![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1787935
¼¼°èÀÇ ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã ½ÃÀå ¿¹Ãø : ±¸¼º¿ä¼Òº°, Àü°³ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)AI in Smart Cities Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã ¼¼°è ½ÃÀåÀº 2025³â¿¡ 459¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 19.3%¸¦ ³ªÅ¸³»°í, 2032³â¿¡´Â 1,579¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã´Â ¿¡³ÊÁö »ç¿ë, ±³Åë È帧, Æó±â¹° °ü¸®, º¸¾È ¹× ½Ã¹Î Âü¿©¸¦ ÃÖÀûÈÇϱâ À§ÇØ ÀΰøÁö´É ±â¼úÀ» µµ½Ã ÀÎÇÁ¶ó ¹× ¼ºñ½º¿¡ ÅëÇÕÇÏ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. AI´Â IoT ÀåÄ¡ ¹× ¼¾¼·ÎºÎÅÍ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÇ»ç °áÁ¤, ÀÚµ¿È ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â È¿À²ÀûÀÎ °Å¹ö³Í½º¸¦ ÃËÁøÇϰí, º¸¾ÈÀ» °³¼±Çϰí, ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã ¿ëµµ´Â ¿¹Áöº¸Àü, ½º¸¶Æ®¸ðºô¸®Æ¼, °³º°ÈµÈ °ø°ø¼ºñ½º¸¦ Áö¿øÇϸç Àå±âÀûÀÎ µµ½Ã°³¹ß ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù.
451 ¸®¼Ä¡ÀÇ 'Voice of the Enterprise: Internet of Things, the OT Perspective, Use Cases and Outcomes 2023'¿¡ µû¸£¸é Á¤ºÎ ±â°üÀÇ ÀÀ´äÀÚÀÇ 50%°¡ ½º¸¶Æ®½ÃƼ ±¸»óÀÇ ÁÖ¿ä ÃßÁø·ÂÀ¸·Î Ä¡¾È È®º¸¸¦ ¼±ÅÃÇϰí, ÀÌ¾î »ýȰÀÇ Áú Àüü Çâ»ó(44%), µµ½Ã ¼ºñ½º °³¼±(42%)ÀÌ µÚ¸¦ À̾ú½À´Ï´Ù..
Á¤ºÎÀÇ µðÁöÅÐ º¯È¯¿¡ ´ëÇÑ °ü½É Áõ°¡
¼¼°è °¢±¹ÀÇ Á¤ºÎ´Â µµ½Ã »ýȰ°ú ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇØ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ³ë·ÂÀ» ¿ì¼±ÇÏ´Â °æÇâÀÌ °ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤ºÎÀÇ °·ÂÇÑ µÞ¹Þħ¿¡´Â ÀΰøÁö´ÉÀ» Ȱ¿ëÇÑ ½º¸¶Æ®½ÃƼ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ³ë·ÂÀº °ø°ø ¼ºñ½ºÀÇ Çâ»ó, ÀÚ¿ø °ü¸®ÀÇ ÃÖÀûÈ, ½Ã¹Î Âü¿©ÀÇ °È¸¦ ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. AI¿Í °°Àº ÷´Ü±â¼úÀÇ ÅëÇÕÀ» Áö¿øÇÏ´Â ½ÃÃ¥Àº ½ÃÀå ¼ºÀåÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ø°ø±â°ü¿¡ ÀÇÇÑ ÁýÁßÀûÀÎ ´ëó°¡ ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã ½ÃÀåÀÇ Áß¿äÇÑ Ã˸Ű¡ µÇ°í ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á
