½ÃÀ庸°í¼­
»óǰÄÚµå
1374456

<2023> ´Ü°áÁ¤(´ÜÀÔÀÚ) ¾ç±ØÀç ±â¼ú°³¹ß µ¿Çâ ¹× ½ÃÀå Àü¸Á

<2023> Single Crystal (Single Particle) Cathode Technology Development Trend and Market Outlook

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: SNE Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® ¶Ç´Â ±¹¹® - 338 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



Àü±âÂ÷ ¹èÅ͸® ¼º´ÉÀ» ȹ±âÀûÀ¸·Î ³ôÀÏ ¼ö ÀÖ´Â ´Ü°áÁ¤ ±¸Á¶ÀÇ ¾ç±ØÀç ¾ç»êÀ» ¾ÕµÎ°í, Áß±¹ ¹× Çѱ¹ÀÇ ¾÷ü°£ °æÀïÀÌ º»°ÝÈ­µÉ Àü¸ÁÀÔ´Ï´Ù.

ÇöÀç »ó¿ëÈ­µÈ Àü±âÂ÷¿¡ Àû¿ëµÈ ¹èÅ͸® ¾ç±ØÀç´Â ¼ö¸¹Àº ±Ý¼ÓÈ­ÇÕ¹° °áÁ¤ÀÌ ¸ðÀÎ ´Ù°áÁ¤ ±¸Á¶ÀÔ´Ï´Ù. ±×·±µ¥ ÀÌ·¯ÇÑ ¾ç±Ø ¹°ÁúÀ» ÀÏÁ¤ µÎ²²·Î ¸¸µå´Â ¾Ð¿¬ °øÁ¤ ¹× Ãæ¹æÀü °úÁ¤¿¡¼­ ÀÔÀÚ°£ ±Õ¿­ÀÌ ¹ß»ýÇϱⰡ ½±½À´Ï´Ù. ÃæÀü°ú ¹æÀüÀÌ ¹Ýº¹µÉ¼ö·Ï ¼ÒÀç »çÀÌÀÇ ±Õ¿­ÀÌ »ý°Ü Æ´ÀÌ Ä¿Áý´Ï´Ù. ±Õ¿­¿¡ ÀÇÇÑ ¼ÒÀçÀÇ ÆÄ±«´Â ¹èÅ͸® ³» °¡½º¹ß»ýÀ» Áõ°¡½Ã۰í, Ãæ¹æÀü »çÀÌŬÀ» °¨¼Ò½ÃÄÑ ¼ö¸í°¨¼Ò·Î À̾îÁý´Ï´Ù.

¹Ý¸é ´Ü°áÁ¤Àº ÀÔÀÚ°¡ ºÎ¼­ÁöÁö ¾Ê¾Æ ÀÌ·± ¹®Á¦°¡ ¾ø½À´Ï´Ù. ¶ÇÇÑ ¿ë·®À» Áõ°¡½Ã۱â À§ÇØ ¼ÒÀç³» ´ÏÄÌÀÇ ÇÔ·®À» Áõ°¡½ÃÅ´¿¡ µû¶ó ±¸Á¶ÀûÀÎ ¾ÈÁ¤¼ºÀÌ ³·¾ÆÁö°í È­Àç À§Ç輺ÀÌ ³ô¾ÆÁö°í ÀÖ¾î ÀÌ¿¡ ´ëÇÑ ÇØ°áÃ¥À¸·Î ´Ü°áÁ¤ ¾ç±ØÀçÀÇ °³¹ß Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

´Ü°áÁ¤ ¾ç±ØÀç´Â ¶ÇÇÑ, ¾ç±ØÀç °¡°ø ºñ¿ëÀ» ³·Ãß°í ¼öÀ²µµ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áï, ´Ü°áÁ¤ ¾ç±ØÀç´Â ÀÜÇØ¹°ÀÌ ¾ø¾î ºÒ·®Ç° ¹ß»ý È®·üÀ» ³·Ãß°í ¼ö¼¼(washing)°øÁ¤À» °ÅÄ¥ Çʿ䰡 ¾ø±â ¶§¹®ÀÔ´Ï´Ù. ¼ö¼¼°øÁ¤Àº ¾ç±ØÀ縦 ¸¸µé ¶§ ¹Ýµå½Ã ÇÊ¿äÇÑ °øÁ¤À¸·Î ¹°·Î ºÒ¼ø¹°À» Á¦°ÅÇÏ´Â °úÁ¤ÀÔ´Ï´Ù.

´Ü°áÁ¤ ¾ç±ØÀç°¡ »ó¿ëÈ­µÇ¸é ÇÏÀÌ´ÏÄÌ ¾ç±ØÀç Àû¿ëµµ È®´ëµÉ Àü¸ÁÀÔ´Ï´Ù. ¶Ç °¡½º¹ß»ýÀÌ ÁÙ¸é ±×¸¸Å­ ¼ö¸íÀÌ Áõ°¡ÇÏ°í ´õ ¸¹Àº Ȱ¹°Áú·Î ³»ºÎ¸¦ ä¿ï ¼ö ÀÖ¾î ¿¡³ÊÁö¹Ðµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. À̸¦ Àü±âÂ÷ ¹èÅ͸® ÆÑ¿¡ Àû¿ëÇϸé Áö±Ýº¸´Ù ´õ ÀûÀº ¹èÅ͸® ¼¿ °³¼ö·Î 1ȸ ÃæÀüÀ¸·Î 500kmÀÌ»óÀÇ ÁÖÇà°Å¸®¸¦ ´Þ¼ºÇϰí, ·Õ·¹ÀÎÁö ¸ðµ¨ µî ´õ ±ä ÁÖÇà°Å¸®¸¦ °®Ãá Â÷·® ¶óÀξ÷À» °®Ãâ ¼ö ÀÖ°Ô µË´Ï´Ù. Áï ¿ø°¡ Àý°¨°ú ¼º´É Çâ»óÀ» µ¿½Ã¿¡ ÀâÀ» ¼ö ÀÖ´Â °ÔÀÓ Ã¼ÀÎÀú°¡ µÉ ¼ö ÀÖ´Â ÀÌÀ¯ÀÔ´Ï´Ù.

