½ÃÀ庸°í¼­
»óǰÄÚµå
1364028

¼¼°èÀÇ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå : »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø(2018-2028³â)

Single Cell Analysis Market, 2028- Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Product, By Technique, By Cell Product, By Technique, By End User, By Region, By Competition.

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 181 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ´ÜÀϼ¼Æ÷ ºÐ¼® ½ÃÀåÀº 2022³â 36¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2028³â±îÁö ¿¬Æò±Õ 10.89%ÀÇ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀº Å« º¯È­¸¦ °Þ°í ÀÖÀ¸¸ç, ÃÖ÷´Ü °úÇÐ ¹× ÀÇÇÐ ¿¬±¸ÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. ÀÌ ¿ªµ¿ÀûÀÎ ½ÃÀåÀº °³º° ¼¼Æ÷¸¦ Àü·Ê ¾ø´Â ¼öÁØÀ¸·Î »ó¼¼ÇÏ°Ô Á¶»çÇϵµ·Ï ¼³°èµÈ ´Ù¾çÇÑ ±â¼ú°ú ±â¹ýÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀº À¯ÀüüÇÐ, ´Ü¹éÁúÇÐ, ¸é¿ªÇÐ, ½Å°æÇÐ, Á¾¾çÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ¸é¼­ ¼¼Æ÷ »ý¹°ÇÐ ¹× ÀÎü °Ç°­¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀÌÇØ¸¦ ÁõÁø½ÃŰ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·Â Áß Çϳª´Â °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ¿¬±¸ÀÚ¿Í ÀÓ»óÀǵéÀº ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀ» Ȱ¿ëÇÏ¿© ȯÀÚ °³°³Àο¡°Ô ¸ÂÃãÈ­µÈ Ä¡·á¸¦ Á¦°øÇϰí, º¸´Ù È¿°úÀûÀ̰í Á¤È®ÇÑ ÀÇ·áÀû °³ÀÔÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ȯÀÚ °á°ú¸¦ °³¼±Çϰí ÀÇ·á ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ Áß¿äÇÑ Àǹ̸¦ °®´Â´Ù. ¾Ï ¿¬±¸ ¹× Áø´Üµµ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ´ÜÀϼ¼Æ÷ ½ÃÄö½Ì ±â¼úÀº Á¾¾çÀÇ ÀÌÁú¼ºÀ» ¹àÇô³»°í ¾Ï »ý¹°Çп¡ ´ëÇÑ ´õ ±íÀº ÀÌÇØ¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö½ÄÀº Ç¥Àû Ä¡·á¹ýÀ» °³¹ßÇÏ°í ¾Ï Áø´Ü ¹× ¿¹Èĸ¦ °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¼¼Æ÷ÀÇ ÀÌÁú¼ºÀ» ¹àÈ÷·Á´Â ³ë·ÂÀº ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ Ãø¸éÀÔ´Ï´Ù. ¿¬±¸ÀÚµéÀº ÷´Ü µµ±¸¸¦ »ç¿ëÇÏ¿© ¼¼Æ÷ Áý´Ü ³» ´Ù¾ç¼ºÀ» ¹àÇô³»°í, ¼¼Æ÷ÀÇ Çൿ°ú ±â´É¿¡¼­ Áö±Ý±îÁö ¼û°ÜÁ® ÀÖ´ø ´µ¾Ó½º¸¦ ¹àÇô³»°í ÀÖ½À´Ï´Ù. ÀÌ´Â ±âÃÊ ¿¬±¸»Ó¸¸ ¾Æ´Ï¶ó ´Ù¾çÇÑ Áúº´¿¡ ´ëÇÑ Ä¡·á¹ý °³¹ß¿¡µµ Áß¿äÇÑ Àǹ̸¦ °®´Â´Ù.

´ÜÀϼ¼Æ÷ RNA ½ÃÄö½Ì, À¯¼¼Æ÷ ºÐ¼®, À̹Ì¡ ±â¼ú°ú °°Àº ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀÇ Çõ½ÅÀº ½ÃÀåÀÇ ½Ã¾ß¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î °³º° ¼¼Æ÷ÀÇ ³»ºÎ ±¸Á¶¸¦ Àü·Ê ¾ø´Â Á¤¹Ðµµ¿Í 󸮷®À¸·Î Á¶»çÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Çö½ÇÈ­µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ ½ÃÀåÀº °è¼ÓÇØ¼­ ÅõÀÚ¸¦ À¯Ä¡ÇÏ°í ´õ ¸¹Àº µ¹ÆÄ±¸¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ´Â ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ½ÃÄö¼­
½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028
½ÃÀå ±Ô¸ð 2022³â 36¾ï 7,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 67¾ï 7,000¸¸ ´Þ·¯
CAGR 2023-2028 10.89%
±Þ¼ºÀå ºÎ¹® Â÷¼¼´ë ½ÃÄö¼­
ÃÖ´ë ½ÃÀå ºÏ¾Æ¸Þ¸®Ä«

¶ÇÇÑ, ´ÜÀϼ¼Æ÷ ºÐ¼®Àº ¾à¹° Ç¥Àû°ú ¹ÙÀÌ¿À¸¶Ä¿ÀÇ ½Äº°°ú °ËÁõÀ» °¡¼ÓÈ­ÇÔÀ¸·Î½á Á¦¾à¾÷°è¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̸¦ ÅëÇØ ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ È¿À²¼ºÀ» ³ôÀÌ°í ½Å¾à °³¹ßÀÇ ¼º°ø·üÀ» ³ôÀÏ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

¾Ï ¹ßº´·ü »ó½ÂÀÌ ½ÃÀå °ßÀÎ

¾ÏÀº ¸Å³â ¼ö¹é¸¸ ¸íÀÇ »ý¸íÀ» ¾Ñ¾Æ°¡´Â ¼¼°èÀûÀÎ °Ç°­ ¹®Á¦ÀÔ´Ï´Ù. ¹Ì±¹ ¾ÏÇÐȸ¿¡ µû¸£¸é 2020³â¿¡´Â 1,930¸¸ ¸íÀÇ »õ·Î¿î ¾Ï ȯÀÚ°¡ ¹ß»ýÇϰí 1,000¸¸ ¸íÀÌ ¾ÏÀ¸·Î »ç¸ÁÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÌ ¼öÄ¡´Â ÁÖ·Î Àα¸ °í·ÉÈ­, »ýȰ½À°ü º¯È­, ¾Ï À§Çè ¿äÀÎ Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ÇâÈÄ ¸î ³âµ¿¾È Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¾¾çÀº µ¿ÀÏÇÑ ¼¼Æ÷ÀÇ ±ÕÀÏÇÑ µ¢¾î¸®°¡ ¾Æ´Ï¶ó ´Ù¾çÇÑ À¯ÇüÀÇ ¼¼Æ÷°¡ º¹ÀâÇÏ°Ô ¼¯¿© ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» ÅëÇØ ¿¬±¸ÀÚµéÀº ÀÌ·¯ÇÑ ºÒ±ÕÀϼºÀ» ÇØºÎÇϰí Á¾¾çÀÇ ¼ºÀå°ú Ä¡·á ÀúÇ×¼ºÀ» À¯¹ßÇÒ ¼ö ÀÖ´Â Èñ±ÍÇÑ ¼¼Æ÷ Áý´ÜÀ» ½Äº°ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ È®´ë·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

