![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1776705
¼¼°èÀÇ V2G(Vehicle to Grid) ±â¼ú ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, ÃæÀü À¯Çüº°, Â÷·® À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2032³â)Vehicle-To-Grid Technology Market Forecasts to 2032 - Global Analysis By Component, Charging Type, Vehicle Type, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ V2G(Vehicle to Grid) ±â¼ú ½ÃÀåÀº 2025³â¿¡ 44¾ï 8,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 40%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 472¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV)¿Í ¼ÛÀü¸ÁÀº Vehicle-to-Grid(V2G)·Î ¾Ë·ÁÁø ±â¼úÀ» ÅëÇØ ¾ç¹æÇâÀ¸·Î ¿¡³ÊÁö¸¦ ±³È¯ÇÒ ¼ö ÀÖ½À´Ï´Ù. V2G´Â EV°¡ ¿©ºÐÀÇ Àü·ÂÀ» ÀúÀåÇØ ¼ö¿ä°¡ ¸¹Àº ½Ã°£´ë¿¡ ´Ù½Ã °èÅë¿¡ °ø±ÞÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á °èÅë ¾ÈÁ¤¼º°ú ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. V2G´Â ½ÅÀç»ý ¿¡³ÊÁö¿ø ÅëÇÕÀ» ÃËÁøÇØ Àü·Â ºñ¿ëÀ» ³·Ãß°í ºÎÇÏ ±ÕÇüÀ» ¸ÂÃä´Ï´Ù. V2G¸¦ žÀçÇÑ EV´Â À̵¿ °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀå ÀåÄ¡·Î ±â´ÉÇÏ¸ç ¿¡³ÊÁö »ýŰèÀÇ È¸º¹·Â°ú Áö¼Ó °¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ½º¸¶Æ® ±×¸®µå ¹× ûÁ¤ ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.
¿ö¸¯ ´ëÇÐÀÇ Á¶»ç¿¡ ÀÇÇϸé, Àü±âÀÚµ¿Â÷ ¹èÅ͸®ÀÇ Ãæ¹æÀü¿¡ Vehicle-to-Grid(V2G)¸¦ ÀÌ¿ëÇØµµ, ¹èÅ͸®ÀÇ ¼º´ÉÀ̳ª ¿ë·®ÀÌ Àå±âÀûÀ¸·Î ¼Õ»óµÇ´Â °ÍÀº ¾Æ´Ï°í, ¹Ý´ë·Î ¼ö¸íÀÌ ¿¬ÀåµÉ °¡´É¼ºµµ ÀÖ½À´Ï´Ù.
¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º ¹× Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕ
ÇÇÅ©½Ã¿¡´Â V2G ½Ã½ºÅÛÀÌ EVÀÇ ÃàÀü ¿¡³ÊÁö¸¦ ¼ÛÀü¸ÁÀ¸·Î µÇµ¹·Á Àü·Â ¼ö±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ ±â´ÉÀº dz·ÂÀ̳ª ž籤°ú °°Àº »ê¹ßÀûÀÎ Àç»ý ¿¡³ÊÁö µµÀÔÀ» ÃËÁøÇÔÀ¸·Î½á ½Ã½ºÅÛ ¾ÈÁ¤È¿¡ µµ¿òÀÌ µË´Ï´Ù. ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÎ EV´Â ±âÁ¸ ¼ÛÀü¸Á ÀÎÇÁ¶ó¸¦ ¼Õº¼ Çʿ伺À» ÁÙÀÔ´Ï´Ù. Àü¾Ð º¯µ¿À̳ª Á֯ļö Á¶Á¤À» Á¦¾îÇϱâ À§ÇØ Àü·Âȸ»ç ¹× °èÅë ¿î¿ëÀÚ´Â V2G ½Ã½ºÅÛÀÇ ÀÌ¿ëÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. V2G ±â¼úÀÇ ¿ä±¸´Â ½ÅÀç»ý ¿¡³ÊÁöÀÇ ÀÌ¿ë°ú ÇÔ²² ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¹èÅ͸® ¿È ¿ì·Á
V2G ½Ã½ºÅÛÀÇ ¼ö¸íÀº ÃæÀü ¹× ¹æÀüÀÇ ºó¹øÇÑ »çÀÌŬ·Î ÀÎÇØ ª¾ÆÁö°í ¹èÅ͸®ÀÇ ¸¶¸ð¸¦ °¡¼ÓÈÇÕ´Ï´Ù. ¹èÅ͸®ÀÇ ³Ê¹« ºü¸¥ ±³Ã¼¸¦ °ÆÁ¤ÇÏ´Â EV ¼ÒÀ¯ÀÚ¿¡°Ô À̰ÍÀº °æÁ¦ÀûÀÎ ¹®Á¦¸¦ ÀÏÀ¸Åµ´Ï´Ù. º¸ÁõÀ̳ª ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö Àֱ⠶§¹®¿¡ Á¦Á¶»çµéÀº V2G ÅëÇÕÀ» ¿ÏÀüÈ÷ °¡´ÉÇÏ°Ô ÇÏ´Â °Í¿¡ ¼Ò±ØÀûÀÔ´Ï´Ù. Àå±âÀûÀÎ ¹èÅ͸®°¡ °Ç°¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ ¸íÈ®ÇÏÁö ¾Ê±â ¶§¹®¿¡ ÀáÀçÀûÀÎ »ç¿ëÀÚ´Â ´õ¿í ³«´ãÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á°¡ ¼ÒºñÀÚÀÇ ÀúÇ×À¸·Î À̾îÁ® ½ÃÀå µµÀÔ ¼Óµµ°¡ ´À·ÁÁý´Ï´Ù.
