ À̲ø¾î ³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀº ±â¼úÀÇ ÁøºÎÈ­¸¦ ÃÊ·¡ÇÕ´Ï´Ù.

³ª³ë Àç·á ºÐ¾ß´Â ºü¸£°Ô ¹ßÀüÇϰí Àֱ⠶§¹®¿¡ ±â¼úÀÌ ½ÃÀå¿¡ ³Î¸® ¼ö¿ëµÇ±â Àü¿¡ ±â¼úÀÌ ÁøºÎÈ­µÉ ¼ö ÀÖ½À´Ï´Ù. ¸î³â¾È¿¡ ´õ ¿ì¼öÇϰųª ´õ Àú·ÅÇÑ ³ª³ë¹°ÁúÀÌ ÇöÀç ¸¸µé¾îÁø ³ª³ë¹°ÁúÀ» ´ëüÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ R&D ¿¹»êÀÌ ºÎÁ·ÇÑ Áß¼Ò±â¾÷ÀÇ °æ¿ì, ÀÌ·¯ÇÑ ºü¸¥ Çõ½Å ÁÖ±â´Â ƯÁ¤ ³ª³ë ¹°Áú¿¡ ´ëÇÑ Àå±âÀûÀÎ ÅõÀÚ¸¦ ¹æÇØÇϰí ÅõÀÚ À§ÇèÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ ½ÃÀåÀÇ ¼±È£µµ°¡ °©Àڱ⠹ٲî¸é Á¦Á¶ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÀÚº» ÁöÃâÀº ¾µ¸ð¾ø¾îÁú ¼ö ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

Äڷγª19 »çÅ´ ³ª³ë¼ÒÀç ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ƯÈ÷ Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ ³ëµ¿·Â ºÎÁ·, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ, »ê¾÷ Ȱµ¿ÀÇ °¨¼Ò·Î ÀÎÇØ ¿¬±¸ ÇÁ·ÎÁ§Æ® ¹× Á¦Á¶°¡ ÀϽÃÀûÀ¸·Î Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí ÀÌ À§±â´Â Ç×¹ÙÀÌ·¯½º ÄÚÆÃ, ÷´Ü °³Àκ¸È£±¸(PPE), ¹ÙÀÌ¿À¼¾¼­ ¹× ½Å¼Ó °Ë»ç ŰƮ¿Í °°Àº Áø´Ü Àåºñ¿Í °°Àº À§»ý ¹× ÀÇ·á ÀÀ¿ë ºÐ¾ß¿¡¼­ ³ª³ë ¼ÒÀçÀÇ Çʿ伺À» Áõ°¡½ÃÄ×½À´Ï´Ù. ³ª³ë±â¼úÀº Äڷγª19 ¿¹¹æÁ¢Á¾ÀÇ È¿°ú¿Í ¾à¹° Àü´Þ ¹æ¹ýÀ» °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀ̾ú½À´Ï´Ù. ÀÌ µÎ °¡Áö È¿°ú·Î ÀÎÇØ ³ª³ë¹°ÁúÀº °øÁߺ¸°Ç°ú ¹Ì·¡ Àü¿°º´ ´ëÀÀ¿¡ ÇʼöÀûÀÎ °ÍÀ¸·Î ¿©°ÜÁö°Ô µÇ¾ú°í, ÀϽÃÀûÀΠħü±â¸¦ °ÅÃÄ Àü·«Àû ÅõÀÚ¿Í °³¹ßÀÌ ±ÞÁõÇß½À´Ï´Ù.

