![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1818047
¼¼°èÀÇ È¯°æ Á¦¾îÇü ³ó¾÷ ½ÃÀå ¿¹Ãø(-2032³â) - ±¸¼º ¿ä¼Òº°, Àç¹è ¹æ¹ýº°, ½Ã¼³º°, ÀÛ¹°º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Controlled Environment Agriculture Market Forecasts to 2032 - Global Analysis By Component, Growing Method, Facility, Crop, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ È¯°æ Á¦¾îÇü ³ó¾÷ ½ÃÀåÀº 2025³â 321¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 18.6%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 1,060¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
ȯ°æ Á¦¾îÇü ³ó¾÷(CEA)Àº ¿Â½Ç, ¼öÁ÷ ³óÀå, ½Ä¹° °øÀå µî ¿Âµµ, ½Àµµ, ºû, CO2 ·¹º§ µîÀÇ È¯°æ ÆÄ¶ó¹ÌÅͰ¡ Á¤È®ÇÏ°Ô Á¶Á¤µÈ ¹ÐÆó ±¸Á¶ ³»¿¡¼ ÀÛ¹°À» Àç¹èÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¿¬Áß »ý»êÀ» °¡´ÉÇÏ°Ô Çϰí, ÀÚ¿ø È¿À²À» ÃÖÀûÈÇϸç, ¿ÜºÎ ±âÈÄ Á¶°Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ °¨¼Ò½Ãŵ´Ï´Ù. CEA´Â ¼ö°æ Àç¹è, ¿¡¾î·ÎÆ÷´Ð½º, ¿¡¾îÄÁ Á¦¾î ½Ã½ºÅÛ µîÀÇ Ã·´Ü ±â¼úÀ» ÅëÇÕÇÏ¿© ¼öÈ®·®À» ³ôÀÌ°í ¹°°ú ÈÇÐÁ¦Ç°ÀÇ »ç¿ë·®À» ÃÖ¼ÒÈÇÏ¸ç µµ½Ã¿Í ºñÀüÅëÀûÀÎ ³ó¾÷ ȯ°æ¿¡¼ Áö¼Ó °¡´ÉÇÑ ½Ä·® ½Ã½ºÅÛÀ» Áö¿øÇÕ´Ï´Ù.
¾ÈÀüÇϰí Áö¼Ó °¡´ÉÇÑ ½Äǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
µµ½ÃÈ¿Í ±âÈÄ º¯È·Î Á¤ºÎ¿Í ¹Î°£ ÀÌÇØ°ü°èÀÚµéÀº ¹«³ó¾àÀ¸·Î ¾ÈÁ¤ÀûÀÎ ¼öÀ²À» º¸ÀåÇÏ´Â ½Ã½ºÅÛ¿¡ ÅõÀÚ¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÑ ÇöÁö»ê ³ó»ê¹°À» ¼±È£Çϰí ÀÖÀ¸¸ç, ¼ö°æ Àç¹è, ¿¡¾î·ÎÆ÷´Ð½º, ¼öÁ÷ ³ó¹ý¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ CEA´Â ¿¬Áß Àç¹è¸¦ °¡´ÉÇÏ°Ô ÇÏ°í °èÀýÁֱ⿡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í ÀüÅëÀûÀÎ ³ó¾÷°ú °ü·ÃµÈ À§ÇèÀ» ¿ÏÈÇÕ´Ï´Ù. ÀÌ ÀüȯÀº º¸´Ù ±¤¹üÀ§ÇÑ ESG ¸ñÇ¥¿¡ ºÎÇÕÇϸç ź·Â ÀÖ´Â ½Äǰ °ø±Þ¸ÁÀ» Áö¿øÇÕ´Ï´Ù.
³ôÀº ±â¼úÀû º¹À⼺
IoT ¼¾¼, AI ±â¹Ý ºÐ¼®, ¿¡³ÊÁö È¿À²ÀûÀÎ HVAC ½Ã½ºÅÛÀ» ÅëÇÕÇÏ·Á¸é ¸¹Àº ÅõÀÚ¿Í Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ½Ã½ºÅÛ ±³Á¤, ÀÛ¹°º° ÃÖÀûÈ, À¯Áöº¸¼ö µî ¿î¿µ»óÀÇ °úÁ¦´Â È®À强À» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ Áö¿ª°£¿¡ Ç¥ÁØÈµÈ ÇÁ·ÎÅäÄÝÀÌ ¾ø±â ¶§¹®¿¡ »óÈ£ ¿î¿ë¼ºÀÌ ¹æÇصǾî Áß¼Ò±Ô¸ðÀÇ Àç¹è ³ó°¡ÀÇ µµÀÔÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.