µ¥ÀÌÅÍ º¸¾È°ú ½Ã¹ÎÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ µÑ·¯½Ñ Áß´ëÇÑ ¿ì·Á°¡ ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½Ã ½ÃÀåÀÇ È®´ë¿¡ ÇöÀúÇÑ ¾ïÁ¦¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI ½Ã½ºÅÛ¿¡ ÀÇÇÑ °³ÀÎ µ¥ÀÌÅÍÀÇ ±¤¹üÀ§ÇÑ ¼öÁý°ú ºÐ¼®Àº À±¸®ÀûÀÎ Àǹ®°ú ½Ã¹ÎµéÀÇ ºÒ¾ÈÀ» ¾ß±âÇÕ´Ï´Ù. µµ½ÃÀÇ ±â¹Ð µ¥ÀÌÅ͸¦ Ä§ÇØ·ÎºÎÅÍ º¸È£Çϱâ À§ÇÑ °ß°íÇÑ »çÀ̹ö º¸¾È ´ëÃ¥À» È®º¸ÇÏ´Â °ÍÀº º¹ÀâÇÑ °úÁ¦ÀÔ´Ï´Ù. ½Ã¹ÎµéÀº ÀÚ½ÅÀÇ Á¤º¸°¡ ¾î¶»°Ô ¼öÁý, º¸Á¸, ÀÌ¿ëµÇ´ÂÁö¿¡ ´ëÇÑ °æ°è°¨À» °ÈÇϰí ÀÖÀ¸¸ç, º¸´Ù ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ¿ä±¸ÇÏ´Â ¸ñ¼Ò¸®°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅͰ¡ ¾Ç¿ëµÉ °¡´É¼º°ú ¸ð´ÏÅ͸µ À§ÇèÀº ½ÃÀå ¼ºÀåÀÇ Àå¾Ö¹°ÀÌ µË´Ï´Ù.
AI¸¦ Ȱ¿ëÇÑ ±³Åë ¹× Æó±â¹° °ü¸®ÀÇ ¼ºÀå
È¿À²ÀûÀÎ µµ½Ã ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â AI¸¦ Ȱ¿ëÇÑ ±³Åë ¹× Æó±â¹° °ü¸® ¼Ö·ç¼Ç¿¡ Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ±³Åë È帧À» ÃÖÀûÈÇϰí, È¥ÀâÀ» ¿ÏÈÇϸç, °ø°ø ¿î¼Û È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ½º¸¶Æ® Æó±â¹° °ü¸® ½Ã½ºÅÛÀº ¼öÁý °æ·Î¸¦ ÃÖÀûÈÇϰí, Æó±â¹° ¹ß»ýÀ» ¿¹ÃøÇϰí, ÀçȰ¿ë ³ë·ÂÀ» °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â ºñ¿ë Àý°¨°ú ȯ°æ °³¼± µî µµ½Ã ÇàÁ¤¿¡ ±¸Ã¼ÀûÀÎ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. µµ½ÃÀÇ Àα¸°¡ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, ÀÌ·¯ÇÑ ÃÖÀûÈµÈ ¼Ö·ç¼ÇÀÇ Çʿ伺Àº Á¡Á¡ ´õ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
½º¸¶Æ® ±×¸®µå¸¦ ³ë¸®´Â »çÀ̹ö º¸¾È À§Çù
½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó, ƯÈ÷ ½º¸¶Æ® ±×¸®µå´Â ¼·Î ¿¬°áµÇ¾î Àֱ⠶§¹®¿¡ °í±Þ »çÀ̹ö º¸¾È À§Çù¿¡ ³ëÃâµÇ±â ½±°í °³¹ß¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áß¿äÇÑ µµ½Ã ½Ã½ºÅÛ¿¡ ´ëÇÑ ¾ÇÀÇÀûÀÎ °ø°ÝÀº ±¤¹üÀ§ÇÑ È¥¶õÀ» ÃÊ·¡ÇÒ ¼ö ÀÖÀ¸¸ç Àü·Â °ø±Þ°ú Çʼö ¼ºñ½º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ À¯Ãâ ¹× ÀÎÇÁ¶ó ÆÄ±« ÇàÀ§ÀÇ °¡´É¼ºÀº ½º¸¶Æ® ½ÃƼ ±¸ÃàÀ» À§ÇÑ °íÀ§Çè ȯ°æÀ» âÃâÇÕ´Ï´Ù. µðÁöÅÐ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ÀÌ·¯ÇÑ º¸¾È Ä§ÇØÀÇ ÀáÀçÀûÀÎ ¿µÇâÀÌ ÁõÆøµË´Ï´Ù. ÀÌ·¯ÇÑ µ¶Æ¯ÇÑ Ãë¾àÁ¡À¸·Î ÀÎÇØ ½º¸¶Æ® ½ÃƼ ¿î¿µÀÇ Åº·Â¼ºÀ» È®º¸Çϱâ À§ÇÑ °ß°íÇÑ ¹æ¾î ¸ÞÄ¿´ÏÁòÀÌ ÇÊ¿äÇÕ´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ÀΰøÁö´É(AI) ½º¸¶Æ® µµ½ÃÀÇ µµÀÔÀ» Å©°Ô °¡¼ÓÈÇÏ¿© ź·ÂÀûÀ̰í ÀûÀÀÀûÀÎ µµ½Ã °ü¸®ÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. µµ½Ã´Â À§±â µ¿¾È °øÁß º¸°ÇÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, Á¢ÃËÀÚ ÃßÀû, ÀÚ¿ø ¹èºÐÀ» À§ÇØ AI¸¦ Ȱ¿ëÇß½À´Ï´Ù. µðÁöÅÐ ¼ºñ½º¿Í ¿ø°Ý °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí, ÁöÀÚü´Â ½º¸¶Æ® ½ÃƼ¿¡ ´ëÇÑ ´ëó¸¦ ±Þ¼ÓÈ÷ ÇÇÄ¡·Î ÃßÁøÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ¿¹±âÄ¡ ¾ÊÀº ¼¼°è »ç°ÇÀº À§±â ´ëÀÀ°ú ¹Ì·¡ Áغñ¸¦ À§ÇÑ Áö´ÉÇü µµ½Ã ÀÎÇÁ¶óÀÇ °¡Ä¡¸¦ °Á¶Çß½À´Ï´Ù. ±× °á°ú ÆÒµ¥¹ÍÀº µµ½Ã ȯ°æ¿¡¼ AI ±â¼úÀÇ ÅõÀÚ È®´ë¿Í ÅëÇÕÀÇ Ã˸Š¿ªÇÒÀ» Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
Çϵå¿þ¾î ºÎ¹®Àº ½º¸¶Æ® ½ÃƼ ¹èÆ÷¿¡¼ ¹°¸®Àû ÀÎÇÁ¶óÀÇ ±âº» ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿©±â¿¡´Â ¼ö¸¹Àº ¼¾¼, Ä«¸Þ¶ó, IoT ÀåÄ¡, µ¥ÀÌÅÍ ¼öÁý ¹× ¿¬°á¿¡ ÇʼöÀûÀÎ ³×Æ®¿öÅ© Àåºñ µîÀÌ Æ÷ÇԵ˴ϴÙ. °Ô´Ù°¡ ¿§Áö ÄÄÇ»ÆÃ°ú 5G ³×Æ®¿öÅ©ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °ß°íÇÑ ÇÁ·Î¼¼½Ì À¯´Ö°ú Åë½Å ¸ðµâ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î ¼¼°è ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®ÀÇ Áö¼ÓÀûÀÎ È®ÀåÀº Çϵå¿þ¾î ºÎ¹®ÀÇ Áö¹èÀûÀÎ Á¡À¯À²°ú Á÷°áµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸Ó½Å·¯´× ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ¸Ó½Å·¯´× ºÎ¹®Àº ½º¸¶Æ® ½ÃƼ ³»¿¡¼ Áö´ÉÀûÀÎ ÀÇ»ç°áÁ¤°ú ¿¹Ãø ´É·ÂÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¸Å¿ì Áß¿äÇÑ ¿ªÇÒ¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ´Ù¾çÇÑ µµ½Ã ÃâóÀÇ º¹ÀâÇÑ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ½Ç½Ã°£ ºÐ¼® ¹× ÃÖÀûÈµÈ ´ëÀÀÀ» °¡´ÉÇÏ°Ô Çϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÎÇÁ¶ó ¿¹Ãø À¯Áöº¸¼ö, Áö´ÉÇü ±³Åë °ü¸®, ÀûÀÀ¼ºÀÌ ³ôÀº °ø°ø ¾ÈÀü ½Ã½ºÅÛ µîÀÇ ¿ëµµ´Â ÷´Ü ¸Ó½Å·¯´× ¸ðµ¨¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯ÈÀÇ °¡´É¼ºÀº ¸Ó½Å·¯´× ºÎ¹®ÀÇ ±Þ¼ÓÇÑ È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ±Þ¼ÓÇÑ µµ½ÃÈ¿Í ¸Þ°¡½ÃƼÀÇ ±ÞÁõÀ¸·Î È¿À²ÀûÀÎ µµ½Ã °ü¸® ¼Ö·ç¼ÇÀÌ ½Ã±ÞÇØÁö°í Àֱ⠶§¹®ÀÔ´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µî ±¹°¡ÀÇ ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ°¡ ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â AI, IoT, 5G¿Í °°Àº ¼±Áø ±â¼úÀÇ Ã¤ÅÃÀÌ È®»êµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº Çõ½Å°ú Á¦Á¶ÀÇ Áß½ÉÁöÀÌÀÚ ½º¸¶Æ®½ÃƼ °³¹ß¿¡ µµ¿òÀÌ µÇ´Â ȯ°æÀ» Á¦°øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ±× ÀÌÀ¯´Â È®¸³µÈ ±â¼ú ÀÎÇÁ¶ó¿Í ÃÖ÷´Ü AI ¼Ö·ç¼ÇÀÇ Á¶±â µµÀÔ¿¡ ÀÖ½À´Ï´Ù. ÁÖ¿ä ÁøÃâ±â¾÷¿¡ ÀÇÇÑ ³ôÀº ¼öÁØÀÇ R&D ÅõÀÚ´Â ½º¸¶Æ® ½ÃƼ ¿ëµµ¿¡¼ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µµ½ÃÀÇ È¸º¹·Â°ú Áö¼Ó°¡´É¼º °È¸¦ ¸ñÀûÀ¸·Î ÇÑ Á¤ºÎÀÇ Áö¿ø°ú ÀÌ´Ï¼ÅÆ¼ºêµµ ÀÌ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ °ÇÑ °ü½ÉÀº ÷´Ü ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ÇÔ²² Ã¥ÀÓÀÖ´Â AI ¹èÆ÷¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global AI in Smart Cities Market is accounted for $45.9 billion in 