³ª³ë ÀÔÀÚ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

³ª³ë ÀÔÀÚ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ª³ëÀÔÀÚ°¡ ¼±È£µÇ´Â ÀÌÀ¯´Â ³ª³ëÀÔÀÚÀÇ ¶Ù¾î³­ ´Ù¸ñÀû¼º ¶§¹®ÀÔ´Ï´Ù. ÀüÀÚÁ¦Ç°¿¡¼­´Â Àμ⠼¾¼­ ¹× Àüµµ¼º À×Å©·Î »ç¿ëµÇ¸ç, ÀÇ·á ºÐ¾ß¿¡¼­´Â ÀÌ»êȭƼŸ´½°ú »êÈ­¾Æ¿¬ÀÌ Àڿܼ± Â÷´ÜÁ¦, È­Àåǰ, Ç×±Õ ÄÚÆÃÁ¦, Ã˸ŠÀÛ¿ë¿¡¼­´Â ¹é±Ý°ú Àº ³ª³ëÀÔÀÚ°¡ È­ÇйÝÀÀÀ» °³¼±ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, µ§µå¸®¸Ó´Â ±¤ÇÐ, Àü±â, È­ÇÐÀû Ư¼ºÀ» Á¶ÀýÇÒ ¼ö Àֱ⠶§¹®¿¡ ¸¹Àº ºÐ¾ß¿¡¼­ ÇʼöÀûÀ̸ç, ½ÃÀåÀ» ¼±µµÇÏ´Â ÀÔÁö¸¦ ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µ§µå¸®¸Ó ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µ§µå¸®¸Ó ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ§µå¸®¸Ó´Â ³ª¹«¿Í °°ÀÌ °íµµ·Î ºÐÁöµÈ °íºÐÀڷΠǥ¸é ±â´É¼º, Å©±â, Çü»ó Á¤¹Ðµµ°¡ ¿ì¼öÇÑ °íºÐÀÚÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ±¤¿ªÇÐÀû ¾Ï Ä¡·á, À¯ÀüÀÚ Ä¡·á, Ç¥Àû ¾à¹° Åõ¿©, ÀÇ·á¿ë À̹Ì¡¿¡ ÀûÇÕÇÕ´Ï´Ù. µ§µå¸®¸Ó´Â ¿ëÇØ¼º, Á¶Á÷ Ç¥ÀûÈ­, ÆäÀ̷εå Á¦¾î¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ¾î ¿¬±¸°³¹ß¿¡ Å« °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ§µå¸®¸ÓÀÇ ÀÀ¿ëÀº Á¦¾à ¹× »ý¹° ÀÇÇÐ ºÎ¹®ÀÌ ³ª³ë ÀÇÇÐÀÇ ¹ßÀüÀ» °è¼Ó ¿ì¼±½ÃÇÏ´Â ÇÑ, ³ª³ë Àç·áÀÇ Àü¸Á Áß °¡Àå ºü¸¥ ¼Óµµ·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹, Àεµ ¹× ±âŸ ±¹°¡µéÀÇ È°¹ßÇÑ R&D ÅõÀÚ, °­·ÂÇÑ Á¤ºÎ Áö¿ø ¹× ºü¸¥ »ê¾÷È­¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀüÀÚÁ¦Ç° Á¦Á¶ÀÇ È£Á¶, ÇコÄÉ¾î ¹× Á¦¾à »ê¾÷ÀÇ È®Àå, ¿¡³ÊÁö ÀúÀå, ÄÚÆÃ, ȯ°æ ÀÀ¿ë ºÐ¾ß¿¡¼­ ³ª³ë ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¸ðµÎ ÀÌ Áö¿ª¿¡ ÀÌÀÍÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹Àº ³·Àº Á¦Á¶ ºñ¿ë, ´ë±Ô¸ð »ý»ê ´É·Â, Á¤ºÎ ÁÖµµÀÇ ³ª³ë ±â¼ú ÇÁ·ÎÁ§Æ®·Î ÀÎÇØ ¼¼°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ª³ë¼ÒÀç ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§´Â »ê¾÷ ±â¹Ý È®´ë¿Í »ê¾÷ Àü¹ÝÀÇ »ç¿ë Áõ°¡·Î ÀÎÇØ ´õ¿í È®°íÇØÁ³½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«Àº ¼®À¯ ¹× °¡½º ÀÀ¿ë, ³ª³ë ±â¼úÀ» ÀÌ¿ëÇÑ ¼öó¸®, ÀÇ·á ½Ã¼³¿¡ ´ëÇÑ ÁöÃâ Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³²¾ÆÇÁ¸®Ä«°øÈ­±¹, »ç¿ìµð¾Æ¶óºñ¾Æ, ¾Æ¶ø¿¡¹Ì¸®Æ®¿Í °°Àº ±¹°¡µéÀº °æÁ¦ ´Ùº¯È­¸¦ Àû±ØÀûÀ¸·Î ÃßÁøÇϰí ÀÖÀ¸¸ç, ÀÇ·á, ¿¡³ÊÁö, ȯ°æ º¹¿ø µîÀÇ »ê¾÷¿¡ Á¤±³ÇÑ ¼ÒÀ縦 µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, ¿Ü±¹ ¿¬±¸±â°ü°úÀÇ Á¦ÈÞ È®´ë, Áö¼Ó °¡´ÉÇÑ ±â¼ú äÅà µîÀÇ °á°ú·Î ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀå ±Ô¸ð´Â ÀÛÁö¸¸, ºü¸¥ ½ÃÀå °³Ã´À¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÌ´Â Áö¿ªÀÌ µÇ¾ú½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀå : Á¦Ç° À¯Çüº°