Á¤¹ÐÀÇ·á´Â Á¾¾çÇÐÀÇ Ç¥ÁØ Ä¡·á¹ýÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº °³º° ¾Ï¼¼Æ÷ÀÇ Æ¯Á¤ À¯ÀüÀÚ º¯ÀÌ ¹× ´Ü¹éÁú ¹ßÇö ÆÐÅÏÀ» ÆÄ¾ÇÇÏ¿© Ä¡·á °èȹÀ» Á¶Á¤ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í, ¸ÂÃã Ä¡·á¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ¸·Î À̾îÁú °ÍÀÔ´Ï´Ù.

À¯ÀüüÇÐ, Àü»çüÇÐ, ÈļºÀ¯ÀüüÇÐ, ´Ü¹éüÇÐ, ´ë»çüÇÐ ½ÃÄö½ÌÀ» Æ÷°ýÇÏ´Â ´ÜÀϼ¼Æ÷ ºÐ¼®Àº ´ë·® ½ÃÄö½Ì°ú ´Þ¸® º¹ÀâÇÑ ¼¼Æ÷¿Í ºÐÀÚÀÇ ¼¼ºÎ »çÇ×À» ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¹æ¹ýÀÔ´Ï´Ù. ¾Ï ¿¬±¸¿¡¼­ ´ÜÀϼ¼Æ÷ ½ÃÄö½ÌÀÇ Ã¤ÅÃÀº ¾Ï º´º¯ÀÇ »ý¹°ÇÐÀû Ư¼º°ú ¿ªÇп¡ ´ëÇÑ ÀÌÇØ¸¦ º¯È­½Ã۰í ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ´ÜÀϼ¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

¾Ï ¿¬±¸ ºÐ¾ß¿¡¼­ ´ÜÀÏ ¼¼Æ÷ ±â¼úÀº °­·ÂÇÑ ¼ö´ÜÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÖ÷´Ü ¹æ¹ýÀº Á¾¾ç ³» °³º° ¼¼Æ÷ÀÇ ºÐÀÚ »óÅ¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®À» Á¦°øÇÏ¿© Á¾¾ç ³» ´Ù¾ç¼º, ¹Ì¼¼ ȯ°æÀÇ ¼¼Æ÷ À¯Çü ±¸¼º, ƯÈ÷ ¸é¿ª ¿ä¹ý ºÐ¾ß¿¡¼­ Ä¡·á °á°ú¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¼¼Æ÷ »óÅÂÀÇ Àüȯ¿¡ ´ëÇÑ »õ·Î¿î ¿¬±¸¸¦ ¿ëÀÌÇÏ°Ô ÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ±¹¸³¾Ï¿¬±¸¼Ò¿¡ µû¸£¸é ¿¬°£¾Ï ¹ßº´·üÀº ³²³à ¸ðµÎ 10¸¸ ¸í´ç 442.4¸íÀÔ´Ï´Ù.

¾Ï °ü·Ã »ç¸ÁÀÇ ´ëºÎºÐÀº ÃÖÃÊ Á¾¾ç ºÎÀ§°¡ ¾Æ´Ñ ´Ù¸¥ ºÎÀ§·ÎÀÇ ÀüÀÌ·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ DNA ½ÃÄö½Ì(scDNA-seq)ÀÇ Àû¿ëÀº ÀüÀ̼º ¼ºÀå°ú ¿ø¹ß¼º Á¾¾ç »çÀÌÀÇ Á¶»ó ¿¬°áÀ» Á¶»çÇÏ¿© ÀÌ »ý¸íÀ» À§ÇùÇÏ´Â ÁøÇàÀ» ¸·±â À§ÇÑ Àü·«À» ½Äº°Çϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù.

½Å¾à°³¹ß ¹× ½ÃÀ尳ô ¼ö¿ä Áõ°¡°¡ ½ÃÀå °ßÀÎ

ÀǾàǰ °³¹ß °úÁ¤ Àü¹ÝÀÇ ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¹ÙÀÌ¿À¸¶Ä¿ÀÇ Á߿伺ÀÌ ²ÙÁØÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷, ¼¼Æ÷ ¹ÙÀÌ¿À¸¶Ä¿´Â ¼¼Æ÷Ä¡·á, À¯ÀüÀÚÄ¡·á, °¨¿°, ¹é½Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Çõ½ÅÀûÀÎ ¸é¿ªÄ¡·áÀÇ ¹ßÀüÀ» À§ÇÑ Àü·«À» ¼ö¸³ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¼¼Æ÷ ºÐ¼®ÀÇ ´ëÇ¥ÀûÀÎ ±â¼úÀÎ À¯¼¼Æ÷ ºÐ¼®Àº ÀǾàǰ °³¹ß¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

