![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1776721
¼¼°èÀÇ ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Quantum Computing Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀº 2025³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 31.5%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 104¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¾çÀÚ ÄÄÇ»ÆÃÀº ¾çÀÚ ¿ªÇÐÀÇ ¿ø¸®¸¦ Ȱ¿ëÇÏ¿© Á¤º¸¸¦ ó¸®Çϴ ȹ±âÀûÀÎ °è»ê ÇüÅÂÀÔ´Ï´Ù. ºñÆ®(0 ¶Ç´Â 1)¸¦ »ç¿ëÇÏ´Â °íÀüÀûÀÎ ÄÄÇ»ÅÍ¿Í ´Þ¸® ¾çÀÚ ÄÄÇ»ÅÍ´Â ¾çÀÚ ºñÆ® ¶Ç´Â ¾çÀÚ ºñÆ®¸¦ »ç¿ëÇÕ´Ï´Ù. ¾çÀÚ ºñÆ®´Â Áßø¿¡ ÀÇÇØ µ¿½Ã¿¡ º¹¼öÀÇ »óÅ·ΠÁ¸ÀçÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ¾çÀÚ ºñÆ®´Â ¾ôÈú ¼ö Àֱ⠶§¹®¿¡ º¹ÀâÇÑ »ó°ü°ü°è°¡ °¡´ÉÇØÁ® °·ÂÇÑ º´·Ä °è»êÀÌ °¡´ÉÇØÁý´Ï´Ù. À̸¦ ÅëÇØ ¾çÀÚ ÄÄÇ»ÅÍ´Â Å« ¼öÀÇ ÀμöºÐÇØ³ª ºÐÀÚ ½Ã¹Ä·¹ÀÌ¼Ç µî ƯÁ¤ ¹®Á¦¸¦ ±âÁ¸ ½Ã½ºÅÛº¸´Ù ±âÇϱ޼öÀûÀ¸·Î ºü¸£°Ô Ç® ¼ö ÀÖ½À´Ï´Ù. ¾ÆÁ÷ °³¹ßµµ»óÀÌÁö¸¸ ¾çÀÚ ÄÄÇ»ÅÍ´Â ¾ÏÈ£, Àç·á°úÇÐ, ÀΰøÁö´É µîÀÇ ºÐ¾ß¿¡¼ °íÀüÀûÀÎ ÇѰ踦 ³Ñ¾î¼± º¯Çõ ´É·ÂÀ» Á¦°øÇÏ´Â Çì¾Æ¸± ¼ö ¾ø´Â °¡´É¼ºÀ» Áö´Ï°í ÀÖ½À´Ï´Ù.
ºÐ¼®°¡ÀÇ Á¶»ç¿¡ µû¸£¸é 2025³â±îÁö ¾à 1¸¸ ¸íÀÇ ¾çÀÚ ±â¼úÀÚ°¡ ÇÊ¿äÇÏ¸ç °ø±ÞÀº 5,000¸í ¹Ì¸¸ÀÏ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.
°í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
°í¼º´É ÄÄÇ»ÆÃ(HPC)¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» Å©°Ô µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. HPC¿¡¼´Â º¹ÀâÇÑ ½Ã¹Ä·¹À̼ÇÀ̳ª ¹æ´ëÇÑ µ¥ÀÌÅÍ ¾çÀ» ´Ù·ç´Â µ¥ ÇѰ谡 Àֱ⠶§¹®¿¡ ¾çÀÚ Å×Å©³î·ÎÁö¿¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÇÁÆ®°¡ ¾çÀÚ ÇÁ·Î¼¼¼ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí Á¦¾à, »çÀ̹ö º¸¾È, ±âÈÄ ¸ðµ¨¸µ µîÀÇ »ê¾÷¿ë ±â´ÉÀ» °ÈÇϰí ÀÖ½À´Ï´Ù. Çмú°è¿Í »ê¾÷°è¿ÍÀÇ ÀÚ±Ý Á¦°øÀ̳ª °øµ¿ ¿¬±¸°¡ Ȱ¹ßÇØÁüÀ¸·Î½á, ¾çÀÚÀÇ Áøº¸´Â ÇÑÃþ ´õ ÃËÁøµÇ¾î Â÷¼¼´ë °è»ê ´É·ÂÀÇ Àü·«Àû ÇÁ·±Æ¼¾î·Î¼ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
³ôÀº °³¹ß ºñ¿ë
¾çÀÚ ÄÄÇ»ÅÍÀÇ ³ôÀº ¼öÁØÀÇ °³¹ß ºñ¿ëÀº ½ÃÀå °³Ã´ÀÇ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¾çÀÚ ½Ã½ºÅÛÀÇ ±¸Ãà°ú À¯Áö¿¡´Â Ư¼öÇÑ Çϵå¿þ¾î, ¿¬±¸, ¼÷·ÃµÈ Àη¿¡ ¸¹Àº ÀÚ±ÝÀ» ÅõÀÔÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. µû¶ó¼ ÁøÀÔÀº ÀڱݷÂÀÌ ÀÖ´Â ÀϺΠ±â¾÷¿¡ ÇÑÁ¤µÇ¾î ±â¼ú Çõ½Å°ú °æÀïÀÌ µÐȵ˴ϴÙ. Áß¼Ò±â¾÷Àº ÁøÀÔ¿¡ ¾î·Á¿òÀ» °ÞÀ¸¸ç ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß°ú ½ÃÀå °³Ã´À» Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù. ±× °á°ú »ó¾÷Ȱ¡ ±ÕÀÏÇÏÁö ¾Ê°Ô µÇ°í, º¸±ÞÀÌ ¹æÇصǸç, ±â¼úÀÇ º¯Çõ °¡´É¼ºÀÌ Á¦Çѵ˴ϴÙ.
¾çÀÚ Çϵå¿þ¾î ¹× ¾Ë°í¸®ÁòÀÇ Áøº¸
¾çÀÚ Çϵå¿þ¾î¿Í ¾çÀÚ ¾Ë°í¸®ÁòÀÇ Çõ½ÅÀº °è»ê ¼Óµµ, È®À强 ¹× Á¤È®¼º¿¡ »õ·Î¿î Â÷¿øÀ» Á¦°øÇÏ¿© ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀÇ ±Þ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. °ÈµÈ ¾çÀÚ ºñÆ®ÀÇ ¾ÈÁ¤¼º, ¿À·ù Á¤Á¤, ¾çÀÚ Áö»óÁÖÀÇÀÇ º¥Ä¡¸¶Å©´Â °¢ ¾÷°è¿¡¼ Å« ÅõÀÚ¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù. ¾Ë°í¸®ÁòÀÇ Áøº¸´Â ÃÖÀûÈ, ±â°è ÇнÀ, ¾ÏÈ£ µîÀÇ »ç¿ë »ç·Ê¸¦ ³ÐÈ÷°í, Çϵå¿þ¾îÀÇ Çõ½ÅÀº º¸´Ù ½Å·Ú¼º ³ôÀº ¾çÀÚ ½Ã½ºÅÛÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çϵå¿þ¾î ±â¼ú Çõ½ÅÀ¸·Î º¸´Ù ½Å·Ú¼º ³ôÀº ¾çÀÚ ½Ã½ºÅÛÀÌ ½ÇÇöµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÌ ¾î¿ì·¯Á® »ó¾÷Ȱ¡ °¡¼Óȵǰí Çаè, ÇÏÀÌÅ×Å© ¾÷°è, ±â¾÷ °£ÀÇ Çù·ÂÀÌ È°¹ßÇØÁö°í ÀÖ½À´Ï´Ù.