±×·¸´Ù°í ´Ü°áÁ¤ ¾ç±ØÀçÀÇ ÀåÁ¡¸¸ ÀÖ´Â °ÍÀÌ ¾Æ´Ï°í ´ÜÁ¡µµ ÀÖ½À´Ï´Ù. ±×°£¿¡ ´Ù°áÁ¤ ¾ç±ØÀç °³¹ß¿¡ ÁÖ·ÂÇÑ ÀÌÀ¯´Â ÀÔÀÚ°¡ Å« ´Ü°áÁ¤ ¼ÒÀç´Â Ãʱâ ÀúÇ×°ªÀÌ ³ô¾Æ ¿øÇϴ´ë·Î Àü¾ÐÀ» °Í ¼ö ¾ø¾ú½À´Ï´Ù. ÀÌ·¸°Ô µÇ¸é Á¦´ë·Î µÈ Ãâ·ÂÀÌ ³ª¿ÀÁö ¾Ê¾Æ ¹èÅ͸® ¼º´ÉÀ» ³ôÀÏ ¼ö ¾ø´Â ´ÜÁ¡ÀÌ Àֱ⠶§¹®À̾ú½À´Ï´Ù.

´Ù¸¸ Ãß°¡ °øÁ¤ÀÌ ÇÊ¿äÇϰí ÀÛµ¿ Àü¾ÐÀÌ Ä¿¼­ ¹èÅ͸® ¿Âµµ°¡ »ó½ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±Ø°øÁ¤ÀÇ ÀϺÎÀÎ ¾Ð¿¬°øÁ¤¿¡¼­ ´Ü°áÁ¤ ÀÔÀÚ°¡ ¼Õ»óµÉ ¼ö À־ ¾ç»ê Ãʱ⿡´Â ¼ø¼öÇÑ ´Ü°áÁ¤ÀÌ ¾Æ´Ï¶ó ´Ù°áÁ¤°ú ¼¯¾î¼­ »ý»êÀÌ ÀÌ·ç¾îÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÌ¹Ì Áß±¹ÀÇ ¾÷üµéÀº NCM523, 622µî¿¡¼­ ´Ü°áÁ¤ ¾ç±ØÀ縦 »ý»êÇϰí ÀÖÀ¸¸ç, LGÈ­ÇÐ, ¿¡ÄÚÇÁ·Îºñ¿¥, ¿¤¾Ø¿¡ÇÁ, Æ÷½ºÄÚ Ç»Ã³¿¥ µî ±¹³»¾÷üµéµµ ´ëºÎºÐ °³¹ßÀ» ¸¶Ä¡°í °í°´»ç¿¡ ǰÁú Å×½ºÆ®¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ´Ü°áÁ¤ NCA, NCMÀÌ ´ë»óÀ̸ç, ¾ç»êÁغñ¸¦ ¸¶Ä£ »óÅ·Πº¼ ¼ö ÀÖ½À´Ï´Ù.

¾÷°è´Â ´Ü°áÁ¤À» ¸¸µå´Â °Íµµ Áß¿äÇÏÁö¸¸, ³»±¸¼º È®º¸¸¦ À§ÇÑ ÄÚÆÃ ±â¼ú¿¡¼­ ¼º´É°ú ǰÁúÀÌ ÆÇ°¡¸§ µÉ °ÍÀ¸·Î Àü¸ÁÇÕ´Ï´Ù. Áï ÀÔÀÚÅ©±â¸¦ Ű¿ì¸é¼­ Ç¥¸é󸮸¦ ¾î¶»°Ô ÇÒ °ÍÀÎÁö°¡ ÇÙ½ÉÀÔ´Ï´Ù.

ÇöÀç, ´Ü°áÁ¤ ¾ç±ØÀçÀÇ ¾ç»ê¿¡ ÀÇÇÑ ½ÃÀåÀº Áß±¹ÀÇ 5´ë ¼±µÎ¾÷ü°¡ Àüü ½ÃÀåÀÇ 75%Á¤µµ¸¦ Â÷ÁöÇϰí ÀÖ´Â »óȲÀÔ´Ï´Ù.

