½ÃÀ庸°í¼­
»óǰÄÚµå
1787889

¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå ¿¹Ãø : À¯Çüº°, ÄÚ¾î ¼öº°, ¾ÆÅ°ÅØÃ³º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

System-on-Chip Market Forecasts to 2032 - Global Analysis By Type, Core Count, Architecture, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀåÀº 2025³â¿¡ 2,230¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â CAGR 10.1%¸¦ ³ªÅ¸³» 4,374¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÄÄÇ»ÅÍ¿Í ÀüÀÚ ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ ¸ðµç ºÎǰÀ» ÇϳªÀÇ Ä¨¿¡ ÁýÀûÇÑ ÁýÀû ȸ·Î¸¦ ½Ã½ºÅÛ¿ÂĨ(SoC)À̶ó°í ÇÕ´Ï´Ù. Áß¾Ó ¿¬»ê ó¸® ÀåÄ¡(CPU), ¸Þ¸ð¸®, ÀÔÃâ·Â Æ÷Æ®, ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), µðÁöÅÐ ½ÅÈ£ ÇÁ·Î¼¼¼­(DSP), ¹«¼± Åë½Å ¸ðµâ µîÀÇ º¸Á¶ ºÎǰÀÌ ÀϹÝÀûÀ¸·Î Æ÷ÇԵ˴ϴÙ. ÄÄÆÑÆ®Çϰí Àü·Â È¿À²ÀÌ ¶Ù¾î³­ ¿ëµµ¿¡ ƯȭµÈ SoC´Â ÀÓº£µðµå ½Ã½ºÅÛ, ¸ð¹ÙÀÏ ±â±â, »ç¹° ÀÎÅͳÝ(IoT) °¡Á¬¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ±âÁ¸ ¸ÖƼĨ ¼Ö·ç¼Ç¿¡ ºñÇØ SoC´Â ¿©·¯ ±â´ÉÀ» ÇϳªÀÇ Ä¨¿¡ ÅëÇÕÇÏ¿© °ø°£ ¿ä±¸ »çÇ×À» ÃÖ¼ÒÈ­ÇÏ°í ¼º´ÉÀ» Çâ»ó½ÃŰ°í ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù.

¹ÝµµÃ¼ »ê¾÷Çùȸ(SIA)-¹Ì±¹ ¹ÝµµÃ¼ »ý»êÀÇ ¾à 80%¸¦ ´ã´çÇÏ´Â ¹Ì±¹ ±â¾÷À» ´ëÇ¥ÇÏ´Â ÁÖ¿ä »ê¾÷ ´Üü-¿¡ µû¸£¸é ¼¼°è ¹ÝµµÃ¼ ¼öÀÍÀº 2024³â 6,276¾ï ´Þ·¯(2025³â 1ºÐ±â 1,677¾ï ´Þ·¯, 2025³â 4¿ù Áõ°¡ 570¾ï ´Þ·¯)¿¡ À̸£·¶½À´Ï´Ù.

½º¸¶Æ®ÆùÀ» ºñ·ÔÇÑ ¸ð¹ÙÀÏ ±â±â Áõ°¡

½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀåÀ» ÃßÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ½º¸¶Æ®Æù°ú ¸ð¹ÙÀÏ ÄÄÇ»ÆÃ ÀåÄ¡ÀÇ ±Þ°ÝÇÑ Áõ°¡ÀÔ´Ï´Ù. °í°´Àº º¸´Ù °í¼º´É, ±â´ÉÀÌ Ç³ºÎÇϰí, ¸ÖƼŽºÅ·ÀÌ °¡´ÉÇϰí, ¿¡³ÊÁö È¿À²ÀÌ ³ô°í, ¼ÒÇü ÀåÄ¡¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. SoC´Â CPU, GPU, ¸ðµ©, ¸Þ¸ð¸® ÄÁÆ®·Ñ·¯, ¶§·Î´Â AI ¿£ÁøÀ» ÇϳªÀÇ Ä¨¿¡ ÅëÇÕÇÏ¿© ¼ÒÇüÈ­¿Í Àü·Â ¼Ò¸ð¸¦ ÁÙÀ̸鼭 ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù. ÀÌ ÅëÇÕÀº ´õ ºü¸¥ ¼º´É°ú ±ä ¹èÅ͸® ¼ö¸íÀ» °®Ãá ¾ãÀº ÈÞ´ëÆùÀ» Á¦°øÇÕ´Ï´Ù. °Ô´Ù°¡ 5G ä¿ëÀÌ ¼¼°èÀûÀ¸·Î °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥ 5G ¸ðµ©À» ÅëÇÕÇÑ SoCµµ °³¹ßµÇ°í ÀÖ¾î ¸ð¹ÙÀÏ ±â¼ú¿¡¼­ SoCÀÇ Á߿伺ÀÌ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë°ú Ãʱâ ÅõÀÚ