2025 and is expected to reach $157.9 billion by 2032 growing at a CAGR of 19.3% during the forecast period. AI in Smart Cities refers to the integration of artificial intelligence technologies into urban infrastructure and services to optimize energy use, traffic flow, waste management, security, and citizen engagement. AI enables real-time data analysis from IoT devices and sensors, improving decision-making, automation, and sustainability. This transformation promotes efficient governance, enhances public safety, and reduces operational costs. AI applications in smart cities also support predictive maintenance, smart mobility, and personalized public services, aligning with long-term urban development goals.
According to 451 Research's Voice of the Enterprise: Internet of Things, the OT Perspective, Use Cases and Outcomes 2023, 50% of government respondents selected ensuring public safety as the main driver for their smart city initiatives, followed by improving overall quality of life (44%) and improving city services (42%).
Increased government focus on digital transformation
Governments worldwide are increasingly prioritizing digital transformation initiatives to enhance urban living and operational efficiency. This strong governmental push includes significant investments in smart city projects that leverage artificial intelligence. These initiatives aim to improve public services, optimize resource management, and enhance citizen engagement. Policies supporting the integration of advanced technologies like AI are creating a fertile ground for market growth. This concentrated effort by public authorities is a key catalyst for the AI in smart cities market.
Data security and privacy concerns
Significant concerns surrounding data security and citizen privacy pose a notable restraint on the expansion of the AI in smart cities market. The extensive collection and analysis of personal data by AI systems raise ethical questions and public apprehension. Ensuring robust cybersecurity measures to protect sensitive urban data from breaches is a complex challenge. Citizens are increasingly wary about how their information is collected, stored, and utilized, leading to calls for stricter regulations. The potential for misuse of data and the risk of surveillance create hurdles for market growth.