ÀǾàǰ °³¹ßÀº º¸´Ù Á¤È®Çϰí Ç¥ÀûÈ­µÈ Ä¡·á¹ýÀ» ÇâÇØ ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» ÅëÇØ ¿¬±¸ÀÚµéÀº ƯÁ¤ ¼¼Æ÷ °æ·Î¿Í Ç¥ÀûÀ» ½Äº°ÇÒ ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ È¿´ÉÀ» Çâ»ó½ÃŰ°í ºÎÀÛ¿ëÀÌ ÀûÀº ¾à¹°À» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸é¿ª ü°è´Â ¾ÏÀ» Æ÷ÇÔÇÑ Áúº´°ú ½Î¿ì´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ¿¬±¸ÀÚµéÀÌ ¸é¿ª ü°èÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ëÀ» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ¸é¿ª ¿ä¹ý ¹× ¹é½Å °³¹ß¿¡ µµ¿òÀÌ µÇ¾î ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ¼¼Æ÷ Áý´ÜÀ̳ª Á¶Á÷À» ¿¬±¸ÇÒ ¶§, »ý¹°ÇÐÀÇ ¼û°ÜÁø Ãø¸éÀ» ¹àÇô³¾ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÌ Á¢±Ù¹ýÀº Áúº´ ¼¼Æ÷ÀÇ °èº¸¸¦ ¹àÇô³»°í °Ç°­ÇÑ À¯·¡ Á¶Á÷±îÁö °Å½½·¯ ¿Ã¶ó°¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥Àû ¾ïÁ¦Á¦°¡ ½ÅÈ£ Àü´Þ °æ·ÎÀÇ ±¸¼ºÀ» ¾î¶»°Ô º¯È­½ÃŰ´ÂÁö¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀûÀýÇÑ ¾à¹° Ç¥ÀûÀ» ½Äº°ÇÏ´Â °ÍÀº ½Å¾à °³¹ßÀÇ ±âº» ´Ü°èÀÔ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº Áúº´ Á¶Á÷ÀÇ ºÐÀÚ È¯°æÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ÀÌ °úÁ¤À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ¿¬±¸ÀÚµéÀº Áúº´ ÁøÇàÀ» ÃËÁøÇÏ´Â ÁÖ¿ä Á¶Àý À¯ÀüÀÚ ¹× ½ÅÈ£ Àü´Þ °æ·Î¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ƯÁ¤ ¼¼Æ÷ Áý´Ü¿¡¼­ ¹ßÇö ¼öÁذú ±â´ÉÀû ¿¬°ü¼ºÀ» Æò°¡ÇÏ¿© ÀáÀçÀûÀÎ ½Å¾à °³¹ß Ç¥ÀûÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÀûÈ­µÈ Á¢±Ù ¹æ½ÄÀº ½Å¾à °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ È¿À²¼ºÀ» ³ôÀÌ°í ¼º°ø °¡´É¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº Áúº´ Áø´Ü°ú ¿¹Èĸ¦ À§ÇÑ »õ·Î¿î ¹ÙÀÌ¿À¸¶Ä¿¸¦ ¹ß°ßÇÏ´Â µ¥¿¡µµ ±â¿©ÇÕ´Ï´Ù. °Ç°­ÇÑ Á¶Á÷°ú Áúº´ Á¶Á÷ÀÇ ¼¼Æ÷¸¦ ÇÁ·ÎÆÄÀϸµÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº Áúº´ÀÇ ÁøÇà°ú Ä¡·á¿¡ ´ëÇÑ ¹ÝÀÀ¿¡ ´ëÇÑ ±ÍÁßÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â »õ·Î¿î ¸¶Ä¿¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ü¿Ü¼öÁ¤ º¸±ÞÀÌ ½ÃÀå °ßÀÎ

´Ü¼¼Æ÷ ºÐ¼®Àº ü¿Ü¼öÁ¤ Ä¡·áÀÇ È¿°ú¸¦ ³ôÀÌ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±âÁ¸ IVF Ŭ¸®´ÐÀº ¹è¾ÆÀÇ À°¾È Æò°¡¿¡ ÀÇÁ¸ÇÏ¿© °¡Àå °Ç°­ÇÑ ¹è¾Æ¸¦ À̽ÄÇϱâ À§ÇØ ¹è¾ÆÀÇ À°¾È Æò°¡¿¡ ÀÇÁ¸Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ÁÖ°üÀûÀÎ Á¢±Ù ¹æ½ÄÀº Á¾Á¾ ÃÖÀûÀÇ °á°ú¸¦ ¾òÁö ¸øÇÏ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº °úÇÐÀÚ¿Í ¹è¾Æ ¹è¾çÀÚ°¡ ºÐÀÚ ¼öÁØ¿¡¼­ ¹è¾ÆÀÇ °³º° ¼¼Æ÷¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ÀÌ °úÁ¤¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù.

´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ¿°»öü ÀÌ»ó, À̼ö¼º, À¯Àü¼º Áúȯ°ú °°Àº À¯ÀüÀû ÀÌ»ó¿¡ ´ëÇÑ ¹è¾Æ¸¦ ¼±º°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Âø»ó Àü À¯ÀüÇÐÀû °Ë»ç(PGT)·Î ¾Ë·ÁÁø ÀÌ °úÁ¤Àº À¯»ê°ú À¯Àü ÁúȯÀÇ À§ÇèÀ» ÁÙÀ̸鼭 Àӽмº°ø °¡´É¼ºÀ» ³ôÀ̰í À̽ÄÀ» À§ÇØ °¡Àå ½ÇÇà °¡´ÉÇÑ ¹è¾Æ¸¦ ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» ÅëÇØ ¹è¾Æ ¹è¾çÀÚ´Â ¹è¾Æ ³» °¢ ¼¼Æ÷ÀÇ Ç°Áú°ú °Ç°­ »óŸ¦ Æò°¡ÇÏ°í »ýÁ¸ °¡´É¼ºÀ»º¸´Ù Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¤È®µµ´Â Àӽмº°ø °¡´É¼ºÀ» ³ôÀÌ°í °¡Àå °Ç°­ÇÑ ¹è¾Æ¸¦ ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ü¿Ü¼öÁ¤(IVF) ÀýÂ÷¿¡ ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» ÅëÇÕÇÔÀ¸·Î½á Ŭ¸®´ÐÀº ¼º°ø·üÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ü¿Ü¼öÁ¤À» ¹Þ´Â ºÎºÎ´Â Âø»ó¿¡ °¡Àå ÀûÇÕÇÑ ¹è¾Æ¸¦ ¼±ÅÃÇÔÀ¸·Î½á ´õ ³ôÀº ÀÓ½ÅÀ²°ú ´ÙÅ ÀӽŠÀ§Çè °¨¼ÒÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ Àü¹ÝÀûÀÎ ¼ºÀåÀ¸·Î À̾îÁú °ÍÀÔ´Ï´Ù.

´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀº ÀÌÇü¼º ¹× Àüü °Ô³ð º¯À̸¦ µ¿½Ã¿¡ ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ¹è¾Æ »ý°ËÀÇ ±âÁ¸ °Ë»ç ¹æ¹ýÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Reproductive Health 2020, fertility clinic success rates report¿¡ µû¸£¸é, 2020³â ¹Ì±¹ ³» 449°³ Âü¿© Ŭ¸®´Ð¿¡¼­ 326,468°ÇÀÇ º¸Á¶»ý½Ä¼ú(ART)ÀÌ ½ÃÇàµÆ½À´Ï´Ù. ±× °á°ú 75,023¸íÀÇ ¿µ¾Æ(´ÙÅÂ¾Æ Æ÷ÇÔ)¿Í 79,942¸íÀÇ Ãâ»ý¾Æ¸¦ ³º¾Ò½À´Ï´Ù.