SoC °³¹ß¿¡´Â ¿¬±¸ °³¹ß, ¼³°è Åø, IP ¶óÀ̼±½º, ÁÖÁ¶¿¡ ´ëÇÑ ¾×¼¼½º µî ¸¹Àº ¼±Çà ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÷´Ü ³ëµå(¿¹ : 5nm ¹× 3nm)¿¡¼­ SoC¸¦ Á¦Á¶ÇÏ·Á¸é ¸Å¿ì ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¹ÝµµÃ¼ Á¦Á¶ °øÁ¤ÀÌ ÇÊ¿äÇϸç Á¦Á¶ °øÀå(fab)ÀÇ °Ç¼³ ¹× ¿î¿µ¿¡´Â ¼ö½Ê¾ï ´Þ·¯ÀÇ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. ÷´Ü SoC¸¦ ¾ç»êÇÒ ¼ö ÀÖ´Â °ÍÀº TSMC, Samsung, Intel µî ¼¼°è¿¡¼­µµ ¾ÆÁÖ ¼Ò¼öÀÇ ±â¾÷»ÓÀÔ´Ï´Ù. °í¾×ÀÇ ÀÚº» ÁöÃâÀº ½Å±Ô Âü°¡ ±â¾÷À̳ª Áß¼Ò ±â¾÷¿¡ À־ Å« Âü°¡ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼³°è»óÀÇ °áÇÔÀÌ Çϳª¶óµµ ºñ½Î°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â Ĩ ÀüüÀÇ ÀçÀÛ¼ºÀÌ ÇÊ¿äÇÏ°Ô µÇ¾î, °á°úÀûÀ¸·Î °íÀåÀ̳ª ÀçÀÛ¾÷ÀÇ ºñ¿ëÀÌ ¹æ´ëÇØÁý´Ï´Ù.

¹ÙÀÌ¿À ÀÇ·á±â±â ¹× °Ç°­ °ü¸®ÀÇ ¼ºÀå

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¿þ¾î·¯ºí ¸ð´ÏÅ͸µ, ¿ø°Ý ÇコÄɾî, Áø´Ü ±â±â¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä¸¦ ³ô¿© ÀÇ·á ±â¼ú¿¡¼­ SoC ÅëÇÕÀÇ »õ·Î¿î ±æÀ» ¿­¾ú½À´Ï´Ù. ¸ð¹ÙÀÏ Áø´Ü ŰƮ, ½º¸¶Æ® Àν¶¸° ÆßÇÁ, ¿þ¾î·¯ºí ÀÇ·á±â±â, ¿¬°áµÈ ECG/½ÉÀüµµ ¸ð´ÏÅÍ´Â ¸ðµÎ ¾ÈÀüÇϰí È¿°úÀûÀÎ ¿ÂĨ Åë½Å ¹× °è»êÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¾¼­, µ¥ÀÌÅÍ Ã³¸®, ¹«¼± Åë½Å ¹× º¸¾È ±â´ÉÀ» ÇϳªÀÇ À¯´Ö¿¡ ÅëÇÕÇÔÀ¸·Î½á SoC´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ÒÇü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ÀÇ·á µî±ÞÀÇ ¾ÈÀü¼º°ú ó¸® ´É·ÂÀ» °®Ãá SoC ¼ö¿ä¸¦ ´õ¿í ²ø¾î¿Ã¸®´Â ¿äÀÎÀº À̹ÌÁö ºÐ¼® ¹× ¿¹Ãø Áø´Ü°ú °°Àº ÀÛ¾÷¿¡ ÇコÄɾ¼­ AI°¡ »ç¿ëµÈ´Ù´Â °ÍÀÔ´Ï´Ù.