½ÅÁö¿ªÀ¸·Î È®´ë
½ÅÈï°æÁ¦±¹¿¡¼´Â ÅäÁö ºÎÁ·°ú ½Ä·® ¼öÀÔ ÀÇÁ¸¿¡ ´ëÇÑ ÇØ°áÃ¥À¸·Î¼ CEA¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Áßµ¿, µ¿³²¾Æ½Ã¾Æ, ¾ÆÇÁ¸®Ä«ÀÇ ÀϺΠµî ±âÈİ¡ ½ÉÇÑ Áö¿ªÀ̳ª °æÀÛ °¡´ÉÇÑ ÅäÁö°¡ ÇÑÁ¤µÇ¾î ÀÖ´Â Áö¿ª¿¡¼´Â ¸ðµâ ¹æ½Ä°ú ÄÁÅ×ÀÌ³Ê ¹æ½ÄÀÇ ³ó¾÷ À¯´ÖÀÌ ¸ð»öµÇ°í ÀÖ½À´Ï´Ù. ³ó¾÷ ±â¼ú ±â¾÷°ú Áö¹æ Á¤ºÎ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº »õ·Î¿î ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿Í »ó¾÷Àû ¹èÆ÷¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àúºñ¿ë ¼¾¼ ±â¼ú°ú ¸ð¹ÙÀÏ ±â¹Ý ³óÀå °ü¸® Ç÷§ÆûÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ºÐ»êÇü ³ó¾÷ Ä¿¹Â´ÏƼÀÇ CEA°¡ ´õ¿í Ä£¼÷ÇØÁö°í ÀÖ½À´Ï´Ù.
¿¡³ÊÁö ±×¸®µå¿¡ ÀÇÁ¸
HVAC ½Ã½ºÅÛ, Àΰø Á¶¸í, ÀÚµ¿ °ü°³´Â ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö ÀÔ·ÂÀ» ÇÊ¿ä·Î ÇϹǷΠ¼ÛÀü¸Á °íÀå ¹× ¿¡³ÊÁö °¡°Ý º¯µ¿ÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ½Å·ÚÇÒ ¼ö ¾ø´Â ÀÎÇÁ¶ó°¡ ÀÖ´Â Áö¿ª¿¡¼´Â ÀÌ·¯ÇÑ ÀÇÁ¸¼ºÀÌ ÀÛ¹°ÀÇ »ýÁ¸ °¡´É¼º°ú ¼öÀͼº¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÕ´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ´Ù°í ÇØµµ, ƯÈ÷ ´ë±Ô¸ð ½Ã¼³¿¡¼´Â ÀÌÇà¿¡´Â ¾ÆÁ÷ º¯µ¿ÀÌ ÀÖ¾î, ºñ¿ë Áý¾àÀûÀÔ´Ï´Ù.
ÆÒµ¥¹ÍÀº ¼¼°èÀÇ ½Ä·® °ø±Þ üÀÎ Ãë¾à¼ºÀ» ºÎ°¢½ÃÄÑ Áö¿ªÈµÈ ź·Â¼ºÀÌ ÀÖ´Â ³ó¾÷ ¸ðµ¨¿¡ ´ëÇÑ °ü½ÉÀÇ ±ÞÁõÀ» Ã˱¸Çß½À´Ï´Ù. CEA ½Ã¼³Àº ¼ÒºñÀÚ¿Í ¼Ò¸Å¾÷ü°¡ ÀÎÀû Á¢ÃËÀ» ÃÖ¼ÒÈÇϰí, º¸´Ù ¾ÈÀüÇϰí ÃßÀû °¡´ÉÇÑ ³ó»ê¹°À» Ãß±¸ÇÏ°í ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ±×·¯³ª Àåºñ Á¶´Þ°ú ³ëµ¿·Â È®º¸ÀÇ Ãʱâ È¥¶õÀ¸·Î ÀÎÇØ ¸î °¡Áö ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ÇÑÆí ÀÌ À§±â´Â ¼½ÅÍ ÀüüÀÇ µðÁöÅÐ º¯ÇõÀ» °¡¼ÓÈÇÏ°í ¿ø°Ý °¨½Ã, ¿¹Ãø ºÐ¼®, ÀÚÀ²Àû ³ó¾÷ÀÌ ±â¼¼¸¦ ´Ã·È½À´Ï´Ù.