±¹¸³º¸°ÇÀÇ·á¿ø(National Institute for Health and Care Excellence)¿¡ µû¸£¸é 2019³â ü¿Ü¼öÁ¤ Ä¡·á ÈÄ Ãâ»ê ¼º°ø·üÀº 35¼¼ ¹Ì¸¸ ¿©¼ºÀÇ °æ¿ì 32%, 35-37¼¼ ¿©¼ºÀÇ °æ¿ì 25%¿¡ ´ÞÇß½À´Ï´Ù. ü¿Ü¼öÁ¤ ¼º°ø·ü Áõ°¡´Â ¼¼°è ȯÀÚµé »çÀÌ¿¡¼­ ü¿Ü¼öÁ¤ Ä¡·á°¡ ³Î¸® ¹Þ¾Æµé¿©Áö°í ÀÖÀ¸¸ç, ÀÌ´Â ´ÜÀÏ ¼¼Æ÷ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î À̾îÁ® ¿¹Ãø ±â°£ µ¿¾È ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ¸·Î À̾îÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

µ¥ÀÌÅÍÀÇ º¹À⼺°ú ÇØ¼®

±âÁ¸ÀÇ ¹úÅ© ºÐ¼®Àº ½Ã·á ³» ¸ðµç ¼¼Æ÷ÀÇ Æò±Õ ÃøÁ¤°ªÀ» ¾òÁö¸¸, ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº °³º° ¼¼Æ÷ÀÇ µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼ºÐÈ­´Â ƯÈ÷ ´ë±Ô¸ð ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡¸¦ °¡Á®¿É´Ï´Ù. ºÐ¼®ÇÏ´Â ¼¼Æ÷ÀÇ ¼ö°¡ Áõ°¡ÇÏ¸é µ¥ÀÌÅÍÀÇ º¹À⼺µµ Áõ°¡ÇÕ´Ï´Ù.

¶ÇÇÑ, ´ÜÀϼ¼Æ÷ RNA ½ÃÄö½Ì(scRNA-seq), ´ÜÀϼ¼Æ÷ ÇÁ·ÎÅ׿À¹Í½º, ´ÜÀϼ¼Æ÷ ÈļºÀ¯ÀüüÇÐ µî ´Ù¾çÇÑ ´ÜÀϼ¼Æ÷ ºÐ¼® ±â¼úÀº ¼­·Î ´Ù¸¥ À¯ÇüÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϱ⠶§¹®¿¡ ÅëÇÕ°ú ÇØ¼®À» ´õ¿í ¾î·Æ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ßÀÚµéÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®Çϰí ÀúÀåÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» µµÃâÇÒ ¼ö ÀÖ´Â °ß°íÇÑ ºÐ¼® ¹æ¹ýÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù.

´ÜÀϼ¼Æ÷ ºÐ¼®ÀÇ °íºñ¿ë

³ôÀº ºñ¿ëÀ¸·Î ÀÎÇÑ °¡Àå µÎµå·¯Áø ¹®Á¦´Â Á¢±Ù¼º Á¦ÇÑÀÔ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®¿¡ ÇÊ¿äÇÑ Àåºñ¿Í ½Ã¾àÀº ¸¹Àº ¿¬±¸ ±â°ü°ú ¼Ò±Ô¸ð ¿¬±¸¼Ò¿¡¼­ °¨´çÇÒ ¼ö ¾øÀ» Á¤µµ·Î ºñ½Ñ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ´Â ±â¼úÀÇ ¹ÎÁÖÈ­¸¦ Á¦ÇÑÇÏ°í ¿¬±¸ÀÚµéÀÌ Áß¿äÇÑ ½ÇÇèÀ» ¼öÇàÇÏ´Â °ÍÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

°íºñ¿ëÀº ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå¿¡¼­ °¡Àå Å« ¹®Á¦ÀÔ´Ï´Ù. ¿¬±¸ÀÚµéÀº Á¾Á¾ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ÇÁ·ÎÁ§Æ®¿¡ ÇÊ¿äÇÑ ÀÚ±ÝÀ» È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀåºñÀÇ Ãʱ⠺ñ¿ë°ú ¼Ò¸ðǰ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ ¿¬±¸ ¿¹»êÀÌ ¾Ð¹ÚÀ» ¹Þ¾Æ ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀûÀÎ ¿¬±¸¿Í Áøº¸¸¦ Ãß±¸ÇϱⰡ ¾î·Æ½À´Ï´Ù.

À±¸® ¹× ÇÁ¶óÀ̹ö½Ã °ü·Ã ¹®Á¦

´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº Á¾Á¾ °³º° °Ô³ðÀÇ ¿°±â¼­¿­ ºÐ¼®À» ¼ö¹ÝÇϱ⠶§¹®¿¡ À¯ÀüÀÚ ÇÁ¶óÀ̹ö½Ã ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷¿¡¼­ ÃßÃâµÈ »ó¼¼ÇÑ À¯Àü Á¤º¸´Â °³ÀÎÀÇ °Ç°­ »óÅÂ, ¼ÒÀÎ, ½ÉÁö¾î °¡Á· °ü°è¿¡ ´ëÇÑ ¹Î°¨ÇÑ Á¤º¸¸¦ µå·¯³¾ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ º¸È£ÇÏ´Â °ÍÀº ¾Ç¿ë°ú Â÷º°À» ¹æÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ À±¸®Àû µô·¹¸¶´Â »ý¹°ÇÐÀû »ùÇÃÀÇ ¼ÒÀ¯±ÇÀÔ´Ï´Ù. »ùÇÃÀÌ ¼öÁýµÇ¾î ¿¬±¸ÀÚ ¹× ¿¬±¸ ±â°ü °£¿¡ °øÀ¯µÇ´Â °æ¿ì, »ùÇðú ±×·ÎºÎÅÍ »ý¼ºµÈ µ¥ÀÌÅÍÀÇ ¼ÒÀ¯ÀÚ°¡ ´©±¸ÀÎÁö¿¡ ´ëÇÑ Àǹ®ÀÌ Á¦±âµÉ ¼ö ÀÖ½À´Ï´Ù. »ùÇà Á¦°ø¾÷üÀÇ ±Ç¸®¸¦ Á¸ÁßÇϸ鼭 ¿¬±¸·ÎºÎÅÍ °øÆòÇÑ Á¢±Ù°ú ÀÌÀÍÀ» º¸ÀåÇÏ´Â °ÍÀº º¹ÀâÇÑ ¹®Á¦ÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

¸ÖƼ¿À¹Í½º ÅëÇÕ

¸ÖƼ¿À¹Í½º ÅëÇÕÀº ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ ÇâÈÄ ¼ºÀå¿¡ ¸Å¿ì Áß¿äÇÑ Ã˸ÅÁ¦°¡ µÉ °ÍÀÔ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ À¯ÀüüÇÐ, Àü»çüÇÐ, ´Ü¹éüÇÐ, ´ë»çüÇÐ µ¥ÀÌÅ͸¦ °áÇÕÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ¼¼Æ÷ °úÁ¤ÀÇ ÆÄ³ë¶ó¸¶ ºä¸¦ ¾òÀ» ¼ö ÀÖ°í, º¹ÀâÇÑ »ý¹°ÇÐÀû º¹À⼺À» ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¾ÇÕÀûÀÎ Á¢±Ù ¹æ½ÄÀº ¼¼Æ÷ °Åµ¿À» ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó Áúº´ ¸ÞÄ¿´ÏÁò, Ä¡·á Ç¥Àû, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¼¼Æ÷ »ý¹°ÇÐ ¹× Áúº´¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÅëÂû·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó, ¸ÖƼ¿À¹Í½º ÅëÇÕÀº Çõ½ÅÀ» ÃËÁøÇϰí, ¿¬±¸ ¹ßÀüÀ» ÃËÁøÇϸç, ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â °­·ÂÇÑ µµ±¸°¡ µÇ¾î ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀåÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀåÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀ¸·Î¼­ ´ÜÀÏ ¼¼Æ÷ °ø°£ ºÐ¼®