¼Ò¼öÀÇ ÁÖÁ¶ Á¦Á¶¾÷ü¿¡ ÀÇÁ¸

TSMC¿Í »ï¼º ÁÖÁ¶¸¦ ÇʵηΠÇÏ´Â ¼Ò¼öÀÇ ±â¾÷ÀÌ Ã·´Ü SoC, ƯÈ÷ 5nm ¹× 3nm °øÁ¤ ³ëµå¸¦ »ç¿ëÇÏ´Â SoC Á¦Á¶ÀÇ ´ëºÎºÐÀ» Áö¹èÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁýÁßÀûÀÎ ÀÇÁ¸À¸·Î ÀÎÇØ »ý»ê ´É·Â Á¦ÇÑ, ÀÚ¿¬ ÀçÇØ, Á¤Á¤ ºÒ¾È, ¼³ºñ ºÎÁ· µî ÀÌ·¯ÇÑ ÁÖÁ¶ÀÇ Áß´ÜÀº ¼¼°è SoC »ý»ê¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. 2020-2022³â¿¡ °ÉÄ£ Ĩ ºÎÁ·Àº ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â, ÀÚµ¿Â÷, ½º¸¶Æ®Æù°ú °°Àº ÇÏ·ù»ê¾÷ÀÌ ¼Ò¼öÀÇ ÆÕ¿¡ ÀÇÁ¸ÇÏ¿© ¾ó¸¶³ª ½É°¢ÇÑ Å¸°ÝÀ» ¹Þ´ÂÁö¸¦ ÀÔÁõÇß½À´Ï´Ù. ¶ÇÇÑ, Ĩ ¼³°èÀÚÀÇ Çù»ó·Â°ú °¡°Ý °æÀïÀº ÀÌ·¯ÇÑ µ¶Á¡ÀûÀÎ ±¸Á¶¿¡ ÀÇÇØ Á¦ÇÑµÇ¾î °ø±ÞÃø º´¸ñ Çö»óÀÇ °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