¾î±×¸®°ÔÀÌÅÍ ¹× Àü·Â ȸ»çÀÇ ¼öÀÔ¿ø
¼ö¿ä°¡ ³ôÀº ½Ã±â¿¡ ¾î±×¸®°ÔÀÌÅÍ´Â EV·ÎºÎÅÍÀÇ ¿¡³ÊÁö¸¦ Á¶ÇÕÇÏ¿© ±×¸®µå¿¡ ÆÇ¸ÅÇÔÀ¸·Î½á ¼öÀÍÀ» ¿Ã¸³´Ï´Ù. Àü·Â ȸ»ç¿¡ À־ ¼ÛÀü¸ÁÀÇ È¥ÀâÀÌ ¿ÏÈµÇ°í °í°¡ÀÇ ÀÎÇÁ¶ó °»½ÅÀÌ ¿¬±âµË´Ï´Ù. ÀÌ ¼öÀÍ ÀáÀç·ÂÀ¸·Î ÀÎÇÁ¶ó ÅõÀÚ¿Í EVÀÇ ÅëÇÕÀÌ ÃËÁøµË´Ï´Ù. ¶ÇÇÑ EV »ç¿ëÀÚ´Â »ç¿ë ½Ã°£´ëº° ¿ä±ÝÁ¦¸¦ ÅëÇØ Áö´ÉÇü Ãæ¹æÀü¿¡¼ ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î ½ÃÀå µµÀÔ°ú ¹× V2G µµÀÔÀº ÀÌÇØ°ü°èÀÚÀÇ ¼öÀͼº¿¡ µû¶ó °¡¼Óȵ˴ϴÙ.
´ëü ½ºÅ丮Áö¿ÍÀÇ Ãæµ¹
±×¸®µå ¼ºñ½º¿¡ Àü±âÀÚµ¿Â÷¸¦ ä¿ëÇÏ´Â ¸Å·ÂÀº ¼ö¸íÀÌ ±æ°í ¿¡³ÊÁö È¿À²ÀÌ ¶Ù¾î³ª´Â ´ëüǰ¿¡ ÀÇÇØ ÀúÇϵ˴ϴÙ. °Ô´Ù°¡ ÅëÇÕ°ú Á¦¾î°¡ ¿ëÀÌÇϱ⠶§¹®¿¡ Àü·Âȸ»ç³ª °èÅë¿î¿ëÀÚ¿¡°Ô´Â ÁýÁßÇüÀÇ ÃàÀü ¼Ö·ç¼ÇÀÌ ¼±È£µÉÁöµµ ¸ð¸¨´Ï´Ù. V2G °æÀïÀº °í¾×ÀÇ Ãʱâ ÅõÀÚ¿Í ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ´õ¿í Á¦Çѵ˴ϴÙ. ¶ÇÇÑ ±â¼úÀû ¿ì·Á¿Í ±âÁ¸ EV¿ÍÀÇ »óÈ£ ¿î¿ë¼º ¹®Á¦µµ º¸±ÞÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, V2G »ê¾÷ÀÇ È®´ë´Â È®¸³µÈ ´ëü ¼ö´ÜÀÇ Á¸Àç¿¡ ÀÇÇØ µÐȵǰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ À¯ÇàÀº V2G(Vehicle to Grid) ±â¼ú ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÚµ¿Â÷ »ý»êÀÇ Ãʱâ È¥¶õ, °ø±Þ¸Á °íÀå, °æÁ¦ ºÒ¾ÈÀ¸·Î ÀÎÇÑ Àü±âÀÚµ¿Â÷(EV) µµÀÔ °¨¼Ò°¡ ½ÃÀå ¼ºÀåÀ» µÐȽÃÄ×½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓȽÃÄÑ °ÀÎÇÑ ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ³ì»ö±â¼ú°ú Áö¼Ó°¡´ÉÇÑ À̵¿¼º¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í V2G ÀÌ´Ï¼ÅÆ¼ºê¸¦ °£Á¢ÀûÀ¸·Î Áö¿øÇß½À´Ï´Ù. ÆÒ´ë¹Í ÀÌÈÄÀÇ È¸º¹Àº EV¿Í ¿¡³ÊÁö °ü¸®¿¡ ´ëÇÑ °ü½ÉÀ» ´Ù½Ã ³ô¿© V2G ½ÃÀåÀÇ ±Ëµµ¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÃæÀü¼Ò ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
ÃæÀü¼Ò ºÐ¾ß´Â ¾ç¹æÇâ ¿¡³ÊÁö È帧¿¡ ÇʼöÀûÀÎ ÀÎÇÁ¶óÀ̹ǷΠ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ½ºÅ×À̼ÇÀº Àü±âÀÚµ¿Â÷(EV)°¡ Àü·ÂÀ» ¹ÞÀ» »Ó¸¸ ¾Æ´Ï¶ó À׿© ¿¡³ÊÁö¸¦ ±×¸®µå¿¡ °ø±ÞÇÏ´Â °Íµµ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±Þ¼Ó ÃæÀü ¹× ½º¸¶Æ® ÃæÀü ³×Æ®¿öÅ©ÀÇ È®´ë·Î µµ½Ã Áö¿ª°ú ÁÖÅÃÁö·ÎÀÇ V2G ÅëÇÕÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í EV ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¹Î°£ ÅõÀÚ´Â V2G Áö¿ø ÃæÀü¼ÒÀÇ Àü°³¸¦ ´õ¿í ÃËÁøÇÕ´Ï´Ù. ÀÌ ¼ºÀåÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º°ú ¿¡³ÊÁö È¿À²À» Áö¿øÇϰí, V2G ±â¼úÀ» ¼ÒºñÀÚ¿¡°Ôµµ Àü·Âȸ»ç¿¡°Ôµµ º¸´Ù Çö½ÇÀûÀÌ°í ¸Å·ÂÀûÀÎ °ÍÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºñ»ó ¹é¾÷ Àü¿ø ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È °èÅë Á¤Àü ½Ã ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö¸¦ Á¦°øÇÏ´Â ºñ»ó ¹é¾÷ Àü¿ø ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. V2G ±â´ÉÀ» žÀçÇÑ Àü±âÀÚµ¿Â÷(EV)´Â, ÇÊ¿äÇÒ ¶§¿¡ °¡Á¤, ±â¾÷, ¶Ç´Â Áß¿äÇÑ ÀÎÇÁ¶ó¿¡ ÃàÀüµÈ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¾ç¿ë ±â´ÉÀº EVÀÇ °¡Ä¡ Á¦¾ÈÀ» °ÈÇÏ°í º¸´Ù ³ÐÀº º¸±ÞÀ» ÃËÁøÇÕ´Ï´Ù. ÀÚ¿¬ÀçÇØÀÇ Áõ°¡ ¹× ¼ÛÀü¸ÁÀÇ ºÒ¾ÈÁ¤È¿¡ ÀÇÇØ, ºÐ»êÇü ¹é¾÷ ¼Ö·ç¼ÇÀ¸·Î¼ V2G¿¡ ´ëÇÑ ¼ö¿ä°¡ ÇÑÃþ ´õ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú ¿¡³ÊÁö ȸº¹·ÂÀÌ ÀÌ ºÐ¾ß ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼ ¿Õ¼ºÇÑ EV µµÀÔ, Á¤ºÎ º¸Á¶±Ý, ¼ÛÀü¸Á ±Ù´ëÈÀÇ ³ë·ÂÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ³ª¶óµé¿¡¼´Â, ½ÅÀç»ý ¿¡³ÊÁö¸¦ ½º¸¶Æ® ±×¸®µå ½Ã½ºÅÛ°ú ÅëÇÕÇØ, Àü·Â ¼ö¿ä¿Í ÃàÀüÀÇ ¹ë·±½º¸¦ ÃëÇÏ´Â µ¥ ÀÖ¾î¼ V2GÀÇ ¿ªÇÒÀ» °ÈÇϰí ÀÖ½À´Ï´Ù. ÀϺ»Àº, V2G ´ëÀÀ EV¿Í °¡Á¤¿ë ÃæÀü ½Ã½ºÅÛÀÇ Á¶±â µµÀÔÀ¸·Î ¸®´õÀû Á¸Àç·Î °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶»ç ¹× Àü·Âȸ»ç °£ Çù·Â, ¾ç¹æÇâ ÃæÀü¿¡ ´ëÇÑ Áö¿ø Á¤Ã¥ÀÌ ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀå°ú ÀÎÇÁ¶ó °³¹ßÀ» ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº ±ÔÁ¦»óÀÇ °úÁ¦, ¼¼ºÐÈµÈ À¯Æ¿¸®Æ¼ ±¸Á¶, ÇÑÁ¤ÀûÀÎ ÀÎÇÁ¶ó Á¤ºñ¿¡ ÀÇÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡¼´Â °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÁö¸¸ µµÀÔÀÇ ´ëºÎºÐÀº ÆÄÀÏ·µ ´Ü°è¿¡ ±×Ä¡°í ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¹ý¿¡ µû¸¥ ¿¬¹æ Á¤ºÎÀÇ ¿ì´ëÁ¶Ä¡ ¹× ÀÚ±ÝÁö¿øÀº º¸±ÞÀ» µÞ¹ÞħÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î Çϰí ÀÖÁö¸¸, »ó¾÷Àû È®À强Àº ¾ÆÁ÷ ´Þ¼ºµÇÁö ¾Ê¾Ò½À´Ï´Ù. Àü·Âȸ»ç¿Í Æ÷µå³ª GM°ú °°Àº ÀÚµ¿Â÷ ȸ»ç¿ÍÀÇ ÆÄÆ®³Ê½ÊÀº ƯÈ÷ ͏®Æ÷´Ï¾Æ¿Í ´º¿å¿¡¼ ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ½ÃÀÛÇϰí ÀÖÁö¸¸ V2GÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀº Ç¥ÁØÈ¿Í ¼ÒºñÀÚ ÀÎÁöÀÇ Àå¾Ö¹°¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Vehicle-To-Grid (V2G) Technology Market is accounted for $4.48 billion in 2025 and is expected to reach $47.22 billion by 2032 growing at a CAGR of 40% during the forecast period. Electric vehicles (EVs) and the power grid may exchange energy in both directions thanks to technology known as vehicle-to-grid (V2G). It improves grid stability and energy efficiency by enabling EVs to store extra electricity and feed it back into the system during times of high demand. V2G promotes the integration of renewable energy sources, lowers power costs, and balances load. EVs with V2G are an essential part of smart grid and clean energy projects because they serve as mobile energy storage devices, enhancing the resilience and sustainability of the energy ecosystem.