¾çÀÚ ºñÆ®ÀÇ ±â¼úÀû °úÁ¦ ¹× Ãë¾à¼º
¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀº ±â¼úÀû °úÁ¦¿Í ¾çÀÚ ºñÆ®ÀÇ ±úÁö±â ½¬¿î ¼ºÁú·Î ÀÎÇØ ½É°¢ÇÑ ÈÄÅð¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ȯ°æ °£¼·ÀÇ ¿µÇâÀ» ¹Þ±â ½±±â ¶§¹®¿¡ °è»ê ¿À·ù°¡ ºó¹ßÇϰí È®À强ÀÌ Á¦Çѵ˴ϴÙ. ¾çÀÚ ºñÆ®ÀÇ Àϰü¼ºÀ» À¯ÁöÇÏ·Á¸é º¹ÀâÇÑ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϸç, ¿î¿µ ºñ¿ëÀÌ »ó½ÂÇÏ°í ½Ç¿ëÀûÀÎ Àü°³°¡ ´À·ÁÁý´Ï´Ù. ÀÌ·¯ÇÑ ÇѰè´Â ¾çÀÚ ½Ã½ºÅÛÀÇ »ó¾÷ȸ¦ ¹æÇØÇϰí, ±â¼ú Çõ½ÅÀ» Áö¿¬½Ã۸ç, ÅõÀÚÀÚÀÇ ½Å¿ëÀ» ¾ïÁ¦Çϰí, ÃÖÁ¾ÀûÀ¸·Î´Â »ê¾÷°è Àüü¿¡¼ ¾çÀÚ ±â¼úÀÇ º¸±Þ ¹× ¼ºÀåÀ» ÀúÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀå¿¡ ÀÌÁß ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ Çϵå¿þ¾î °³¹ß¿¡ Áö¿¬ÀÌ ¹ß»ýÇÑ ÇÑÆí, ÀÌ À§±â´Â ½Å¾à, ºÐÀÚ ¸ðµ¨¸µ, ¹°·ù¿¡¼ÀÇ ¾çÀÚ ¼Ö·ç¼Ç ¼ö¿ä¸¦ °¡¼ÓȽÃÄ×½À´Ï´Ù. °¢ ȸ»ç´Â ÆÒµ¥¹Í °ü·Ã ¿¬±¸¿¡ Ŭ¶ó¿ìµå ±â¹Ý ¾çÀÚ ¾×¼¼½º¸¦ Á¦°øÇÏ¿© ÀÎÁöµµ ¹× º¸±ÞÀ» ³ô¿´½À´Ï´Ù. ÀÌ º¯È´Â ¾çÀÚ ÄÄÇ»ÆÃÀÇ Àü·«Àû °¡Ä¡¸¦ °Á¶Çϰí ÅõÀÚ Áõ°¡¸¦ ÃËÁøÇÏ¿© ¹Ì·¡ÀÇ ¼¼°èÀûÀÎ °úÁ¦¿¡ ´ëÇÑ ·¹Áö¸®¾ðÆ® ±â¼ú·Î¼ ÀÚ¸®¸Å±èÇÏ¿´´Ù.
¿¹Ãø ±â°£ µ¿¾È Æ®·¦µÈ À̿ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
Æ®·¦µÈ ÀÌ¿ÂÀº ±× Á¤¹ÐÇÑ Á¦¾î¿¡ ÀÇÇØ ½ºÄÉÀÏ·¯ºíÇÑ ¾ÆÅ°ÅØÃ³¿Í º´·Ä 󸮸¦ °¡´ÉÇÏ°Ô ÇØ ¾Ë°í¸®Áò ½ÇÇàÀÇ °í¼ÓÈ¿Í ¿¡·¯À²ÀÇ Àú°¨À» ½ÇÇöÇϱâ À§ÇØ ¿¹Ãø ±â°£ Áß¿¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿£Æ¿¶ó´Ù Æ®·¦À̳ª ¸¶ÀÌÅ©·ÎÆÄ ±¸µ¿ °ÔÀÌÆ® °°Àº ±â¼ú Çõ½ÅÀº ¼Òºñ Àü·ÂÀ» ÁÙÀÌ¸é¼ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸¿¡ ÀÇÇØ, Æ®·¦ ÀÌ¿ÂÀº ÆúÆ® Åç·¯·±Æ® ¾çÀÚ ½Ã½ºÅÛ ±¸ÃàÀÇ ¿äü·Î¼ ÀÚ¸® ¸Å±èµÇ¾î, »ó¾÷ÀûÀÎ ½ÇÇö °¡´É¼ºÀ» ÃËÁøÇØ, ¾ÏÈ£, ½Ã¹Ä·¹À̼Ç, ÃÖÀûȵîÀÇ ºÐ¾ß¿¡ °ÉÄ¡´Â ÅõÀÚ¸¦ ²ø¾î´ç±â°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀº °ÍÀº ¾ÏÈ£È ºÐ¾ß
¾çÀÚ ½Ã½ºÅÛÀº °íÀüÀûÀÎ ¾Ïȣȸ¦ À§ÇùÇϱ⠶§¹®¿¡ »ê¾÷°è´Â µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇØ Æ÷½ºÆ® ¾çÀÚ ¾ÏÈ£ ¹× ¾çÀÚ Å° ¹èÆ÷(QKD)¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ä±Þ¼ºÀÌ »çÀ̹ö º¸¾È, ±ÝÀ¶, ¹æÀ§ÀÇ °¢ ºÐ¾ß¿¡¼ ±â¼ú Çõ½Å, ÀÚ±Ý Á¶´Þ, Çù·ÂÀ» °¡¼ÓȽÃ۰í ÀÖ½À´Ï´Ù. ¾ÏÈ£ ºÐ¾ß´Â ¾çÀÚ ÄÄÇ»ÆÃÀÇ °ü·Ã¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó Â÷¼¼´ë º¸¾È ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ÀÌ³×ºí·¯·Î ÀÚ¸®Àâ¾Æ Àå±âÀûÀÎ ½ÃÀå È®´ë¸¦ ÃËÁøÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø, ¿¬±¸ ÅõÀÚ Áõ°¡, ±â¼ú¿¡ Àͼ÷ÇÑ Àα¸ Áõ°¡·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ¿Í °°Àº ³ª¶óµéÀº »çÀ̹ö º¸¾È, ÇコÄɾî, ±ÝÀ¶¿¡ ´ëÇÑ ¿ëµµ¸¦ À§ÇØ ¾çÀÚ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Çмú ±â°ü°ú ÇÏÀÌÅ×Å© ±â¾÷ÀÇ Çù¾÷ÀÌ Çõ½ÅÀ» ÃËÁøÇÏ°í °í¼º´É ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ´ë°¡ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼¼¿¡ ÀÇÇØ, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ¾çÀÚ ÄÄÇ»ÆÃ °³¹ßÀÇ ¼¼°èÀÇ °ÅÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À̰ÍÀº, ÇÏÀÌÅ×Å© ´ë±â¾÷À¸·ÎºÎÅÍÀÇ ¿Õ¼ºÇÑ ÅõÀÚ, Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, Ȱ¹ßÇÑ ½ÅÈï ±â¾÷ ¿¡ÄÚ ½Ã½ºÅÛ¿¡ ÀÇÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü ¿¬±¸ ÀÎÇÁ¶ó ¹× »êÇÐ Á¦ÈÞ°¡ Çõ½ÅÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, »çÀ̹ö º¸¾È µîÀÇ ºÐ¾ß¿¡¼ÀÇ ¿ëµµ°¡ È®´ëµÇ¾î º¸´Ù ºü¸¥ µ¥ÀÌÅÍ Ã³¸®¿Í ¹®Á¦ ÇØ°á ´É·Â °È°¡ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ Å×Å©³î·ÎÁö´Â °æÀï ¿ìÀ§¼ºÀ» ±æ·¯, ºÏ¹Ì¸¦ ¾çÀÚ Çõ½Å ¹× »ó¾÷ÈÀÇ ¸®´õ·Î¼ Æò°¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Quantum Computing Market is accounted for $1.5 billion in 2025 and is expected to reach $10.4 billion by 2032 growing at a CAGR of 31.5% during the forecast period. Quantum computing is a revolutionary form of computation that leverages the principles of quantum mechanics to process information. Unlike classical computers that use bits (0 or 1), quantum computers use quantum bits or qubits, which can exist in multiple states simultaneously due to superposition. Qubits can also be entangled, allowing complex correlations that enable powerful parallel computations. This allows quantum computers to solve certain problems-like factoring large numbers or simulating molecules-exponentially faster than traditional systems. Though still in development, quantum computing holds immense potential in fields such as cryptography, material science, and artificial intelligence, offering transformative capabilities beyond classical limits.
According to an analyst survey, there could be a demand for around 10,000 quantum skilled workers and a supply of fewer than 5,000 by 2025.
Rising Demand for High-Performance Computing
The surging demand for high-performance computing (HPC) is significantly propelling growth in the quantum computing market. HPC's limitations in handling complex simulations and massive data volumes are accelerating investment in quantum technologies. This shift is driving innovation in quantum processors, enhancing capabilities for industries like pharmaceuticals, cybersecurity, and climate modeling. Increased funding and collaborations between academia and industry are further catalyzing quantum advancement, positioning it as a strategic frontier for next-generation computational power.
High Cost of Development
The high cost of quantum computing development presents a significant barrier to market growth. Building and maintaining quantum systems requires substantial financial investment in specialized hardware, research, and skilled talent. This restricts entry to only a few well-funded players, slowing innovation and competition. Smaller enterprises struggle to participate, delaying diverse application development and market expansion. Consequently, commercialization becomes uneven, hindering widespread adoption and limiting the technology's transformative potential.