ÀÌ »õ·Î¿î ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº Á¶Á÷ ³» °³º° ¼¼Æ÷ÀÇ °ø°£Àû ±¸¼ºÀ» Á¶»çÇÒ ¼ö ÀÖÀ¸¸ç, Àå±â ³» ¹Ì¼¼ ȯ°æ°ú ¼¼Æ÷ »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®¿¡ °ø°£Àû Â÷¿øÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ Á¢±Ù¹ýÀº ¿¬±¸¿Í ÀÓ»ó ÀÀ¿ë¿¡ »õ·Î¿î ±æÀ» ¿­¾îÁÝ´Ï´Ù. Á¾ÇÕÀûÀÌ°í ¸Æ¶ôÀÌ Ç³ºÎÇÑ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ´ÜÀÏ ¼¼Æ÷ °ø°£ ºÐ¼®Àº Çõ½ÅÀ» ÃËÁøÇϰí äÅÃÀ» ÃËÁøÇÏ¸ç Æ¯È÷ Á¾¾çÇÐ, ½Å°æ°úÇÐ, ¸é¿ªÇÐ µîÀÇ ºÐ¾ß¿¡¼­ ÇâÈÄ ¸î ³âµ¿¾È ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå È®´ë¿¡ Å« ±â¿©¸¦ ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

´ÜÀϼ¼Æ÷ ¿¡ÇǰԳðÇÐ

ÀÌ ÃÖ÷´Ü ±â¼úÀº DNA ¸Þƿȭ, È÷½ºÅæ º¯Çü, Å©·Î¸¶Æ¾ Á¢±Ù¼ºÀ» Á¶¸íÇÏ¿© ¿¬±¸ÀÚµéÀÌ ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ ÀϾ´Â ÈļºÀ¯ÀüÇÐÀû º¯ÇüÀ» ޱ¸ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀº À¯ÀüÀÚ Á¶Àý, ¼¼Æ÷ ºÐÈ­ ¹× Áúº´ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, ´ÜÀÏ ¼¼Æ÷ ÈļºÀ¯ÀüüÇÐÀº ¾Ï ¿¬±¸ ¹× Àç»ýÀÇÇÐÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬±¸Àڵ鿡°Ô °³º° ¼¼Æ÷ÀÇ ÈļºÀ¯ÀüÇÐÀû º¹À⼺À» ¹àÇô³»´Â µ¥ ÇÊ¿äÇÑ µµ±¸¸¦ Á¦°øÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ÀÓ»óÀû¿ë°ú °³ÀθÂÃãÇü ÀÇ·á

°³º° ¼¼Æ÷¸¦ ÇØºÎÇÏ°í °íÀ¯ÇÑ ºÐÀÚ ÇÁ·ÎÆÄÀÏÀ» ÇØµ¶ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ȯÀÚ °³°³Àο¡°Ô ¸ÂÃãÈ­µÈ Ä¡·á¹ýÀ» Á¦°øÇÏ´Â µ¥ Å« Àǹ̰¡ ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ÀÌ·¯ÇÑ Çõ¸íÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ÀÇ·á Àü¹®°¡°¡ Áúº´À» Áø´ÜÇϰí, Ä¡·á¿¡ ´ëÇÑ È¯ÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇϰí, Ä¡·á Àü·«À» ÃÖÀûÈ­ÇÏ´Â µ¥ ÀÖ¾î µ¶º¸ÀûÀÎ Á¤È®¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÇ·á »ê¾÷ÀÌ Á¡Á¡ ´õ °³ÀÎ ¸ÂÃãÇü ÀÇ·á·Î ÀüȯÇÔ¿¡ µû¶ó ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÀÓ»óÀÇ¿Í ¿¬±¸ÀÚµéÀÌ ´õ ¸¹Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µµ¿Í ±Ã±ØÀûÀ¸·Î ȯÀÚ °á°ú¸¦ °³¼±Çϰí ÀÇ·á ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÓ»ó ÀÀ¿ë°ú °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ À¶ÇÕÀº ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀ» »õ·Î¿î Â÷¿øÀ¸·Î ²ø¾î¿Ã¸®°í, ÀÇ·á »ýŰèÀÇ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ¾î Áúº´ Áø´Ü°ú °³ÀÎ ¸ÂÃãÇü Ä¡·á ¹æ¹ý¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ °ÍÀÔ´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

Á¦Ç°º° ÀλçÀÌÆ®

¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀº Å©°Ô ¼Ò¸ðǰ°ú ±â±âÀÇ µÎ °¡Áö Á¦Ç° ¹üÁÖ·Î ³ª´µ¸ç, 2022³â¿¡´Â ¼Ò¸ðǰ ºÎ¹®ÀÌ ÀÌ ½ÃÀåÀÇ ¼±µÎ¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ·¯ÇÑ ¿ìÀ§´Â 2028³â±îÁö Áö¼ÓµÉ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ ¿ìÀ§ÀÇ ¹è°æ¿¡´Â ´ÜÀÏ ¼¼Æ÷ ºÐ¼®ÀÇ º¹ÀâÇÑ ¿öÅ©Ç÷ο쿡¼­ ¼Ò¸ðǰÀÌ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¬±¸ÀÚµéÀº ¿¬±¸ °á°úÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¼Ò¸ðǰ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù.

°íǰÁú ¼Ò¸ðǰÀº ´ÜÀÏ ¼¼Æ÷ ºÐ¼®ÀÇ »ý¸í¼±À̸ç, ¿¬±¸ÀÚ°¡ Á¤È®Çϰí ÀϰüµÈ °á°ú¸¦ ¾ò´Â µ¥ ÇʼöÀûÀÎ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Áß¿äÇÑ Á¦Ç°ÀÇ Ç°Áú°ú ¼º´É¿¡ ¾à°£ÀÇ Â÷À̰¡ À־ »ý¼ºµÈ µ¥ÀÌÅÍÀÇ ¹«°á¼º¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¿¬±¸ÀÚµéÀº ¼Ò¸ðǰ¿¡ °üÇØ¼­´Â Àß È®¸³µÇ°í ÆòÆÇÀÌ ÁÁÀº ºê·£µå¸¦ ¼±ÅÃÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ÀÌ´Â ´ÜÀϼ¼Æ÷ ºÐ¼®ÀÇ ¼¼°è¿¡¼­ °¡Àå Áß¿äÇÑ ½Å·Ú¿Í ¹ÏÀ½À» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù.