Çѱ¹ÀÇ °¢ ¾ç±Ø¾÷üÀÇ ¹ßÇ¥¿¡ ÀÇÇϸé 23³â ¿ÃÇØºÎÅÍ »ùÇÃÁ¦°øÀ» ½ÃÀÛÀ¸·Î 25³â¿¡´Â ´ë·« 12¸¸Åæ ÀÌ»óÀ» »ý»êÇÒ °ÍÀ¸·Î SNE Research´Â Àü¸ÁÇϰí ÀÖ½À´Ï´Ù. ÇöÀç Áß±¹ÀÇ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀçÀÇ °æ¿ì, 60%-70%°¡ NCM 523µî 5 ½Ã¸®Áî ´Ü°áÁ¤ ºñÁßÀÌ °¡Àå ³ôÀ¸¸ç, NCM622 µî 6 ½Ã¸®Áî ´Ü°áÁ¤ ºñÁßÀº 18- 25% Á¤µµ¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, NiÇÔ·®ÀÌ 80%ÀÌ»óÀÎ 8 ½Ã¸®ÁîÀÎ °æ¿ì´Â 21³âºÎÅÍ »ý»êºñÁßÀÌ Áõ°¡ÇÏ¿© ÇöÀç´Â ¾à 15%¸¦ Á¡À¯Çϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³ª ÀÖÀ¸¸ç, ÀÌ ºñÁßÀº °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

SNE ResearchÀÇ Àü¸Á¿¡ µû¸£¸é, Çѱ¹ÀÇ °æ¿ì, NiÇÔ·®¿¡ µû¸¥ »ý»ê·® data°¡ ¾ÆÁ÷ ¾ø¾î¼­ ÇöÀç·Î¼± ½ÃÀå Àü¸ÁÀÌ ¾î·Á¿ì³ª, Áß±¹ÀÇ °æ¿ì, 2025³â Hi-NiÀÌ ¾à 42¾ï´Þ·¯, Mid-NiÀÌ 92¾ï´Þ·¯·Î Àü¸ÁµÇ¸ç, 2030³â¿¡´Â Hi-NiÀº ¾à 240¾ï´Þ·¯, Mid-NiÀº 238¾ï´Þ·¯·Î Hi-NiÀÇ ½ÃÀåÀÌ ´õ Ä¿Áú °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

º» º¸°í¼­ÀÇ Strong Point

  • ¨ç ´Ü°áÁ¤ Ni°è ¾ç±ØÀç°³¹ßÀÇ fundamental ¹× advances±îÁö ³»¿ë ¼ö·Ï
  • ¨è ´Ü°áÁ¤ Ni-rich°è ¾ç±ØÀç¿¡ ´ëÇÑ ¾ÆÁÖ »ó¼¼ÇÑ ¿¬±¸µ¿Çâ ¹× ÇâÈÄ Àü¸Á ¼ö·Ï
  • ¨é ´Ü°áÁ¤ Ni-rich°è ¾ç±ØÀÇ ¿ë·®¿­È­ ¸ÞÄ¿´ÏÁò ¿¬±¸¿¡ ´ëÇÑ ³»¿ë ¼ö·Ï
  • ¨ê ´Ü°áÁ¤ NCM ¾ç±ØÀçÀÇ ÁÖ¿ä ÇÕ¼º¹ý¿¡ ´ëÇÑ ºñ±³
  • ¨ë ´Ü°áÁ¤ ¾ç±ØÀç ¾÷üÀÇ »ó¼¼ÇÑ ÃÖ±Ù µ¿Çâ ¹× Æ¯Ç㠺м®
  • ¨ì ´Ü°áÁ¤ ¾ç±ØÀç ½ÃÀå Àü¸Á

1. ¾ç±ØÀç °³¿ä

  • 1.1. ¾ç±ØÀç °³¹ßÀÇ ¿ª»ç
  • 1.2. ¾ç±ØÀ縦 µÑ·¯½Ñ ÃÖ±ÙÀÇ µ¿Çâ
    • 1.2.1. Ãþ»ó »êÈ­¹° ¾ç±ØÀç
    • 1.2.2. ½ºÇÇ³Ú »êÈ­¹° ¾ç±ØÀç
    • 1.2.3. Æú¸®À½À̿ »êÈ­¹° ¾ç±ØÀç
  • 1.3. ¾ç±ØÀ纰 °³¹ß ÇöȲ
    • 1.3.1. ¹Ì¼¼±¸Á¶ º¯°æ
    • 1.3.2. ¾ç±Ø ±Õ¿­ Á¦°Å
    • 1.3.3. One Pot Process Àû¿ë
    • 1.3.4. ÀüÀÚ·¹ÀÎÁö ó¸®