ƯÈ÷ Áß±¹, ´ë¸¸, µ¿³²¾Æ½Ã¾Æ µî ÁÖ¿ä Á¦Á¶ °ÅÁ¡¿¡¼­ °øÀå Æó¼â¿Í ³ëµ¿·Â ºÎÁ·À¸·Î COVID-19ÀÇ À¯ÇàÀº ´çÃÊ ¼¼°è °ø±Þ¸Á, ¹ÝµµÃ¼ Á¦Á¶, ¹°·ù¸¦ È¥¶õ½ÃÄ×½À´Ï´Ù. ÀÌ´Â ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå¿¡ ´Ù¸éÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õÀ¸·Î ÀÎÇØ ½É°¢ÇÑ Ä¨ ºÎÁ·ÀÌ ¹ß»ýÇÏ¿© ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â, ½º¸¶Æ®Æù, ÀÚµ¿Â÷, »ê¾÷±â±â µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ SoCÀÇ ÀÔ¼ö°¡ ¾î·Á¿öÁ³½À´Ï´Ù. ¼¼°èÀÇ µðÁöÅÐ Àüȯµµ ÆÒµ¥¹Í¿¡ ÀÇÇØ °¡¼ÓÈ­µÇ¾î ³ëÆ®ºÏ, ½º¸¶Æ®Æù, IoT ¼¾¼­, ÀÇ·á¿ë ¿þ¾î·¯ºí, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó ºÎǰ µî SoC¸¦ žÀçÇÑ °¡Á¬ ¼ö¿ä°¡ ³ô¾ÆÁ³½À´Ï´Ù. °Ô´Ù°¡ ÀÌ ¼ö¿ä ±ÞÁõ°ú °ø±Þ ºÎÁ·À¸·Î °¡°Ý º¯µ¿ÀÌ »ý°Ü ±¹³» ¹ÝµµÃ¼ ´É·ÂÀÇ Àü·«Àû Á߿伺ÀÌ ºÎ°¢µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µðÁöÅÐ SoC ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È µðÁöÅÐ SoC ºÎ¹®ÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µðÁöÅÐ SoC°¡ ¿þ¾î·¯ºí, ³ëÆ®ºÏ, ÅÂºí¸´, ½º¸¶Æ®Æù, °í¼º´É ÄÄÇ»ÆÃ ½Ã½ºÅÛ µîÀÇ ¼ÒºñÀÚ¿ë ÀüÀÚ ±â±â¿¡ Æø³Ð°Ô »ç¿ëµÇ°í ÀÖ´Â °ÍÀÌ ÀÌ ¿ìÀ§¼ºÀÇ ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ SoC´Â CPU, GPU, ¸Þ¸ð¸® ÄÁÆ®·Ñ·¯, ÃÖ±Ù¿¡´Â AI °¡¼Ó±â µî ÇÊ¿äÇÑ ºÎǰÀ» ÇϳªÀÇ Ä¨À¸·Î °áÇÕÇÏ¿© °­·ÂÇÑ Ã³¸®, ¿¡³ÊÁö È¿À², ¼ÒÇü µð¹ÙÀ̽º ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ SoC´Â ó¸® °¡¼ÓÈ­, 5G Áö¿ø µð¹ÙÀ̽º, ¿¡Áö¿¡¼­ÀÇ AI, ½º¸¶Æ® ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡µµ ºÒ±¸Çϰí, »ê¾÷¿¡ °ü°è¾øÀÌ ±¤¹üÀ§ÇÑ ½Ç½Ã°£ ¹× °è»ê Áý¾àÀû ¿ëµµ¸¦ Áö¿øÇÔÀ¸·Î½á ½ÃÀåÀ» °è¼Ó µ¶Á¡Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ÀÚµ¿Â÷ ¹× ¿î¼Û ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ƯÈ÷ Ä¿³ØÆ¼µåÄ«, ÀÚÀ²ÁÖÇà½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷ µî ÀÚµ¿Â÷¿¡ À־ÀÇ ÃÖ÷´Ü ÀÏ·ºÆ®·Î´Ð½ºÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø±â°£ Áß ÀÚµ¿Â÷ ¹× ¿î¼Û ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ¹èÅ͸® °ü¸®, V2X(Vehicle-to-Everything) Åë½Å, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ) µîÀÇ ¿ëµµ´Â ½Ç½Ã°£ 󸮸¦ °¡´ÉÇÏ°Ô ÇÏ´Â SoC¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. °í¼º´É, ¿¡³ÊÁö È¿À²ÀûÀÎ SoC´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Áß¾Ó ÁýÁᫎ ÄÄÇ»ÆÃ ¹× ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Â÷·® ¾ÆÅ°ÅØÃ³·Î ÀüȯÇÔ¿¡ µû¶ó Á¡Á¡ ´õ ¸¹Àº ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÀÚµ¿Â÷ ¾ÈÀü ¹× ¹è±â °¡½º ±âÁØ¿¡ ´ëÇÑ ±ÔÁ¦ ¿ä°ÇÀ¸·Î SoC ±â¹Ý ¼Ö·ç¼Ç¿¡ ÀÇÁ¸ÇÏ´Â ½º¸¶Æ® ±â¼úÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ »ý»ê¿¡¼­ ÁÖµµÀûÀÎ ÁöÀ§¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÃÖ÷´Ü ±â¼úÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Áß±¹, Çѱ¹, ´ë¸¸, ÀϺ» µîÀÇ ±¹°¡¿¡´Â ÁÖ¿ä Ĩ ÆÄ¿îµå¸®, ÀüÀÚ °Å´ë ±â¾÷, ´ë±Ô¸ð SoC °³¹ß ¹× ¹èÆ÷¸¦ ÃËÁøÇÏ´Â °­·ÂÇÑ °ø±Þ¸Á »ýŰ谡 À§Ä¡Çϰí ÀÖ½À´Ï´Ù. SoC ¼Òºñ´Â ½º¸¶Æ®Æù, 5G ÀÎÇÁ¶ó, Àü±âÀÚµ¿Â÷, »ç¹°ÀÎÅÍ³Ý ÀåÄ¡ÀÇ ¿Õ¼ºÇÑ ¼ö¿ä·Î ÀÌ Áö¿ª¿¡¼­ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀεµÀÇ "Make in India" ÇÁ·Î±×·¥°ú Áß±¹ÀÇ ¹ÝµµÃ¼ ÀÚ¸³È­ ÃßÁø µî Á¤ºÎÀÇ ´ëó¿¡ ÀÇÇØ ±¹³» SoC ¼³°è ¹× Á¦Á¶µµ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü ¹ÝµµÃ¼ ¼³°è¿¡ À־ÀÇ ¸®´õ½Ê, AI¿Í MLÀ» ÅëÇÕÇÑ µð¹ÙÀ̽º¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä, ¿§Áö ÄÄÇ»ÆÃ, µå¶óÀ̹ö¸®½º Ä«, 5G ÀÎÇÁ¶óÀÇ Èí¼ö È®´ë µîÀÌ ÀÌ ¼ºÀåÀÇ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. AMD, NVIDIA, Qualcomm, Intel°ú °°Àº Áß¿äÇÑ ÇÏÀÌÅ×Å© ±â¾÷°ú Ĩ ¼³°èÀÚÀÇ Á¸Àç¿Í ÇÔ²² ¹Ì±¹ CHIPS³ª °úÇйý°ú °°Àº Á¤ºÎ ÇÁ·Î±×·¥¿¡ ÀÇÇÑ ÅõÀÚ Áõ°¡°¡ ±â¼ú Çõ½Å°ú ±¹³» Á¦Á¶¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ, ¹æÀ§¿ë ÀüÀÚ±â±â, Àü±âÀÚµ¿Â÷ ¹× ÀÚÀ²ÁÖÇàÂ÷ ÇÁ·Î±×·¥ÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷¿¡¼­ SoC°¡ ±Þ¼ÓÈ÷ º¸±ÞµÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤¡¤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : À¯Çüº°