¿äÄÁ´ë, ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå¿¡¼­ ¼Ò¸ðǰ ºÎ¹®ÀÇ ¿ìÀ§´Â ¿¬±¸ °á°úÀÇ ½Å·Ú¼º°ú °ß°í¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î ÀÌ·¯ÇÑ Á¦Ç°ÀÌ ¼öÇàÇÏ´Â ±âº»ÀûÀÎ ¿ªÇÒÀ» Á÷Á¢ÀûÀ¸·Î ¹Ý¿µÇÕ´Ï´Ù. µû¶ó¼­ ÀÌ ºÎ¹®Àº ´çºÐ°£ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ºÐ¾ßÀÇ ¿¬±¸ÀÚ ¹× ½Ç¹«ÀÚµéÀÌ ¼±È£ÇÏ´Â ¼±ÅÃÁö·Î¼­ ¼±µµÀûÀÎ ÁöÀ§¸¦ À¯ÁöÇÏ¸ç ½ÃÀå ¼ºÀå°ú Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±â¼ú ÅëÂû·Â

¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀº ±â¼úº°·Î À¯¼¼Æ÷ ºÐ¼®, Â÷¼¼´ë ½ÃÄö½Ì, PCR, Çö¹Ì°æ, Áú·® ºÐ¼® ¹× ±âŸ ±â¼ú·Î ºÐ·ùÇÒ ¼ö ÀÖÀ¸¸ç, 2022³â¿¡´Â À¯¼¼Æ÷ ºÐ¼® ºÎ¹®ÀÌ ÀÌ ½ÃÀåÀÇ ¼±µÎ ÁÖÀÚ·Î ºÎ»óÇϰí 2028³â±îÁö ÀÌ·¯ÇÑ ¿ìÀ§°¡ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯¼¼Æ÷ ºÐ¼®ÀÇ Áö¼ÓÀûÀÎ ¿ìÀ§´Â ÀÌÁ¾ Áý´Ü ³»ÀÇ °³º° ¼¼Æ÷¸¦ ÇØºÎÇϰí Á¶»çÇÒ ¼ö ÀÖ´Â °íÀ¯ÇÑ ´É·Â¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯Â¡Àº ¼¼Æ÷ Áý´ÜÀÇ ´Ù¾ç¼ºÀÇ º¹À⼺À» ÆÄ¾ÇÇÏ´Â °ÍÀÌ ÀϹÝÀûÀ̰í Áß¿äÇÑ °úÁ¦ÀÎ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ Àǹ̸¦ Áö´Õ´Ï´Ù. À¯¼¼Æ÷ ºÐ¼®Àº È¥ÇÕµÈ ¼¼Æ÷ Áý´Ü ³» ¹Ì¹¦ÇÑ º¯È­¸¦ ÅëÂûÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ¶Ù¾î³ª ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ºÐ¾ßÀÇ ¿¬±¸Àڵ鿡°Ô ÇʼöÀûÀÎ ±â¼úÀÔ´Ï´Ù. ±× Á¤È®¼º°ú ´Ù¾çÇÑ ¸Å°³ º¯¼ö¸¦ ±â¹ÝÀ¸·Î °³º° ¼¼Æ÷¸¦ ½Äº°ÇÏ´Â ´É·ÂÀº ½ÉÃþÀûÀÎ ¼¼Æ÷ Ž»ö¿¡ »ç¿ëµÇ´Â ±â¼úÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù.

¿äÄÁ´ë, À¯¼¼Æ÷ ºÐ¼® ºÎ¹®ÀÌ ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ À¯ÁöÇϰí ÀÖ´Â °ÍÀº ÀÌÁ¾ ¼¼Æ÷ Áý´ÜÀÇ º¹À⼺À» ÀÌÇØÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ´Ù´Â Á¡À» µÞ¹ÞħÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁöÀ§´Â ¾ÕÀ¸·Îµµ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ´ÜÀÏ ¼¼Æ÷ ºÐ¼®ÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÌ ºÐ¾ßÀÇ ¿¬±¸ÀÚ ¹× ½Ç¹«ÀÚµéÀÌ ¼±È£ÇÏ´Â ¼±ÅÃÀ¸·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

ºÏ¹Ì°¡ ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ´Â µ¥¿¡´Â ¸î °¡Áö °­·ÂÇÑ ÀÌÀ¯°¡ ÀÖ½À´Ï´Ù. ¿ì¼±, ÀÌ Áö¿ªÀº ¼¼°èÀûÀ¸·Î À¯¸íÇÑ ´ëÇÐ, ¿¬±¸±â°ü, »ý¸í°øÇÐ ±â¾÷ÀÌ ¹ÐÁýÇØ ÀÖ¾î °úÇÐ ¿¬±¸¿Í Çõ½ÅÀ» À§ÇÑ ÅºÅºÇÑ »ýŰ踦 ÀÚ¶ûÇÕ´Ï´Ù. ÀÌ ÁöÀû, ±â¼úÀû Çãºê´Â ÃÖ÷´Ü ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀ» °³¹ßÇϰí äÅÃÇÒ ¼ö ÀÖ´Â ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ºÏ¹Ì´Â ¿¬±¸ Ȱµ¿¿¡ ´ëÇÑ ÀçÁ¤Àû ÅõÀÚ ¹× ÀÚ±Ý Á¶´Þ Ãø¸é¿¡¼­µµ Å« ÀÌÁ¡À» ´©¸®°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¤ºÎ ±â°ü, ¹Î°£ ÅõÀÚÀÚ ¹× º¥Ã³Ä³ÇÇÅÐÀº ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ¿¬±¸¸¦ Æ÷ÇÔÇÑ »ý¸í°úÇÐ ºÐ¾ßÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ¾Æ³¦¾ø´Â Áö¿øÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ë±Ô¸ð ÀçÁ¤Àû Áö¿øÀº Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ°í ½ÅÁ¦Ç°°ú ½Å±â¼úÀÇ »ó¿ëÈ­¸¦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ÀÇ·á ÀÎÇÁ¶ó°¡ ¸Å¿ì ¹ß´ÞÇÏ¿© ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ±â¼úÀÇ ÀÓ»ó ÇöÀå ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á ¹× Áø´Ü¿¡ Àû¿ëÇÏ¸é ½ÃÀå ¼ºÀå¿¡ Å« µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.

¶ÇÇÑ, ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í Ãʱ⠱â¼ú µµÀÔ ¹®È­·Î ÀÎÇØ ºÏ¹Ì´Â ÀÌ ºÐ¾ßÀÇ ¼±µÎÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ºÏ¹Ì´Â ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀåÀÇ Áø¿øÁö°¡ µÇ¾úÀ¸¸ç, ´çºÐ°£ ÀÌ Áö¿ªÀÌ Áö¹èÀûÀÎ ÁöÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»ç¿ë °¡´ÉÇÑ Ä¿½ºÅ͸¶ÀÌ¡

Tech Sci Research´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¼¼°è ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ½ÃÀå º¸°í¼­¿¡¼­ ±â¾÷ÀÇ Æ¯Á¤ ¿ä±¸ »çÇ׿¡ µû¶ó ¸ÂÃãÈ­¸¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼­¿¡¼­ ´ÙÀ½°ú °°Àº Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÕ´Ï´Ù.