2. ´Ü°áÁ¤ Ni-rich°è layered ¾ç±ØÀçÀÇ ¿¬±¸µ¿Çâ ¹× ÇâÈÄ Àü¸Á

  • 2.1. ´Ü°áÁ¤ Ni-rich layered ¼ÒÀç ¿¬±¸ Çʿ伺
    • 2.1.1. Ni-rich layered¼ÒÀçÀÇ ÇÊ¿äÇÑ ÀÌÀ¯ (ÀåÁ¡)
    • 2.1.2. Ni°è layered ¾ç±Ø¼ÒÀç ¿­È­ ¸ÞÄ¿´ÏÁò
    • 2.1.3. Ni°è layered ¾ç±Ø¼ÒÀç ´Ü°áÁ¤È­ (´ÜÀÔÀÚÈ­) Çʿ伺
  • 2.2. ´Ü°áÁ¤ ¾ç±ØÀç Á¤ÀÇ
  • 2.3. ´Ü°áÁ¤ ¾ç±ØÀç ±â¼ú °³¹ß ÇöȲ
    • 2.3.1 ´ÜÀÔÀÚ Ni°è layered ¼ÒÀç ÇÕ¼º ¿¬±¸
    • 2.3.2 ´ÜÀÔÀÚ Ni°è layered ¼ÒÀç ÇÕ¼ºÀ§ÇÑ ¼Ò°á ¹æ¹ý ¿¬±¸
    • 2.3.3. ´ÜÀÔÀÚ Ni°è layered ¼ÒÀç ¼º´É °³¼±À§ÇÑ ¼ÒÀç °³Áú ¿¬±¸
      • 2.3.3.1 Ç¥¸é ÄÚÆÃ ¿¬±¸
      • 2.3.3.2. ¿ø¼Ò ġȯ ¿¬±¸ (µµÇÎ)
        • 2.3.3.2.1. ´ÜÀÏ µµÇÎ
        • 2.3.3.2.2. µà¾ó µµÇÎ
      • 2.3.3.3. ÀüÇØ¾× ÃÖÀûÈ­ ¿¬±¸
    • 2.3.4. ´ÜÀÔÀÚ Ni°è layered ¼ÒÀç Ȱ¿ë ¹æ¾È
      • 2.3.4.1. Ni°è layered ¼ÒÀç ´ÜÀÔÀÚÈ­ Àü±Ø ¼³°è °üÁ¡¿¡¼­ ÀåÁ¡
      • 2.3.4.2. Ni°è layered ¼ÒÀç ´ÜÀÔÀÚÈ­ Àü±Ø ¼³°è °üÁ¡¿¡¼­ ´ÜÁ¡
      • 2.3.4.3. Ni°è layered ¼ÒÀç ´ÜÀÔÀÚÈ­ ¹®Á¦Á¡ ÇØ°á À§ÇÑ ¿¬±¸
  • 2.4. ¼ÒÀç ´ÜÀÔÀÚ¸¦ ÅëÇÑ °³¼±Á¡
    • 2.4.1. ÀÔÀÚ ±ú¾îÁü Ư¼º ¿ÏÈ­
      • 2.4.4.1. Àü±Ø Á¦ÀÛ °øÁ¤¿¡¼­ÀÇ ÇÁ·¹½º ´Ü°è
    • 2.4.2. Ãæ¹æÀü °úÁ¤¿¡¼­ÀÇ ÀÔÀÚ ±ú¾îÁü
    • 2.4.3. ºñÇ¥¸éÀû °¨¼Ò¸¦ ÅëÇÑ Ç¥¸é ¿­È­ÀÇ ¾çÀûÀÎ °¨¼Ò
    • 2.4.4. ¿¡³ÊÁö ¹Ðµµ Áõ°¡
    • 2.4.5. ¼ö¼¼°øÁ¤ »ý·« °¡´É
  • 2.5. Çö ´Ü°áÁ¤ ¾ç±ØÀç ±â¼ú °³¹ß ÇÑ°è ¹× ÇØ°á À§ÇÑ ¿¬±¸
    • 2.5.1. ÇÕ¼º Á¶°Ç ÃÖÀûÈ­ÀÇ ¾î·Á¿òÀ¸·Î ÀÎÇÑ ¼ÒÀç °áÁ¤ ±¸Á¶ÀÇ ¿­È­
    • 2.5.2. ÀÔÀÚ »çÀÌÁî ÇѰè

3. ´Ü°áÁ¤ Ni°è ¾ç±ØÀç °³¹ß: Fundamental ¹× advances

  • 3.1. °³¿ä
  • 3.2. Ni°è ¾ç±ØÀç
    • 3.2.1. È­Çб¸Á¶
    • 3.2.2. ÀüÀÚ±¸Á¶
  • 3.3. Ni°è Ãþ»ó »êÈ­¹°ÀÇ °úÁ¦
    • 3.3.1. ÇÕ¼ºÀÇ ¾î·Á¿ò
    • 3.3.2. ±¸Á¶Àû ºÒ¾ÈÁ¤¼º
    • 3.3.3. È­ÇÐÀû ºÒ¾ÈÁ¤¼º
    • 3.3.4. ±â°èÀû ¼º´É ÀúÇÏ
    • 3.3.5. ¾ÈÀü¼º ¹®Á¦
  • 3.4. ´Ü°áÁ¤ Ni°è Ãþ»ó »êÈ­¹°ÀÇ À¯·¡
  • 3.5. ´Ü°áÁ¤ Ni°è Ãþ»ó »êÈ­¹°ÀÇ ÇÕ¼º
    • 3.5.1. ÇÕ¼º ¹æ¹ý
  • 3.6. ´Ü°áÁ¤°ú ´Ù°áÁ¤ Àç·áÀÇ ºñ±³ ¿¬±¸
  • 3.7. ´Ü°áÁ¤ Ni±â¹Ý ¾ç±ØÀçÀÇ ÃֽаøÁ¤
    • 3.7.1. µµÇΰú Ç¥¸é ÄÚÆÃ
    • 3.7.2. ±â°èÀû ¿¬±¸
  • 3.8. °á°ú ¹× °á·Ð

4. ´Ü°áÁ¤ Ni-rich NCM ¾ç±ØÀÇ ¿ë·®¿­È­ ¸ÞÄ¿´ÏÁò ¿¬±¸

  • 4.1. °³¿ä
  • 4.2. Ni-rich ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀÇ ±âº»Æ¯¼º Æò°¡
    • 4.2.1. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀç ÇÕ¼º
    • 4.2.2. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀç Á¶¼º ¹× ºÐ¼®
    • 4.2.3. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀçÀÇ Àü±âÈ­ÇÐÀû Ư¼º
    • 4.2.4. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀçÀÇ ±¸Á¶Àû ÀÀ·ÂºÐ¼®
    • 4.2.5. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀçÀÇ in-situ XRD ºÐ¼®
    • 4.2.6. ´Ü°áÁ¤, ´Ù°áÁ¤ ¾ç±ØÀçÀÇ TEM ºÐ¼®
    • 4.2.7. °á°ú ¹× °á·Ð