°ø±âÁ¶ÈÁ¦¾î½Ã½ºÅÛ(HVAC) ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
¿¡¾îÄÁ Á¦¾î ½Ã½ºÅÛ(HVAC) ºÎ¹®Àº ¿Âµµ, ½Àµµ ¹× ±â·ù Á¶Á¤¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÷´Ü HVAC ±â¼úÀº ´Ù¾çÇÑ ÀÛ¹°¿¡ ÃÖÀûÀÇ ¹Ì±âÈĸ¦ È®º¸ÇÏ¿© ¼öÀ²ÀÇ ¾ÈÁ¤¼º°ú ÀÚ¿ø È¿À²À» ³ôÀÔ´Ï´Ù. ÀûÀÀ ȯ±â, CO2 ³óÃà ¸ðµâ, ¿¡³ÊÁö ȸ¼ö ½Ã½ºÅÛ µîÀÇ Çõ½ÅÀº »ó¾÷¿ë ºôµù ÀÚµ¿È ¹× Ŭ¸°·ë ¿£Áö´Ï¾î¸µ °³¹ßÀ» Ȱ¿ëÇÏ¿© ¿î¿µ ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ ÅëÇյǾú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åä¾ç ±â¹Ý ½Ã½ºÅÛ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È Åä¾ç ±â¹Ý ½Ã½ºÅÛ ºÐ¾ß´Â ¼ö°æ Àç¹è ¹× °ø°æ Àç¹è ¼³Á¤¿¡ ºñÇØ ÀûÀÀ¼ºÀÌ ³ô°í ±â¼úÀû À庮ÀÌ ³·±â ¶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº »ý»êÀÚ°¡ ÀüÅëÀûÀÎ °üÇà°ú ÅëÁ¦ µÈ ÅõÀÔ¹°À» °áÇÕÇÏ´Â ÇÏÀ̺긮µå ÇϿ콺 ¹× Àüȯ ³ó¾÷ ¸ðµ¨¿¡¼ ƯÈ÷ ¼±È£µË´Ï´Ù. ¶ÇÇÑ Åä¾ç ±â¹ÝÀÇ CEA´Â Á¤È¼ö ¹× °í±Þ ¿µ¾ç ¿ë¾×¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇÑµÈ Áö¿ª¿¡¼ ÁöÁö¸¦ ¹Þ°í ÀÖÀ¸¸ç, ¼Ò±Ô¸ð °æ¿µ¿¡ ½Ç¿ëÀûÀÎ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ßÁ¶ÇÑ ³ó¾÷ ±â¼ú Çõ½Å, À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, À¯±â ³ó»ê¹°¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ¼ÒºñÀÚ ¼ö¿ä¿¡ ÈûÀÔ¾î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡¼´Â º¥Ã³ ijÇÇÅ»°ú ±â°ü ÅõÀÚÀÚÀÇ ÀÚ±ÝÀ» ¹è°æÀ¸·Î ´ë±Ô¸ð ¼öÁ÷ ³óÀå°ú ¿Â½Ç Ŭ·¯½ºÅͰ¡ ¿©·¯ °³ ÀÖ½À´Ï´Ù. ÃßÀû¼ºÀ» À§ÇÑ AI, ·Îº¿ °øÇÐ, ºí·ÏüÀÎÀÇ ÅëÇÕÀº Ç¥ÁØ ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Áö¼Ó°¡´ÉÇÑ ³ó¾÷°ú µµ½Ã³ó¾÷ ³ë·Â¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê´Â ´ëµµ½Ã±Ç Àü¹Ý¿¡ °ÉÃÄ ½ÃÀå ¼ºÀåÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ, ½Äǰ ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ±â¼ú µµÀÔ¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ¿Í °°Àº ±¹°¡µéÀº ÅäÁö Á¦¾à°ú Àα¸ ¾Ð·Â¿¡ ´ëóÇϱâ À§ÇØ ½º¸¶Æ® ³ó¾÷¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ¸ðµâ½Ä ³ó¾÷, ¼¾¼ ±â¹Ý ÀÛ¹° °ü¸®, AI ÁÖµµ ¼öÀ² ÃÖÀûÈ¿¡ ÁßÁ¡À» µÐ ½ÅÈï ±â¾÷ÀÇ »ýŰ谡 ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¹Î°£ ÆÄÆ®³Ê½Ê°ú ³ó¾÷ µðÁöÅÐÈ ÇÁ·Î±×·¥Àº ´õ¿í È®´ë¸¦ ÃËÁøÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾çÀº CEAÀÇ Çõ½Å°ú È®À强ÀÇ ÇÖ½ºÆÌÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Controlled Environment Agriculture Market is accounted for $32.14 billion in 2025 and is expected to reach $106.08 billion by 2032 growing at a CAGR of 18.6% during the forecast period. Controlled Environment Agriculture (CEA) is the cultivation of crops within enclosed structures such as greenhouses, vertical farms, or plant factories where environmental parameters like temperature, humidity, light, and CO2 levels are precisely regulated. This approach enables year-round production, optimizes resource efficiency, and reduces dependency on external climate conditions. CEA integrates advanced technologies including hydroponics, aeroponics, and climate control systems to enhance yield, minimize water and chemical usage, and support sustainable food systems in urban and non-traditional agricultural settings.