  • ¼­·Ð
  • µðÁöÅÐ SoC
  • È¥ÇÕ ½ÅÈ£ SoC
  • ¾Æ³¯·Î±× SoC
  • RF/Ä¿³ØÆ¼ºñƼ SoC

Á¦6Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : ÄÚ¾î ¼öº°

  • ¼­·Ð
  • ´ÜÀÏ ÄÚ¾î
  • µà¾ó ÄÚ¾î
  • Äõµå ÄÚ¾î
  • ¿ÁŸ ÄÚ¾î
  • ¸ÖƼ ÄÚ¾î

Á¦7Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : ¾ÆÅ°ÅØÃ³º°

  • ¼­·Ð
  • ARM
  • x86
  • RISC-V
  • MIPS
  • ±âŸ ¾ÆÅ°ÅØÃ³

Á¦8Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â Á¦Ç°
  • ½º¸¶Æ®Æù ¹× ÈÞ´ëÀüÀÚ±â±â
  • ADAS ½Ã½ºÅÛ
  • ÀÇ·á±â±â
  • RF ÀåÄ¡
  • ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º
  • À¯¼± ¹× ¹«¼± Åë½Å ÀåÄ¡
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼­·Ð
  • ¼ÒºñÀÚ¿ë ÀüÀÚ ±â±â
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • IT ¹× Åë½Å
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÇコÄɾî
  • Àü·Â ¹× À¯Æ¿¸®Æ¼
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ½Ã½ºÅÛ¿ÂĨ(SoC) ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Broadcom Inc.
  • Intel Corporation
  • Huawei Technologies Co. Ltd.
  • Microchip Technology Inc
  • Advanced Micro Devices Inc.
  • NXP Semiconductors NV
  • MediaTek Inc.
  • Infineon Technologies AG
  • Toshiba Corporation
  • STMicroelectronics NV
  • Apple, Inc.
  • NVIDIA Corporation
  • Texas Instruments Incorporated
  • Samsung Electronics Co. Ltd.
  • Qualcomm Incorporated
  • Renesas Electronics Corporation
  • Taiwan Semiconductor Manufacturing Co., Ltd.
KTH 25.08.14