5. ´Ü°áÁ¤ Ni-rich ¾ç±ØÀçÀÇ ÀÔÀÚÁ¦¾î (¼Ò°á Á¶Á¦ Àû¿ë)

  • 5.1. °³¿ä
  • 5.2. ½ÇÇè¿¡ ´ëÇÑ ¼³¸í
  • 5.3. ½ÇÇè °á°ú
    • 5.3.1. °áÁ¤¼ºÀå ÃËÁøÀ» À§ÇÑ ¼Ò°á Á¶Á¦ÀÇ ÃÖÀûÈ­
    • 5.3.2. °áÁ¤¼ºÀå ¸ÞÄ«´ÏÁò
    • 5.3.3. Ni-rich ´Ü°áÁ¤ ¾ç±ØÀÇ ±¸Á¶
    • 5.3.4. Ni-rich ´Ü°áÁ¤ ¾ç±ØÀÇ ¼º´É
  • 5.4. ¼Ò°á Á¶Á¦ÀÇ Àû¿ë °á°ú

6. ´Ü°áÁ¤ NCM ¾ç±ØÀçÀÇ ¿Ã °Ç½Ä ÇÕ¼º¹ý(All Dry Synthesis)

  • 6.1. °³¿ä
  • 6.2. °Ç½Ä ÇÕ¼º
  • 6.3. °Ç½Ä ÇÕ¼º °á°ú ¹× ³íÀÇ
    • 6.3.1. Àü±¸Ã¼ ±¸Á¶ ¹× ÇüÅÂ
    • 6.3.2. NCM Çü¼º¿¡ ´ëÇÑ ¼Ò°á Á¶°ÇÀÇ ¿µÇâ
    • 6.3.3. º¼ ¹Ð¸µ Àü±¸Ã¼ÀÇ ´Ü°áÁ¤ NCM
    • 6.3.4. °á·Ð

7. ´Ü°áÁ¤ NCM523 ¾ç±ØÀçÀÇ One Spot Synthesis

  • 7.1. °³¿ä
  • 7.2. NCM523ÀÇ ÇÕ¼º
  • 7.3. Àç·áÀÇ Æ¯¼ºÈ­(Characterization)
  • 7.4. Àü±âÈ­ÇÐÀû Ư¼º
  • 7.5. ½ÇÇè°á°ú ¹× ³íÀÇ
    • 7.5.1. ¾ç±ØÀç ÇÕ¼º °á°ú¹° ºÐ¼®
    • 7.5.2. ¾ç±ØÀçÀÇ Àü±âÈ­ÇÐÀû Ư¼º
    • 7.5.3. °á·Ð

8. ´Ü°áÁ¤ NCM ¾ç±ØÀçÀÇ ÇÕ¼º ¹× °³Áú(modification)

  • 8.1. °³¿ä
  • 8.2. ¼ºÀå ¸ÞÄ¿´ÏÁò(NCM¾ç±Ø¿¡ ´ëÇÑ °í·Á»çÇ×)
  • 8.3. Solid state ¹ÝÀÀ
  • 8.4. °íü-¾×ü À¯º¯ÇÐÀû ¹ÝÀÀ
  • 8.5. ¿ëÀ¶¿° Flux¿¡¼­ÀÇ °áÁ¤ ¼ºÀå
  • 8.6. Modification of morphology
    • 8.6.1. ¸ð¾ç Á¦¾î
    • 8.6.2. FacetÀÇ Á¶Àý
  • 8.6.3. °á·Ð

9. ´Ü°áÁ¤ ¾ç±ØÀç °³¹ß: DOE Program

  • 9.1. Ni-rich ´Ü°áÁ¤ ¾ç±ØÀçÀÇ Ãʰí¼Ó ¼ö¿­¹ý¿¡ ÀÇÇÑ »ý»ê
  • 9.2. Ni-rich °í¼º´É ´Ü°áÁ¤ ¾ç±ØÀçÀÇ scale-up (advanced SaltÀû¿ë)
  • 9.3. °í¼º´É Àü°íü LIB¸¦ ±¸ÇöÇÏ´Â ´Ü°áÁ¤ ¾ç±ØÀç

10. ´Ü°áÁ¤ ¾ç±ØÀç ¾÷ü ƯÇ㠺м®

  • 10.1. Tesla
  • 10.2. LG Chem
  • 10.3. SM Lab
  • 10.4. Nano One Materials
  • 10.5. Æ÷½ºÄÚ Ç»Ã³¿¥
  • 10.6. ÄÚ½º¸ð ½Å¼ÒÀç
  • 10.7. ¿¤¿£¿¡ÇÁ
  • 10.8. Easpring
  • 10.9. BASF Shan Shan
  • 10.10. GEM
  • 10.11. XTC (Xiamen Tungsten)
  • 10.12. Henan Kelong
  • 10.13. Çö´ë/±â¾ÆÀÚµ¿Â÷
  • 10.14. 6K Inc.
  • 10.15. Dynanonic
  • 10.16. Suzhou Long Power
  • 10.17. Fengchao Energy
  • 10.18. Ecopro BM
  • 10.19. Umicore