±â¾÷ Á¤º¸

  • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷(ÃÖ´ë 5°³»ç)¿¡ ´ëÇÑ ½ÉÃþ ºÐ¼® ¹× ÇÁ·ÎÆÄÀϸµ

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå °í°´ÀÇ ¼Ò¸®

Á¦5Àå ¼¼°èÀÇ ´ÜÀϼ¼Æ÷ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°(¼Ò¸ðǰ, Àåºñ)
    • ±â¼úº°(À¯¼¼Æ÷ºÐ¼®±â, Â÷¼¼´ë ½ÃÄö½Ì, PCR, Çö¹Ì°æ, Áú·®ºÐ¼®, ±âŸ ±â¼ú)
    • ¼¼Æ÷ À¯Çüº°(Àΰ£, ¹Ì»ý¹°, µ¿¹°)
    • ¿ëµµº°(Á¶»ç ºÐ¾ß, ÀÇ·á ºÐ¾ß)
    • ÃÖÁ¾»ç¿ëÀÚº°(Çмú±â°ü ¹× ¿¬±¸±â°ü, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¡¤Á¦¾àȸ»ç,º´¿ø ¹× Áø´Ü½ÇÇè½Ç, ¼¿ ¹ðÅ©¡¤Ã¼¿Ü¼öÁ¤ ¼¾ÅÍ)
    • Áö¿ªº°
    • ±â¾÷º°(ÁÖ¿ä 5°³»ç Á¡À¯À²)
  • ½ÃÀå ¸Ê
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • Áö¿ªº°

Á¦6Àå ºÏ¹Ì ½Ì±Û ¼¿ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦7Àå À¯·´ ½Ì±Û ¼¿ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦8Àå ¾Æ½Ã¾ÆÅÂÆò¾ç ´Ü¼¼Æ÷ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦9Àå ³²¹Ì ´ÜÀϼ¼Æ÷ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ´Ü¼¼Æ÷ ºÐ¼® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦Ç°º°
    • ±â¼úº°
    • ¼¼Æ÷ À¯Çüº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦11Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦12Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

  • ÃÖ±Ù Àü°³
  • ÀμöÇÕº´(M&A)
  • ±â¼ú ¹ßÇ¥

Á¦13Àå °æÀï ±¸µµ

  • Thermo Fisher Scientific Inc.
    • Business Overview
    • Treatment Offerings
    • Recent Developments
    • Key Personnel
    • SWOT Analysis
  • Qiagen N.V.
  • Danaher Corporation.
  • Becton, Dickinson and Company.
  • Merck KGaA.
  • 10X Genomics.
  • Takara Bio Inc.
  • Standard BioTools Inc.
  • Bio-Rad Laboratories Inc.
  • Illumina Inc.
  • Luminex Corporation.
  • Promega Corporation.

Á¦14Àå Àü·«Àû Á¦¾È

Á¦15Àå ´ç»ç¿¡ ´ëÇØ¡¤¸éÃ¥»çÇ×

LSH 23.10.27

Global Single-Cell Analysis Market has valued at USD 3.67 billion in 2022 and is anticipated to reach a CAGR of 10.89% through 2028. The global single-cell analysis market is experiencing a profound transformation and stands at the forefront of cutting-edge scientific and medical research. This dynamic market is characterized by an array of technologies and methodologies designed to scrutinize individual cells at an unprecedented level of detail. With applications spanning genomics, proteomics, immunology, neurology, and oncology, the single-cell analysis market plays a pivotal role in driving forward our understanding of cellular biology and its implications for human health. One of the driving forces behind the market's growth is the increasing demand for personalized medicine. Researchers and clinicians are leveraging single-cell analysis techniques to tailor treatments to individual patients, offering more effective and precise medical interventions. This trend has significant implications for improving patient outcomes and reducing healthcare costs. Cancer research and diagnostics are also major drivers in the single-cell analysis market. Single-cell sequencing technologies are being used to dissect tumor heterogeneity, enabling a deeper understanding of cancer biology. This knowledge is vital for developing targeted therapies and improving cancer diagnosis and prognosis.

The quest to unravel cellular heterogeneity is another critical aspect of the single-cell analysis market. Researchers are using advanced tools to uncover the diversity within cell populations, shedding light on previously hidden nuances in cellular behavior and function. This has implications not only in fundamental research but also in the development of therapies for various diseases.

Innovations in single-cell analysis technologies, such as single-cell RNA sequencing, flow cytometry, and imaging techniques, are expanding the market's horizons. These innovations are making it increasingly feasible to examine the inner workings of individual cells with unprecedented precision and throughput. As a result, the market continues to attract investments, fostering a fertile ground for further breakthroughs.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 3.67 Billion
Market Size 2028USD 6.77 Billion
CAGR 2023-202810.89%
Fastest Growing SegmentNext Generation Sequencing
Largest MarketNorth America

Furthermore, the adoption of single-cell analysis in drug discovery and development is poised to revolutionize the pharmaceutical industry by accelerating the identification and validation of drug targets and biomarkers. This is expected to streamline drug development pipelines and enhance the success rate of new therapeutics.

In conclusion, the global single-cell analysis market is a dynamic and rapidly evolving sector with vast potential. It is not only advancing our fundamental understanding of biology but also translating this knowledge into practical applications for personalized medicine, disease research, and drug development. As technology continues to advance and more industries recognize its potential, the single-cell analysis market is poised for sustained growth and innovation in the years ahead.

Key Market Drivers

Rising Prevalence of Cancer is Driving the Market

Cancer is a global health concern that affects millions of lives every year. According to the American cancer Society, there were an estimated 19.3 million new cancer cases and 10 million cancer-related deaths in 2020. These numbers are expected to rise significantly in the coming years, primarily due to factors like aging populations, lifestyle changes, and increased cancer risk factors.

Tumors are not uniform masses of identical cells; they are a complex mixture of various cell types. Single-cell analysis allows researchers to dissect this heterogeneity, identifying rare cell populations that may drive tumor growth and therapy resistance, leading to the expansion of global single cell analysis market.

Precision medicine is increasingly becoming the standard of care in oncology. Single-cell analysis helps tailor treatment plans by identifying specific genetic mutations or protein expression patterns in individual cancer cells, allowing for personalized therapies, leading to the growth of single cell analysis market.

Single-cell analysis, encompassing genomics, transcriptomics, epigenomics, proteomics, and metabolomics sequencing, represents a potent method for unraveling the intricate cellular and molecular details at a single-cell level, in contrast to bulk sequencing that yields aggregated data. The adoption of single-cell sequencing in cancer research has transformed the comprehension of the biological attributes and dynamics within cancerous lesions, augmenting the growth of global single cell analysis market.