Advancements in Quantum Hardware and Algorithms
Breakthroughs in quantum hardware and algorithms are unlocking new dimensions in computational speed, scalability, and accuracy-fueling rapid growth in the quantum computing market. Enhanced qubit stability, error correction, and quantum supremacy benchmarks are attracting significant investments across industries. Algorithmic advancements are broadening use cases in optimization, machine learning, and cryptography, while hardware innovations enable more reliable quantum systems. Together, they're accelerating commercialization, inspiring collaboration across academia, tech, and enterprise sectors.
Technical Challenges and Fragility of Qubits
The quantum computing market faces substantial setbacks due to technical challenges and the fragile nature of qubits. Their susceptibility to environmental interference leads to frequent computational errors and limits scalability. Maintaining qubit coherence demands complex infrastructure, raising operational costs and slowing practical deployment. These limitations hinder the commercialization of quantum systems, delay innovation, and restrain investor confidence, ultimately impeding the widespread adoption and growth of quantum technologies across industries.
Covid-19 Impact
The COVID-19 pandemic had a dual impact on the quantum computing market. While hardware development faced delays due to global supply chain disruptions, the crisis accelerated demand for quantum solutions in drug discovery, molecular modeling, and logistics. Companies offered cloud-based quantum access for pandemic-related research, boosting awareness and adoption. This shift emphasized quantum computing's strategic value, prompting increased investments and positioning it as a resilient technology for future global challenges.
The trapped ions segment is expected to be the largest during the forecast period
The trapped ions segment is expected to account for the largest market share during the forecast period as their precise control enables scalable architectures and parallel processing, accelerating algorithm execution and reducing error rates. Innovations like the "enchilada trap" and microwave-driven gates enhance performance while lowering power dissipation. These advancements position trapped ions as a cornerstone for building fault-tolerant quantum systems, driving commercial viability and attracting investments across sectors like cryptography, simulation, and optimization.
The cryptography segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the cryptography segment is predicted to witness the highest growth rate, because quantum systems threaten classical encryption, industries are investing in post-quantum cryptography and Quantum Key Distribution (QKD) to safeguard data. This urgency accelerates innovation, funding, and collaboration across cybersecurity, finance, and defense sectors. The cryptography segment not only enhances quantum computing's relevance but also positions it as a critical enabler of next-generation security infrastructure, fostering long-term market expansion.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to strong government support, increasing research investments, and a growing tech-savvy population. Countries like China, Japan, and India are heavily investing in quantum technologies for applications in cybersecurity, healthcare, and finance. Collaborations between academic institutions and tech companies are fostering innovation, while the rising demand for high-performance computing solutions fuels market growth. This momentum is positioning Asia Pacific as a global hub for quantum computing development.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to robust investments from tech giants, government initiatives, and a thriving startup ecosystem. The region's advanced research infrastructure and collaboration between academia and industry are accelerating innovation. Applications across sectors like healthcare, finance, and cybersecurity are expanding, enabling faster data processing and enhanced problem-solving capabilities. This transformative technology is fostering competitive advantage and positioning North America as a leader in quantum innovation and commercialization.
Key players in the market
Some of the key players profiled in the Quantum Computing Market include IBM, Google (Alphabet Inc.), Microsoft, Intel Corporation, D-Wave Systems, Rigetti Computing, IonQ, Honeywell Quantum Solutions, Alibaba Group, Baidu Inc., Zapata Computing, Xanadu, QC Ware, PsiQuantum, Fujitsu, Toshiba, Quantinuum, Atos and Quantum Circuits Inc.
In January 2025, Microsoft and OpenAI reaffirmed their strategic alliance-first forged in 2019-extending through 2030 and underpinned by mutual exclusivity and shared benefits. Microsoft retains exclusive access to OpenAI's intellectual property for integration into its flagship tools like Copilot, while OpenAI's API remains exclusively available via Azure and the Azure OpenAI Service.
In September 2024, Intel Corp. and Amazon Web Services (AWS) recently deepened their multi-year, multi-billion-dollar strategic collaboration. the collaboration brings together Intel's leading-edge chip fabrication strengths with AWS's cloud infrastructure leadership, aiming to drive innovation across AI applications, reduce costs, and support critical U.S. semiconductor manufacturing initiatives-all reinforcing each company's ecosystem and strategic long-term growth.