According to Stratistics MRC, the Global System-on-Chip Market is accounted for $223.06 billion in 2025 and is expected to reach $437.45 billion by 2032 growing at a CAGR of 10.1% during the forecast period. The integrated circuit that houses all of the necessary parts of a computer or electronic system on a single chip is called a System-on-Chip (SoC). A central processing unit (CPU), memory, input/output ports, and auxiliary parts like graphics processing units (GPUs), digital signal processors (DSPs), and wireless communication modules are usually included. Compact, power-efficient, and application-specific, SoCs are perfect for embedded systems, mobile devices, and Internet of Things (IoT) gadgets. In comparison to conventional multi-chip solutions, SoCs minimize space requirements, improve performance, and lower costs by combining multiple functions into a single chip.

According to the Semiconductor Industry Association (SIA)-a key trade association that represents U.S. companies responsible for roughly 80% of America's semiconductor production-global semiconductor revenue reached $627.6 billion in 2024, including $167.7 billion in the first quarter of 2025, and $57.0 billion in April 2025, reflecting an increase of 2.5%.

Market Dynamics:

Driver:

Increase in smartphones and other mobile devices

One of the main factors propelling the SoC market is the exponential rise in smartphones and mobile computing devices. Customers are calling for more potent, feature-rich, multitasking, energy-efficient, and small devices. By combining the CPU, GPU, modem, memory controller, and occasionally AI engines onto a single chip, SoCs satisfy these requirements while lowering size and power consumption. Thinner phones with faster performance and longer battery life are made possible by this integration. Moreover, SoCs with integrated 5G modems are also being developed as 5G adoption picks up speed worldwide, further solidifying their importance in mobile technologies.

Restraint:

High fabrication costs and initial investment

Large upfront expenditures in R&D, design tools, IP licensing, and foundry access are required for SoC development. The fabrication of SoCs at advanced nodes (such as 5 nm and 3 nm) requires very costly semiconductor fabrication processes; the construction and operation of fabrication plants (fabs) can cost billions of dollars. Only a small number of businesses worldwide, including TSMC, Samsung, and Intel, are able to mass-produce sophisticated SoCs. The high capital expenditure serves as a major barrier to entry for new or smaller players. Furthermore, a single design flaw may require an expensive and time-consuming re-spin of the entire chip, resulting in a huge cost of failure or rework.

Opportunity:

Growth in biomedical devices and healthcare

Enhanced by the COVID-19 pandemic, the global demand for wearable monitoring, remote healthcare, and diagnostic devices has opened up new avenues for SoC integration in medical technology. Mobile diagnostic kits, smart insulin pumps, wearable medical devices, and connected ECG/EKG monitors all need secure and effective on-chip communication and computation. Through the integration of sensors, data processing, wireless communication, and security features into a single unit, SoCs offer a dependable and small solution. Additionally, a further factor driving demand for SoCs with medical-grade safety and processing capabilities is the use of AI in healthcare for tasks like imaging analysis and predictive diagnostics.

Threat:

Reliance on a small group of foundries

A small number of companies, most notably TSMC and Samsung Foundry, control a large portion of the manufacturing of advanced SoCs, especially those that use 5 nm and 3 nm process nodes. Because of this concentrated reliance, any interruption in these foundries-whether brought on by capacity limitations, natural disasters, political unrest, or equipment shortages-may have an impact on the production of SoC worldwide. The shortage of chips in 2020-2022 demonstrated how downstream industries like consumer electronics, automobiles, and smartphones can be seriously crippled by reliance on a small number of fabs. Moreover, chip designers' bargaining power and price competitiveness are restricted by this monopoly-like structure, raising the possibility of supply-side bottlenecks.