11. ´Ü°áÁ¤ ¾ç±ØÀç ¾÷ü µ¿Çâ

  • 11.1. LG Chem
  • 11.2. Æ÷½ºÄÚ Ç»Ã³¿¥
  • 11.3. ¿¡ÄÚÇÁ·Îºñ¿¥
  • 11.4. Zhenhua E-Chem(ZEC)
  • 11.5. Chanyuan Lico
  • 11.6. Ronbay
  • 11.7. XTC (Xiamen Tungsten)
  • 11.8. Tianjin B&M
  • 11.9. Easpring
  • 11.10. Reshane
  • 11.11. Yibin Libode
  • 11.12. Wanxing 123
  • 11.13. GEM

12. ´Ü°áÁ¤ ¾ç±ØÀç ½ÃÀå Àü¸Á

  • 12-1. 2017-2022H1 Áß±¹ ´Ü°áÁ¤ »ý»ê·®
  • 12-2. 2019-2022.04 Áß±¹ ´Ü°áÁ¤ »ý»ê·®°ú ¾ç±ØÀç¿¡¼­ÀÇ ºñÁß
  • 12-3. 2019-2022Q1 Áß±¹ÀÇ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀ纰 »ý»ê·® ºÐÆ÷
  • 12-4. 2019-2022Q1 Áß±¹ÀÇ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀ纰 »ý»ê·® ºñÁß
  • 12-5. 2019-2022Q1 Áß±¹ÀÇ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀ纰 ½ÃÀå ħÅõÀ²
  • 12-6. 2021³â Áß±¹ ¾÷üº° »ï¿ø°è ¾ç±ØÀç ½ÃÀå Á¡À¯À²
  • 12-7. 2021³â Áß±¹ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀç ¾÷üº° »ý»ê·® ¹× Á¡À¯À²
  • 12-8. Çѱ¹-Áß±¹ »ï¿ø°è ´Ü°áÁ¤ »ý»ê·® Àü¸Á
  • 12-9. Çѱ¹ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀç ½ÃÀå Àü¸Á
  • 12-10. Áß±¹ »ï¿ø°è ¾ç±ØÀç Áß ´Ü°áÁ¤ ¾ç±ØÀçÀÇ »ç¿ë ºñÀ²
  • 12-11. Áß±¹ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀ纰 »ý»ê·® ºñÁß Àü¸Á
  • 12-12. Áß±¹ »ï¿ø°è ´Ü°áÁ¤ ¾ç±ØÀ纰 »ý»ê·® ½ÃÀå Àü¸Á

References

The mass production of single-crystal cathodes, poised to significantly enhance electric vehicle battery performance, is imminent, heralding an anticipated escalation in competition between Chinese and Korean companies.

In commercial electric vehicle batteries, the cathode materials currently employed consist of polycrystalline structures comprising multiple metal compound crystals. However, cracks often develop between these particles during the rolling process to achieve uniform thickness, as well as during charging and discharging. With repeated cycles, these cracks expand, resulting in material deterioration, increased gas generation within the battery, and a decline in charging/discharging cycles, ultimately diminishing battery longevity.

Single crystals, unlike their polycrystalline counterparts, are immune to this issue as their particles remain intact. Moreover, as nickel content rises to boost capacity, structural stability decreases, heightening the risk of fire. Hence, the development of single crystal cathodes emerges as a solution to this challenge.

Single crystal cathodes offer cost savings and enhanced yields by eliminating residual materials, thereby lowering defect probability and obviating the need for a washing process. This step, crucial in cathode manufacturing for impurity removal, becomes unnecessary with single crystal technology.

The commercialization of single-crystal cathodes is poised to broaden the utilization of high-nickel cathodes. With reduced gas generation, battery lifespan extends while accommodating more active material, boosting energy density. Implementing this in electric vehicle battery packs could enable over 500 km of driving range on a single charge with fewer cells, facilitating longer-range vehicle models. This potential game-changer promises both cost reduction and performance enhancement simultaneously.

Yet, single crystal cathodes also pose drawbacks. Unlike polycrystalline counterparts, large single crystal materials exhibit high initial resistance, challenging the application of desired voltage. Consequently, output remains low, impeding battery performance enhancement.

However, single crystal cathodes entail extra processing steps and operate at higher voltages, potentially raising battery temperatures. Moreover, single crystal particles are susceptible to damage during the calendering process, a crucial part of electrode manufacturing.

Consequently, in the initial stages of mass production, single crystals are likely to be blended with polycrystals rather than being produced in their pure form.

Chinese companies are already producing single crystal cathodes for NCM523 and 622, and domestic companies such as LG Chem, Ecopro BEM, L&F, and POSCO FutureM have also completed development and are conducting quality tests with clients. The targets are single crystal NCA and NCM, and it can be seen that they are ready for mass production.

Industry experts anticipate that the performance and quality of single crystal cathodes will hinge on coating technology to ensure durability and the manufacturing process of single crystals. Essentially, the focus lies in effectively conducting surface treatment while simultaneously augmenting particle size.

Currently, the market for mass-produced single crystal cathodes is dominated by the top 5 Chinese companies, which account for about 75% of the total market.

According to announcements by Korean cathode material companies, SNE Research predicts that they will start supplying samples this year (2023) and produce more than 120,000 tons in 2025. Currently, in the case of Chinese ternary single crystal cathodes, the proportion of 5 series single crystals, such as NCM 523, is the highest at 60% to 70%. The proportion of 6 series single crystals, such as NCM622, is 18 to 25%. In the case of 8 series with a Ni content of 80% or higher, the production ratio has increased since 2021 and currently accounts for about 15%. This proportion is expected to continue to increase.