According to the research conducted by the University of Warwick, the utilization of vehicle to grid for charging and discharging electric vehicle batteries does not necessarily harm the performance and capacity of the battery over time, on the other hand, it may increase its life span.
Grid stability & renewable integration
During peak hours, V2G systems transmit stored energy from EVs back to the grid, helping to balance the supply and demand for electricity. This feature helps stabilise the system by facilitating the incorporation of sporadic renewable energy sources like wind and solar. As distributed energy resources, EVs lessen the requirement for modifications to the conventional grid infrastructure. In order to control voltage fluctuations and frequency regulation, utilities and grid operators are using V2G systems more and more. The need for V2G technology is increasing in tandem with the use of renewable energy.
Battery degradation concerns
The longevity of V2G systems is shortened by frequent cycles of charging and discharging, which accelerate battery wear. For EV owners who worry about having to replace their batteries too soon, this creates financial issues. Because of the potential effects on warranty and performance, manufacturers are reluctant to fully enable V2G integration. Potential users are further discouraged by the lack of clarity on long-term battery health effects. These worries thus lead to consumer resistance and a slower rate of market adoption.
Revenue streams for aggregators & utilities
During periods of high demand, aggregators make money by combining the energy from EVs and selling it to the grid. Reduced grid congestion and postponed expensive infrastructure upgrades are advantageous to utilities. Infrastructure investment and more EV integration are encouraged by this revenue potential. Additionally, EV users can benefit from intelligent charging and discharging through time-of-use pricing schemes. In general, market adoption and V2G implementation are accelerated by stakeholder profitability.