Covid-19 Impact:

Due to factory closures and labor shortages, particularly in major manufacturing hubs like China, Taiwan, and Southeast Asia, the COVID-19 pandemic initially disrupted global supply chains, semiconductor fabrication, and logistics. This had a multifaceted effect on the System-on-Chip (SoC) market. Due to these disruptions, there was a severe shortage of chips, which impacted the availability of SoCs in a variety of industries, including consumer electronics, smartphones, automobiles, and industrial devices. Global digital transformation was also sped up by the pandemic, which raised demand for SoC-powered gadgets like laptops, smartphones, IoT sensors, medical wearables, and cloud infrastructure parts. Additionally, price volatility resulted from this spike in demand and supply shortages, underscoring the strategic significance of domestic semiconductor capabilities.

The digital SoCs segment is expected to be the largest during the forecast period

The digital SoCs segment is expected to account for the largest market share during the forecast period. The extensive use of digital SoCs in consumer electronics like wearables, laptops, tablets, smartphones, and high-performance computing systems is what is causing this dominance. Digital SoCs allow for powerful processing, energy efficiency, and small device designs by combining necessary parts like CPUs, GPUs, memory controllers, and increasingly AI accelerators onto a single chip. Furthermore, digital SoCs continue to dominate the market by supporting a wide range of real-time and compute-intensive applications across industries, despite the growing demand for faster processing, 5G-enabled devices, AI at the edge, and smart applications.

The automotive and transportation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive and transportation segment is predicted to witness the highest growth rate because of the growing use of cutting-edge electronics in automobiles, particularly in connected cars, autonomous driving systems, and electric vehicles. Applications like infotainment, battery management, vehicle-to-everything (V2X) communication, and advanced driver assistance systems (ADAS) depend on SoCs to enable real-time processing. High-performance, energy-efficient SoCs are becoming more and more in demand as automakers move toward centralized computing and software-defined vehicle architectures. Additionally, manufacturers are being forced to embrace smart technologies that rely on SoC-based solutions due to regulatory requirements for vehicle safety and emission standards.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share, driven by the area's leadership in the production of consumer electronics and semiconductors, as well as the expanding use of cutting-edge technologies in a variety of industries. Major chip foundries, electronics behemoths, and a strong supply chain ecosystem that facilitates large-scale SoC development and deployment are located in nations like China, South Korea, Taiwan, and Japan. SoC consumption is further increased in the region by the robust demand for smartphones, 5G infrastructure, electric vehicles, and Internet of Things devices. Furthermore, domestic SoC design and manufacturing are also being accelerated by government initiatives like India's "Make in India" program and China's push for semiconductor self-reliance.

Region with highest CAGR:

Over the forecast period, the North American region is anticipated to exhibit the highest CAGR. The region's leadership in advanced semiconductor design, the high demand for devices with AI and ML integrated, and the growing uptake of edge computing, driverless cars and 5G infrastructures are all contributing factors to this growth. Growing investments under government programs like the U.S. CHIPS and Science Act, along with the presence of significant tech firms and chip designers like AMD, NVIDIA, Qualcomm, and Intel, are speeding up innovation and domestic manufacturing. Moreover, rapid SoC adoption across a variety of industries is also being fueled by the growth of cloud data centers, defense-grade electronics, and electric and autonomous vehicle programs.

Key players in the market

Some of the key players in System-on-Chip Market include Broadcom Inc., Intel Corporation, Huawei Technologies Co. Ltd., Microchip Technology Inc, Advanced Micro Devices Inc., NXP Semiconductors NV, MediaTek Inc., Infineon Technologies AG, Toshiba Corporation, STMicroelectronics NV, Apple, Inc., NVIDIA Corporation, Texas Instruments Incorporated, Samsung Electronics Co. Ltd., Qualcomm Incorporated, Renesas Electronics Corporation and Taiwan Semiconductor Manufacturing Co., Ltd.