According to SNE Research, it is difficult to predict the market for Korea at this time because there is no data on production volume by Ni content. However, in the case of China, Hi-Ni is expected to be about $4.2 billion and Mid-Ni is expected to be $9.2 billion in 2025. In 2030, Hi-Ni is expected to be about $24 billion and Mid-Ni is expected to be $23.8 billion, so the market for Hi-Ni is expected to be larger.

Strong Points of this report:

  • 1. Cover fundamental and advances in the development of single-crystal Ni-rich cathode materials
  • 2. Include a very detailed study of research trends and future prospects for single-crystal Ni-rich cathode materials.
  • 3. Include content on research regarding the capacity degradation mechanism of single-crystal Ni-rich cathodes.
  • 4. Compare major synthesis methods for single-crystal NCM cathode materials
  • 5. Detailed recent developments and patent analysis of single-crystal cathode material manufacturers
  • 6. Market outlook for single-crystal cathode materials

[Schematic diagram of general single-crystal Ni-rich layered cathode material synthesis and additional modification process]


Table of Contents

1. Overview of Cathode Materials

  • 1.1. History of Cathode Material Development
  • 1.2. Recent Trends in Cathode Materials
    • 1.2.1. Layered Oxide Cathode Materials
    • 1.2.2. Spinel Oxide Cathode Material
    • 1.2.3. Polyanionic Oxide (PAO) Cathode Materials
  • 1.3. Development Status of Cathode Materials by Type
    • 1.3.1. Microstructure Modification
    • 1.3.2. Removal of Cathode Cracks
    • 1.3.3. Application of the One-Pot process
    • 1.3.4. Microwave Processing

2. Research Trends and Future Prospects of Single Crystal Ni-rich Layered Cathodes

  • 2.1. Need for Research on Single Crystal Ni-rich Layered Materials
    • 2.1.1. The Need for Ni-rich Layered Materials (Advantages)
    • 2.1.2. Degradation Mechanisms of Ni-rich Layered Cathode Materials
    • 2.1.3. Need for Single Crystallization (Monoparticulation) of Ni-rich Layered Cathode Materials
  • 2.2. Definition of Single-crystal Cathode Material
  • 2.3. Development Status of Single-crystal Cathode Material Technology
    • 2.3.1. Single-particle Ni-rich Layered Material Synthesis Research
    • 2.3.2. Research on Sintering Methods for Synthesis of Single-particle Ni-rich Layered Materials
    • 2.3.3. Study on Modifying Materials to Enhance Performance of Single-particle Ni-rich Layered Materials
      • 2.3.3.1. Surface Coating Research
      • 2.3.3.2. Elemental Substitution Study (Doping)
        • 2.3.3.2.1. Single Doping
        • 2.3.3.2.2. Dual Doping
      • 2.3.3.3. Electrolyte Optimization
    • 2.3.4. Utilization Strategies for Single-Crystal Ni-Based Layered Materials
      • 2.3.4.1. Advantages of Single-Crystallization in Ni-Based Layered Cathodes for Electrode Design
      • 2.3.4.2. Disadvantages of Single-Crystallization in Ni-Based Layered Cathodes for Electrode Design
      • 2.3.4.3. Research on Addressing Challenges in Single-Crystallization of Ni-Based Layered Materials
  • 2.4. Improvement Through Material Single-Particle Formation
    • 2.4.1. Mitigation of Particle Breakage Characteristics
      • 2.4.4.1. Pressing Stage in Electrode Manufacturing
    • 2.4.2. Particle Breakage During Charge-Discharge Processes
    • 2.4.3. Quantitative Reduction of Surface Degradation through Reduced Specific Surface Area
    • 2.4.4. Energy Density Increase
    • 2.4.5. Washing Process Omission
  • 2.5. Limitations of Current SC Cathode Material Technology Development and Research for Overcoming Them
    • 2.5.1. Degradation of Material Crystal Structure Due to Difficulties in Optimizing Synthesis Conditions
    • 2.5.2. Particle Size Limit

3. Single-Crystal Ni-Based Cathode Materials: Fundamentals and Advances

  • 3.1. Overview
  • 3.2. Ni-based Cathode Materials
    • 3.2.1. Chemical Structure
    • 3.2.2. Electronic Structure
  • 3.3. Challenges of Ni-based Layered Oxides
    • 3.3.1. Synthesis Difficulties
    • 3.3.2. Structural Instability
    • 3.3.3. Chemical Instability
    • 3.3.4. Mechanical Performance Degradation
    • 3.3.5. Safety Issues
  • 3.4. Origin of Single-Crystal Ni-Based Layered Oxides
  • 3.5. Synthesis of Single-Crystal Ni-based Layered Oxides
    • 3.5.1. Synthesis Methods
  • 3.6. Comparative Study of Single-Crystal and Polycrystalline Materials
  • 3.7. Recent Advances in Single-Crystal Ni-Based Cathode Materials
    • 3.7.1. Doping and Surface Coating
    • 3.7.2. Mechanical Research
  • 3.8. Results and Conclusion