  • ³ª³ëÀÔÀÚ
  • ³ª³ë¼¶À¯
  • ³ª³ëÆ©ºê
  • ³ª³ë¿ÍÀ̾î

Á¦6Àå ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀå : ±¸Á¶ À¯Çüº°

  • ºñÆú¸®¸Ó À¯±â ³ª³ëÀç·á
  • Æú¸®¸Ó ³ª³ëÀç·á

Á¦7Àå ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀå : Àç·á À¯Çüº°

  • ź¼Ò°è ³ª³ëÀç·á
  • ±Ý¼Ó ¹× ºñ±Ý¼Ó »êÈ­¹°
  • ±Ý¼Ó ±â¹Ý ³ª³ëÀç·á
  • ³ª³ëŬ·¹ÀÌ
  • µ§µå¸®¸Ó
  • ³ª³ë¼¿·ê·Î¿À½º
  • ¿£Áö´Ï¾î¸µ Æú¸®¸Ó
  • ±âŸ Àç·á À¯Çü

Á¦8Àå ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀå : ¿ëµµº°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷
  • ÀÇ·á ¹× ÇコÄɾî
  • ¿¡³ÊÁö ¹× Àü·Â
  • °Ç¼³
  • °í¹«
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ÆäÀÎÆ® ¹× ÄÚÆÃ
  • ¼ÒºñÀç
  • ÆÛ½º³ÎÄɾî
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ³ª³ëÀç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Bayer AG
  • Evonik Industries AG
  • Arkema Group
  • LG Chem Ltd.
  • American Elements Inc
  • Nanophase Technologies Corporation
  • Cabot Corporation
  • BASF SE
  • Quantum Materials Corporation
  • Nanocyl SA
  • Altair Nanotechnologies Inc.
  • Zyvex Technologies
  • Frontier Carbon Corporation
  • Merck KGaA
  • ACS Material LLC
  • SkySpring Nanomaterials, Inc.
  • Raymor Industries Inc.
  • Nanoshel LLC
LSH

According to Stratistics MRC, the Global Nanomaterials Market is accounted for $17.00 billion in 2025 and is expected to reach $51.03 billion by 2032 growing at a CAGR of 17.0% during the forecast period. Nanomaterials are materials with structural components smaller than 100 nanometers, which exhibit unique physical, chemical, and biological properties compared to their bulk counterparts. Nanomaterials frequently exhibit higher reactivity, improved electrical conductivity, reduced weight, and enhanced strength because of their minuscule size and high surface area-to-volume ratio. Moreover, these characteristics make them useful in a variety of fields, such as coatings, electronics, medicine, energy storage, and environmental cleanup.

According to the U.S. National Nanotechnology Initiative (NNI), through FY 2025 the U.S. federal government has invested over $45 billion into nanotechnology research, supporting more than 170,000 nanotech related jobs and generating $44.5 billion in revenue from approximately 1,600 companies categorized under nanotechnology R&D.

Market Dynamics:

Driver:

Growing demand for semiconductors and electronics

Nanomaterials like graphene, carbon nanotubes, and silver nanowires are transforming the electronics industry by making it possible to create devices that are smaller, faster, and use less energy. They are crucial for printed electronics, flexible displays, and the quantum dots that are utilized in HDTVs. Advanced computing and Internet of Things (IoT) applications depend on semiconductors' improved transistor density and reduced power consumption, which are made possible by nonmaterials. Additionally, the market for nonmaterials is expected to increase in tandem with the recent spike in global electronics output, particularly in Asia-Pacific countries such as China, South Korea, and Taiwan.

Restraint:

Exorbitant costs of production and processing

The production of nanomaterials, especially on a commercial scale, frequently entails intricate, expensive, and energy-intensive procedures despite their excellent qualities. High-precision milling, sol-gel synthesis, and chemical vapor deposition are examples of processes that call for specialized tools, pure materials, and strict environmental regulations. The cost is further increased by preserving particle size homogeneity and avoiding agglomeration during manufacture. Furthermore, wider adoption across price-sensitive industries is restrained by these high capital and operating costs, which restrict the affordability and accessibility of nanomaterials, especially for small and medium-sized businesses (SMEs).