Key Developments:

In July 2025, Microchip Technology announces that under a new partnership agreement with Delta Electronics, Inc. the companies will collaborate to use Microchip's mSiC(TM) products and technology in Delta's designs. The synergies between the companies aim to accelerate the development of innovative SiC solutions, energy-saving products and systems that enable a more sustainable future.

In April 2025, Intel Corporation announced that it has entered into a definitive agreement to sell 51% of its Altera business to Silver Lake, a global leader in technology investing. The transaction, which values Altera at $8.75 billion, establishes Altera's operational independence and makes it the largest pure-play FPGA semiconductor solutions company.

In November 2024, Broadcom Inc. and Telia Company announced the expansion of their longtime partnership with a new multi-year agreement, which will see Telia further modernize and transform its telco and cloud infrastructure with the VMware product portfolio. Telia, a Nordic and Baltic telecommunications leader and Nordic media house, will continue its network and IT cloud journey with both VMware Telco Cloud Platform and VMware Cloud Foundation as the basis of its modern cloud platform.

Types Covered:

  • Digital SoCs
  • Mixed-Signal SoCs
  • Analog SoCs
  • RF/Connectivity SoCs

Core Counts Covered:

  • Single-core
  • Dual-core
  • Quad-core
  • Octa-core
  • Multi-core

Architectures Covered:

  • ARM
  • x86
  • RISC-V
  • MIPS
  • Other Architectures

Applications Covered:

  • Home Appliances
  • Smartphones & Portable Electronic Devices
  • ADAS System
  • Medical Devices
  • RF Devices
  • Power Electronics
  • Wired & Wireless Communication Devices
  • Other Applications

End Users Covered:

  • Consumer Electronics
  • Automotive and Transportation
  • IT & Telecommunication
  • Aerospace & Defense
  • Healthcare
  • Power & Utility
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global System-on-Chip Market, By Type

  • 5.1 Introduction
  • 5.2 Digital SoCs
  • 5.3 Mixed-Signal SoCs
  • 5.4 Analog SoCs
  • 5.5 RF/Connectivity SoCs

6 Global System-on-Chip Market, By Core Count

  • 6.1 Introduction
  • 6.2 Single-core
  • 6.3 Dual-core
  • 6.4 Quad-core
  • 6.5 Octa-core
  • 6.6 Multi-core

7 Global System-on-Chip Market, By Architecture

  • 7.1 Introduction
  • 7.2 ARM
  • 7.3 x86
  • 7.4 RISC-V
  • 7.5 MIPS
  • 7.6 Other Architectures

8 Global System-on-Chip Market, By Application

  • 8.1 Introduction
  • 8.2 Home Appliances
  • 8.3 Smartphones & Portable Electronic Devices
  • 8.4 ADAS System
  • 8.5 Medical Devices
  • 8.6 RF Devices
  • 8.7 Power Electronics
  • 8.8 Wired & Wireless Communication Devices
  • 8.9 Other Applications

9 Global System-on-Chip Market, By End User

  • 9.1 Introduction
  • 9.2 Consumer Electronics
  • 9.3 Automotive and Transportation
  • 9.4 IT & Telecommunication
  • 9.5 Aerospace & Defense
  • 9.6 Healthcare
  • 9.7 Power & Utility
  • 9.8 Other End Users

10 Global System-on-Chip Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Broadcom Inc.
  • 12.2 Intel Corporation
  • 12.3 Huawei Technologies Co. Ltd.
  • 12.4 Microchip Technology Inc
  • 12.5 Advanced Micro Devices Inc.
  • 12.6 NXP Semiconductors NV
  • 12.7 MediaTek Inc.
  • 12.8 Infineon Technologies AG
  • 12.9 Toshiba Corporation
  • 12.10 STMicroelectronics NV
  • 12.11 Apple, Inc.
  • 12.12 NVIDIA Corporation
  • 12.13 Texas Instruments Incorporated
  • 12.14 Samsung Electronics Co. Ltd.
  • 12.15 Qualcomm Incorporated
  • 12.16 Renesas Electronics Corporation
  • 12.17 Taiwan Semiconductor Manufacturing Co., Ltd.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