4. Study of Capacity Fading Mechanism of Single-crystal Ni-rich NCM Cathode

  • 4.1. Overview
  • 4.2. Assessment of Fundamental Properties in Ni-rich Single-crystal and Polycrystalline Cathodes
    • 4.2.1. Single-crystal and Polycrystalline Cathode Synthesis
    • 4.2.2. Composition and Analysis of Single-crystal and Polycrystalline Cathodes
    • 4.2.3. Electrochemical Properties of Single-crystal and Polycrystalline Cathodes
    • 4.2.4. Structural Stress Analysis of Single-crystal and Polycrystalline Cathode Materials
    • 4.2.5. In-situ XRD Analysis of Single-crystal and Polycrystalline Cathodes
    • 4.2.6. TEM Analysis of Single-crystal and Polycrystalline Cathode Materials
    • 4.2.7. Results and Conclusions

5. Particle Control of Ni-rich Monocrystalline Cathode Materials (Application of Sintering Process)

  • 5.1. Overview
  • 5.2. Experiment Description
  • 5.3. Experimental Results
    • 5.3.1. Optimization of Sintering Additives for Promoting Crystal Growth
    • 5.3.2. Crystal Growth Mechanism
    • 5.3.3. Ni-rich Structure of a Single Crystal Cathode
    • 5.3.4. Performance of Ni-rich Single Crystal Cathodes
  • 5.4. Application Results of Sintering Treatment

6. All-Dry Synthesis of Single-Crystal NMC Cathode Materials

  • 6.1. Overview
  • 6.2. Dry Synthesis
  • 6.3. Dry Synthesis Results and Discussion
    • 6.3.1. Precursor Structure and Morphology
    • 6.3.2. Effect of Sintering Conditions on NMC Formation
    • 6.3.3. Single-crystal NCM from Ball-milled Precursors
    • 6.3.4. Conclusion

7. One-Spot Synthesis of Single Crystal NCM523 Cathode Material

  • 7.1. Overview
  • 7.2. Synthesis of NCM523
  • 7.3. Characterization of Materials
  • 7.4. Electrochemical Properties
  • 7.5. Experiment Results and Discussion
    • 7.5.1. Cathode Material Synthesis Product Analysis
    • 7.5.2. Electrochemical Properties of Cathode Materials
    • 7.5.3. Conclusion

8. Synthesis and Modification of Single-Crystal NCM Cathode Materials:Growth Mechanism

  • 8.1. Overview
  • 8.2. Growth Mechanism for NCM Cathodes
  • 8.3. Solid State Reaction
  • 8.4. Solid-Liquid Rheological Reaction
  • 8.5. Crystal Growth in Molten Salt Flux
  • 8.6. Modification of morphology
    • 8.6.1. Control of Shape
    • 8.6.2. Facet Control
    • 8.6.3. Conclusion

9. Development of Single-Crystal Cathodes: DOE Program

  • 9.1. Ultrafast Hydrothermal Synthesis of Ni-rich Single-Crystal Cathodes
  • 9.2. Scaling up of High Performance Single Crystalline Ni-rich Cathode Materials with Advanced Lithium
  • 9.3. Single-Crystal Cathodes for High-Performance All-Solid-State LIBs

10. Patent Analysis of Single Crystal Cathode Material Companies

  • 10.1. Tesla
  • 10.2. LG Chem
  • 10.3. SM Lab
  • 10.4. Nano One Materials
  • 10.5. POSCO Future M
  • 10.6. COSMO Advanced Materials & Technology
  • 10.7. L&F
  • 10.8. Easpring
  • 10.9. BASF Shan Shan
  • 10.10. GEM
  • 10.11. XTC (Xiamen Tungsten)
  • 10.12. Henan Kelong
  • 10.13. Hyundai Motor Company / Kia Corporation
  • 10.14. 6K Inc.
  • 10.15. Dynanonic
  • 10.16. Suzhou Long Power
  • 10.17. Fengchao Energy
  • 10.18. Ecopro BM
  • 10.19. Umicore

11. Single-Crystal Cathode Material Industry Trends

  • 11.1. LG Chem
  • 11.2. POSCO FutureM
  • 11.3. EcoPro BM
  • 11.4. Zhenhua E-Chem(ZEC)
  • 11.5. Chanyuan Lico
  • 11.6. Ronbay
  • 11.7. XTC (Xiamen Tungsten)
  • 11.8. Tianjin B&M
  • 11.9. Easpring
  • 11.10. Reshane
  • 11.11. Yibin Libode
  • 11.12. Wanxing 123
  • 11.13. GEM

12. Single Crystal Cathode Market Outlook

  • 12-1. 2017~2022H1 China Single Crystal Production Volume
  • 12-2. 2019~2022.04 Production Volume and Share of Single Crystal Cathode Materials in China
  • 12-3. 2019~2022Q1 Distribution of production volume by SC ternary cathode materials in China
  • 12-4. 2019~2022Q1 Share of production by ternary SC cathode material in China
  • 12-5. 2019~2022Q1 Market Penetration by Ternary SC Cathode Materials in China
  • 12-6. Market Share of Ternary SC Cathode Materials by Chinese Companies in 2021
  • 12-7. Production Volume and Market Share of Ternary SC cathode Material Companies in China in 2021
  • 12-8. Korea-China Ternary Single Crystal Production Forecast
  • 12-9. Korean Ternary SC Cathode Material Mroduction Volume and Market Outlook
  • 12-10. Percentage of Single-crystal Cathodes among Ternary Cathode Materials in China
  • 12-11. Forecast of Production Volume Ratio by Chinese Ternary Single Crystal Cathode Material
  • 12-12. China Market Forecast by Ternary Single Crystal Cathode Material

References

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