Opportunity:

Growing interest in green and sustainable nanotechnologies

Nanomaterials are finding great use in fields including waste remediation, air filtration, and water purification as a result of the increased emphasis on energy-efficient and ecologically friendly solutions. Heavy metals, pathogens, and organic pollutants are being eliminated from water sources, for instance, using photocatalytic nanoparticles and nanostructured membranes. In the same way, metal oxides and carbon nanoparticles are making sophisticated air filtration systems necessary. Eco-friendly nanomaterial applications are anticipated to attract investment from governments and international organizations that support green technologies and circular economy principles.

Threat:

Rapid innovation leads to technological obsolescence

The field of nanomaterials is developing so quickly that technologies may become outdated before they get broad market acceptance. Within a few years, a better or more affordable nanomaterial might replace one created today. Especially for smaller businesses with tighter R&D budgets, this rapid innovation cycle discourages long-term commitments to certain nanomaterials and raises investment risks. It also implies that if market preferences abruptly change, large capital expenditures in manufacturing infrastructure can become outdated.

Covid-19 Impact:

The COVID-19 epidemic affected the market for nanomaterials in a variety of ways. Research projects and manufacturing were temporarily delayed, especially in industries like aerospace and automotive, due to workforce shortages, worldwide supply chain disruptions, and decreased industrial activity. Nonetheless, the crisis also increased the need for nanomaterials in hygienic and medical applications, such as antiviral coatings, sophisticated personal protective equipment, and diagnostic instruments like biosensors and quick test kits. Nanotechnology was essential in improving the efficacy of COVID-19 vaccinations and medication delivery methods. Nanomaterials are now seen as essential to public health and future pandemic preparedness due to this twofold effect, which caused a brief decline followed by a spike in strategic investments and developments.

The nanoparticles segment is expected to be the largest during the forecast period

The nanoparticles segment is expected to account for the largest market share during the forecast period. Nanoparticles are preferred because of their remarkable versatility: they are used in electronics as printed sensors and conductive inks; in medicine, titanium dioxide and zinc oxide are now commonplace in sunscreens, cosmetics, and antimicrobial coatings; and in catalysis, platinum and silver nanoparticles improve chemical reactions. Moreover, they are essential in many sectors due to their adjustable optical, electrical, and chemical characteristics, which further solidify their market-leading position.

The dendrimers segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the dendrimers segment is predicted to witness the highest growth rate. Dendrimers are tree-like, highly branched macromolecules with remarkable surface functionality, size, and shape accuracy. Because of these special qualities, they are perfect for photodynamic cancer treatment, gene therapy, targeted medication administration, and medical imaging. Strong R&D interest is being generated by their potential to enhance solubility, tissue targeting, and payload control. Additionally, dendrimer applications are anticipated to increase at the quickest rate in the nanomaterials landscape as long as the pharmaceutical and biomedical sectors continue to prioritize advancements in nanomedicine.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, propelled by substantial R&D investments, robust government backing, and quick industrialization in nations like China, Japan, South Korea, and India. Strong electronics manufacturing, expanding healthcare and pharmaceutical industries, and rising demand for nanomaterials in energy storage, coatings, and environmental applications all benefit the area. Because of its low manufacturing costs, large-scale production capability, and government-sponsored nanotechnology projects under initiatives, China in particular leads the world. Furthermore, Asia-Pacific's dominance in the market for nanomaterials is being cemented by its growing industrial base and increasing use across industries.

Region with highest CAGR:

Over the forecast period, the Middle East & Africa region is anticipated to exhibit the highest CAGR, driven by rising spending on oil and gas applications, water treatment using nanotechnology, and healthcare facilities. Countries like South Africa, Saudi Arabia, and the United Arab Emirates are actively diversifying their economies and incorporating sophisticated materials into industries like medical, energy, and environmental remediation. Demand is increasing as a result of government initiatives, expanding partnerships with foreign research institutions, and the adoption of sustainable technologies. Despite being a smaller market in terms of size at the moment, its quick development trajectory makes it the region with the quickest growth rate.