Increasing demand for safe and sustainable food
Urbanization and climate volatility are prompting governments and private stakeholders to invest in systems that ensure consistent, pesticide-free yields. Consumers are increasingly favoring locally grown produce with minimal environmental impact, driving interest in hydroponics, aeroponics, and vertical farming. Moreover, CEA enables year-round cultivation, reducing dependency on seasonal cycles and mitigating risks associated with traditional farming. This shift aligns with broader ESG goals and supports resilient food supply chains.
High technical complexity
Integrating IoT sensors, AI-based analytics, and energy-efficient HVAC systems requires significant upfront investment and specialized expertise. Operational challenges such as system calibration, crop-specific optimization, and maintenance further complicate scalability. Additionally, the lack of standardized protocols across regions can hinder interoperability and slow adoption among small and mid-sized growers.
Expansion to new geographies
Emerging economies are witnessing increased interest in CEA as a solution to land scarcity and food import dependency. Regions with harsh climates or limited arable land-such as the Middle East, Southeast Asia, and parts of Africa-are exploring modular and container-based farming units. Strategic partnerships between agri-tech firms and local governments are unlocking new pilot projects and commercial deployments. Furthermore, advancements in low-cost sensor technologies and mobile-based farm management platforms are making CEA more accessible to decentralized farming communities.
Dependency on energy grids
HVAC systems, artificial lighting, and automated irrigation require stable energy inputs, making operations susceptible to grid failures or energy price volatility. In regions with unreliable infrastructure, this dependency poses a significant risk to crop viability and profitability. Although renewable energy integration is gaining traction, the transition remains uneven and cost-intensive, especially for large-scale facilities.
The pandemic underscored the fragility of global food supply chains, prompting a surge in interest for localized and resilient agricultural models. CEA facilities experienced increased demand as consumers and retailers sought safer, traceable produce with minimal human contact. However, initial disruptions in equipment sourcing and labor availability delayed several infrastructure projects. On the upside, the crisis accelerated digital transformation across the sector, with remote monitoring, predictive analytics, and autonomous farming gaining momentum.
The climate control systems (HVAC) segment is expected to be the largest during the forecast period
The climate control systems (HVAC) segment is expected to account for the largest market share during the forecast period due to their critical role in regulating temperature, humidity, and airflow. Advanced HVAC technologies ensure optimal microclimates for diverse crops, enhancing yield consistency and resource efficiency. Innovations such as adaptive ventilation, CO2 enrichment modules, and energy recovery systems are being integrated to reduce operational costs leveraging developments from commercial building automation and cleanroom engineering.
The soil-based systems segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the soil-based systems segment is predicted to witness the highest growth rate driven by their adaptability and lower technological barriers compared to hydroponic or aeroponic setups. These systems are particularly favored in hybrid greenhouses and transitional farming models where growers combine traditional practices with controlled inputs. Moreover, soil-based CEA is gaining traction in regions with limited access to purified water or advanced nutrient solutions, offering a practical alternative for small-scale operations.
During the forecast period, the North America region is expected to hold the largest market share supported by robust agri-tech innovation, favorable regulatory frameworks, and strong consumer demand for organic produce. The U.S. and Canada host several large-scale vertical farms and greenhouse clusters, backed by venture capital and institutional funding. Integration of AI, robotics, and blockchain for traceability is becoming standard practice. Additionally, government incentives for sustainable agriculture and urban farming initiatives are reinforcing market growth across metropolitan areas.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid urbanization, rising food safety concerns, and technological adoption. Countries like China, Japan, and India are investing heavily in smart agriculture to address land constraints and population pressures. The region is witnessing a proliferation of startup ecosystems focused on modular farming, sensor-based crop management, and AI-driven yield optimization. Public-private partnerships and agricultural digitization programs are further catalyzing expansion, making Asia Pacific a hotspot for innovation and scalability in CEA.
Key players in the market
Some of the key players in Controlled Environment Agriculture Market include Vertical Harvest Farms, Urban Crop Solutions, Plenty Unlimited Inc., Mirai, Lufa Farms, Local Bounti, Little Leaf Farms, Jingpeng, Infarm, Gotham Greens, Freight Farms, Eden Green Technology, BrightFarms, Bowery Farming, AppHarvest, and AeroFarms.
In July 2025, Little Leaf announced a new Tennessee campus (investment, ~318 jobs, ~$75M capex) to expand production footprint. The company launched a new Romaine Leaf packaged lettuce product hitting retail both items documented in PRNewswire and state economic announcements.
In May 2025, Gotham Greens announced a consumer marketing collaboration with Sesame Workshop (limited-edition packaging and campaign to encourage families to eat more plants).