Competition from alternative storage
The allure of employing electric vehicles for grid services is diminished by these substitutes, which frequently have longer lifespans and superior energy efficiency. Furthermore, centralised storage solutions might be preferred by utilities and grid operators due to their ease of integration and control. The competitiveness of V2G is further restricted by the expensive initial investment and infrastructure required. Adoption is also hampered by technological concerns and problems with interoperability with existing EVs. Consequently, the expansion of the V2G industry is slowed down by the existence of established alternatives.
Covid-19 Impact
The COVID-19 pandemic had a mixed impact on the Vehicle-To-Grid (V2G) technology market. Initial disruptions in automotive production, supply chain breakdowns, and decreased electric vehicle (EV) adoption due to economic uncertainty slowed market growth. However, the pandemic also accelerated digital transformation and highlighted the need for resilient energy infrastructure. Governments increased investments in green technologies and sustainable mobility, indirectly supporting V2G initiatives. Post-pandemic recovery has driven renewed interest in EVs and energy management, positively influencing the V2G market trajectory.
The charging stations segment is expected to be the largest during the forecast period
The charging stations segment is expected to account for the largest market share during the forecast period, due to the essential infrastructure for bidirectional energy flow. These stations enable electric vehicles (EVs) to not only receive power but also supply excess energy back to the grid. The expansion of fast-charging and smart charging networks accelerates V2G integration into urban and residential areas. Government incentives and private investments in EV infrastructure further drive the deployment of V2G-enabled charging stations. This growth supports grid stability and energy efficiency, making V2G technology more viable and attractive to consumers and utilities alike.
The emergency backup power segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the emergency backup power segment is predicted to witness the highest growth rate by offering reliable energy during grid outages. Electric vehicles (EVs) equipped with V2G capabilities can supply stored power to homes, businesses, or critical infrastructure when needed. This dual-use functionality enhances the value proposition of EVs, encouraging wider adoption. Increasing natural disasters and power grid instabilities further drive demand for V2G as a decentralized backup solution. As a result, energy resilience becomes a key driver for market growth in this segment.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to robust EV adoption, government subsidies, and grid modernization initiatives in countries like China, Japan, and South Korea. These nations are integrating renewable energy with smart grid systems, enhancing the role of V2G in balancing electricity demand and storage. Japan remains a leader with its early deployment of V2G-compatible EVs and home-charging systems. Collaborations between automakers and utility providers, along with supportive policies for bidirectional charging, are further propelling market growth and infrastructure development in the region.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by regulatory challenges, fragmented utility structures, and limited infrastructure readiness. While the U.S. and Canada show growing interest, deployments remain largely in pilot stages. Federal incentives and funding under clean energy acts aim to boost adoption, but commercial scalability is yet to be achieved. Partnerships between utilities and automakers like Ford and GM are initiating pilot programs, especially in California and New York, yet widespread V2G implementation faces hurdles in standardization and consumer awareness.
Key players in the market
Some of the key players profiled in the Vehicle-To-Grid (V2G) Technology Market include NUVVE Holding Corp., Denso Corporation, ABB Ltd., The Mobility House GmbH, Hitachi Energy Ltd., Mitsubishi Electric Corporation, Toyota Motor Corporation, Honda Motor Co., Ltd., Tesla, Inc., EVBox Group, Fermata Energy, NextEra Energy, Inc., Siemens AG, Wallbox Chargers, S.L. and Hyundai Motor Company.
In May 2025, Denso and ROHM Co., Ltd. reached a basic agreement to establish a strategic partnership in the semiconductor field, focusing on enhancing analog ICs critical for vehicle electrification and intelligence. This collaboration is expected to support next-generation vehicle systems, including electrification and automated driving, which are foundational for V2G technologies.
In January 2025, NUVVE launched a new product line of advanced bidirectional and unidirectional chargers ranging from 20 kW to 360 kW. These chargers are designed for diverse applications including school buses, commercial fleets, public infrastructure, and microgrids.
In October 2024, NUVVE collaborated with Exelon's Delmarva Power to demonstrate the industry's first three-phase AC Vehicle-to-Grid (V2G) chargers using Ford Mach-E vehicles, operating under the SAE J3068/2 standard, showcasing cost-effective, scalable grid services from electric vehicles.