Key players in the market

Some of the key players in Nanomaterials Market include Bayer AG, Evonik Industries AG, Arkema Group, LG Chem Ltd., American Elements Inc, Nanophase Technologies Corporation, Cabot Corporation, BASF SE, Quantum Materials Corporation , Nanocyl SA, Altair Nanotechnologies Inc., Zyvex Technologies, Frontier Carbon Corporation, Merck KGaA, ACS Material LLC, SkySpring Nanomaterials, Inc., Raymor Industries Inc. and Nanoshel LLC.

Key Developments:

In March 2025, Arkema signs a new biomethane supply agreement with Engie. Arkema continues its transformation towards a more sustainable industrial model with the signing of a new, eight-year contract with ENGIE for the supply of biomethane for several Bostik sites in France. This 25 GWh/year contract will cover some 85% of the annual gas consumption of four Bostik sites in France, a notable step forward in the decarbonization of the company's energy supply.

In March 2025, Bayer and Suzhou Puhe BioPharma Co.,Ltd announced that they have entered into a global license agreement for Puhe BioPharma's oral, small molecule PRMT5 inhibitor that selectively targets MTAP-deleted tumors. Under the agreement, Bayer obtains an exclusive worldwide license to develop, manufacture and commercialize the MTA-cooperative PRMT5 inhibitor.

In March 2024, Evonik has entered into an exclusive agreement with the Cleveland-based Sea-Land Chemical Company for the distribution of its cleaning solutions in the U.S. as of March 1, 2025. The agreement builds on a long-standing relationship with the distributor and expands the reach of Evonik's cleaning solutions to the entire U.S. region. Evonik provides the homecare, vehicle care, and industrial and institutional cleaning markets with innovative cleaning solutions, many of which have a strong sustainability profile.

Product Types Covered:

  • Nanoparticles
  • Nanofibers
  • Nanotubes
  • Nanowires

Structure Types Covered:

  • Non-polymer Organic Nanomaterials
  • Polymeric Nanomaterials

Material Types Covered:

  • Carbon-Based Nanomaterials
  • Metal & Non-Metal Oxides
  • Metal-Based Nanomaterials
  • Nanoclays
  • Dendrimers
  • Nanocellulose
  • Engineered Polymers
  • Other Material Types

Applications Covered:

  • Aerospace
  • Automotive
  • Medical & Healthcare
  • Energy & Power
  • Construction
  • Rubber
  • Electronics & Semiconductors
  • Paints & Coatings
  • Consumer Goods
  • Personal Care
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Nanomaterials Market, By Product Type

  • 5.1 Introduction
  • 5.2 Nanoparticles
  • 5.3 Nanofibers
  • 5.4 Nanotubes
  • 5.5 Nanowires

6 Global Nanomaterials Market, By Structure Type

  • 6.1 Introduction
  • 6.2 Non-polymer Organic Nanomaterials
  • 6.3 Polymeric Nanomaterials

7 Global Nanomaterials Market, By Material Type

  • 7.1 Introduction
  • 7.2 Carbon-Based Nanomaterials
  • 7.3 Metal & Non-Metal Oxides
  • 7.4 Metal-Based Nanomaterials
  • 7.5 Nanoclays
  • 7.6 Dendrimers
  • 7.7 Nanocellulose
  • 7.8 Engineered Polymers
  • 7.9 Other Material Types

8 Global Nanomaterials Market, By Application

  • 8.1 Introduction
  • 8.2 Aerospace
  • 8.3 Automotive
  • 8.4 Medical & Healthcare
  • 8.5 Energy & Power
  • 8.6 Construction
  • 8.7 Rubber
  • 8.8 Electronics & Semiconductors
  • 8.9 Paints & Coatings
  • 8.10 Consumer Goods
  • 8.11 Personal Care
  • 8.12 Other Applications

9 Global Nanomaterials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Bayer AG
  • 11.2 Evonik Industries AG
  • 11.3 Arkema Group
  • 11.4 LG Chem Ltd.
  • 11.5 American Elements Inc
  • 11.6 Nanophase Technologies Corporation
  • 11.7 Cabot Corporation
  • 11.8 BASF SE
  • 11.9 Quantum Materials Corporation
  • 11.10 Nanocyl SA
  • 11.11 Altair Nanotechnologies Inc.
  • 11.12 Zyvex Technologies
  • 11.13 Frontier Carbon Corporation
  • 11.14 Merck KGaA
  • 11.15 ACS Material LLC
  • 11.16 SkySpring Nanomaterials, Inc.
  • 11.17 Raymor Industries Inc.
  • 11.18 Nanoshel LLC
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