Growth of AI-powered traffic and waste management
The increasing demand for efficient urban infrastructure is presenting significant opportunities in AI-powered traffic and waste management solutions. AI algorithms can optimize traffic flow, reduce congestion, and improve public transit efficiency through real-time data analysis. Smart waste management systems utilizing AI can optimize collection routes, predict waste generation, and enhance recycling efforts. These applications offer tangible benefits to city administrations, including cost savings and environmental improvements. As urban populations continue to grow, the need for such optimized solutions will only intensify.
Cybersecurity threats targeting smart grids
The interconnected nature of smart city infrastructure, particularly smart grids, makes them vulnerable to sophisticated cybersecurity threats, posing a significant threat to market development. Malicious attacks on critical urban systems could lead to widespread disruptions, impacting power supply and essential services. The potential for data breaches and infrastructure sabotage creates a high-risk environment for smart city deployments. The increasing reliance on digital networks amplifies the potential impact of such security compromises. This inherent vulnerability necessitates robust defense mechanisms to ensure the resilience of smart city operations.
The COVID-19 pandemic significantly accelerated the adoption of AI in smart cities, highlighting the need for resilient and adaptive urban management. Cities leveraged AI for real-time monitoring of public health, contact tracing, and resource allocation during the crisis. The demand for digital services and remote management solutions surged, pushing municipalities to fast-track their smart city initiatives. This unforeseen global event underscored the value of intelligent urban infrastructure for crisis response and future preparedness. Consequently, the pandemic acted as a catalyst for greater investment and integration of AI technologies in urban environments.
The hardware segment is expected to be the largest during the forecast period
The hardware segment is expected to account for the largest market share during the forecast period, owing to the foundational requirement for physical infrastructure in smart city deployments. This includes a vast array of sensors, cameras, IoT devices, and network equipment essential for data collection and connectivity. Furthermore, the increasing adoption of edge computing and 5G networks drives the demand for robust processing units and communication modules. Therefore, the continuous expansion of smart city projects globally directly translates into a dominant share for the hardware segment.
The machine learning segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the machine learning segment is predicted to witness the highest growth rate impelled by, its pivotal role in enabling intelligent decision-making and predictive capabilities within smart cities. Machine learning algorithms are crucial for processing complex data from various urban sources, allowing for real-time analysis and optimized responses. Applications such as predictive maintenance of infrastructure, intelligent traffic management, and adaptive public safety systems heavily rely on advanced machine learning models. This transformative potential drives the rapid expansion of the machine learning segment.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rapid urbanization and the proliferation of mega-cities, leading to an urgent need for efficient urban management solutions. Significant government investments in smart city projects across countries like China, India, and South Korea are fueling market growth. The increasing adoption of advanced technologies like AI, IoT, and 5G is widespread in this region. This region is also a hub for technological innovation and manufacturing, providing a conducive environment for smart city development.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to, to its well-established technological infrastructure and early adoption of cutting-edge AI solutions. High levels of R&D investment by key market players are driving continuous innovation in smart city applications. Government support and initiatives aimed at enhancing urban resilience and sustainability also contribute to this growth. Additionally, a strong focus on data privacy and security, combined with advanced regulatory frameworks, encourages responsible AI deployment.
Key players in the market
Some of the key players in AI in Smart Cities Market include IBM Corp, Microsoft, Google LLC, Intel Corp, Cisco Systems, Siemens AG, Huawei Tech, NVIDIA Corp, Hitachi Vantas, NEC Corp, Oracle Corp, SAP SE, Schneider Electric, General Electric, Thales Group, and Bosch.
In June 2025, IBM Corporation released the IBM Maximo for Smart Cities, an AI-driven asset management tool for urban utilities, improving predictive maintenance for water and power systems with a reported 10% reduction in downtime.
In May 2025, NVIDIA Corporation announced the Metropolis AI Framework update, enabling real-time video analytics for smart city applications like traffic management and public safety. The framework supports edge AI deployments for faster processing.
In April 2025, Cisco Systems, Inc. introduced the Cisco Smart City Connect, an AI-powered IoT solution for urban infrastructure monitoring. It enhances public safety and waste management through predictive analytics, deployed in select U.S. cities.