In the realm of cancer research, single-cell technologies are gaining prominence as potent instruments. These cutting-edge methods provide a detailed analysis of the molecular status of individual cells within a tumor, facilitating fresh investigations into the diversity within tumors, the composition of cell types in the microenvironment, and the transitions in cell states that influence therapeutic outcomes, especially in the field of immunotherapy, propelling the growth of the market in the projected period. As per the National Cancer Institute, the annual cancer incidence rate stands at 442.4 cases per 100,000 individuals of both genders.

A significant portion of cancer-related fatalities can be attributed to the metastatic expansion beyond the initial tumor location. The application of single-cell DNA sequencing (scDNA-seq) has been employed to investigate the ancestral connections between metastatic growths and the primary tumor, with the aim of identifying strategies to halt this life-threatening progression.

Rising Demand for Drug Discovery and Development is Driving the Market

The significance of biomarkers in influencing decisions throughout the drug development process is steadily growing. Specifically, cellular biomarkers have become indispensable elements in devising strategies for the advancement of innovative immune therapies across various domains, including cell therapy, gene therapy, infectious diseases, and vaccines. Flow cytometry, a prominent technology for cellular analysis, has found extensive application in drug development, leading to the growth of global single cell analysis market.

Drug development is moving towards more precise and targeted therapies. Single cell analysis allows researchers to identify specific cellular pathways and targets, which can lead to the development of drugs with enhanced efficacy and fewer side effects. The immune system plays a crucial role in fighting diseases, including cancer. Single cell analysis helps researchers understand the complex interactions within the immune system, aiding in the development of immunotherapies and vaccines and leading to the growth of single cell analysis market.

Single-cell analyses unveil hidden aspects of biology that remain obscured when studying cell populations or tissues. For instance, this approach can elucidate the lineage of diseased cells, tracing them back to their healthy tissue of origin, or provide in-depth insights into how targeted inhibitors can modify the configuration of signaling pathways.

Identifying suitable drug targets is a fundamental step in drug discovery. Single cell analysis accelerates this process by providing a comprehensive view of the molecular landscape of diseased tissues. Researchers can identify key regulatory genes and signaling pathways that drive disease progression. Moreover, single cell analysis can help prioritize potential drug targets by assessing their expression levels and functional relevance in specific cell populations. This targeted approach streamlines the drug discovery pipeline, increasing the likelihood of success.

Single cell analysis also contributes to the discovery of new biomarkers for disease diagnosis and prognosis. By profiling cells from healthy and diseased tissues, researchers can identify novel markers that provide valuable insights into disease progression and response to treatment.

Rising Adoption of IVF is Driving the Market

Single cell analysis plays a pivotal role in enhancing the effectiveness of IVF treatments. Traditionally, IVF clinics relied on the visual assessment of embryos to select the healthiest ones for implantation. This subjective approach often led to suboptimal results. Single cell analysis has revolutionized this process by allowing scientists and embryologists to analyze individual cells within embryos at a molecular level.

Single cell analysis enables the screening of embryos for genetic abnormalities, such as chromosomal abnormalities, aneuploidy, and genetic diseases. This process, known as pre-implantation genetic testing (PGT), helps identify the most viable embryos for implantation, increasing the chances of a successful pregnancy while reducing the risk of miscarriage or genetic disorders.

With single cell analysis, embryologists can assess the quality and health of each cell within an embryo, providing a more comprehensive understanding of its viability. This precision allows for the selection of the healthiest embryos, increasing the likelihood of a successful pregnancy. By incorporating single cell analysis into IVF procedures, clinics can significantly enhance their success rates. Couples undergoing IVF can benefit from higher pregnancy rates and a reduced risk of multiple pregnancies due to the selection of the best embryos for implantation, leading to the overall growth of the single cell analysis market in the projected period.

Single-cell analysis techniques have enhanced traditional methods for examining embryo biopsies by enabling the concurrent identification of aneuploidy and genome-wide mutations. According to National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health 2020, fertility clinic success rates report, 326,468 assisted reproductive technology (ART) cycles were carried out at 449 participating clinics in the United States in 2020. This led to the birth of 75,023 infants (including multiple births) and 79,942 live infants.

As per the National Institute for Health and Care Excellence, in 2019, the success rate for live births following IVF treatments stood at 32% for women under 35, while it was 25% for women aged between 35 and 37. Rising success rates of IVF procedures is leading to the wider acceptability of IVF treatment among patients all over the globe which leads to the rising demand of single cell analysis and hence results in the growth of single cell analysis market in the projected period.

Key Market Challenges

Data Complexity and Interpretation

Traditional bulk analysis provides an average measurement of all cells in a sample, while single cell analysis produces data for each individual cell. This granularity results in an explosion of data, especially in large-scale studies or clinical applications. As the number of cells analyzed increases, so does the complexity of the data.

Furthermore, various single cell analysis techniques, such as single-cell RNA sequencing (scRNA-seq), single-cell proteomics, and single-cell epigenomics, generate different types of data, making integration and interpretation even more challenging. Researchers must not only process and store massive datasets but also develop robust analytical methods to extract meaningful insights.

High Cost of Single Cell Analysis

The most prominent challenge posed by high costs is limited accessibility. The equipment and reagents required for single cell analysis are often prohibitively expensive for many research institutions and smaller laboratories. This limits the democratization of the technology and hinders researchers' ability to conduct important experiments.

High costs are indeed posing a significant challenge in the global single cell analysis market. Researchers often find themselves struggling to secure the necessary funding for single cell analysis projects. The high upfront costs for equipment and ongoing expenses for consumables can strain research budgets, making it challenging to pursue innovative studies and advancements in the field.

Ethical and Privacy Concerns

Single cell analysis often involves the sequencing of individual genomes, raising concerns about genetic privacy. The detailed genetic information extracted from a single cell can potentially reveal sensitive information about an individual's health, predispositions, and even familial relationships. Safeguarding this data is crucial to prevent misuse and discrimination, which might hamper the growth of market in the projected period.

Another ethical dilemma is the ownership of biological samples. When samples are collected and shared among researchers and institutions, questions about who owns the samples and the data generated from them can arise. Ensuring equitable access and benefits from research while respecting the rights of sample donors is a complex issue.

Key Market Trends

Multi-Omics Integration

Multi-Omics Integration stands as a pivotal catalyst for the future growth of the Global Single Cell Analysis Market. By combining genomics, transcriptomics, proteomics, and metabolomics data at the single-cell level, researchers gain a panoramic view of cellular processes, enabling them to unravel intricate biological complexities. This holistic approach not only enhances the understanding of cell behavior but also offers a deeper insight into disease mechanisms, therapeutic targets, and personalized medicine. As the demand for comprehensive insights into cellular biology and disease continues to rise, Multi-Omics Integration promises to be a powerful tool that fosters innovation, drives research advancements, and fuels the adoption of single cell analysis technologies across a wide spectrum of applications, ultimately propelling the market's sustained growth in the years to come.

Single Cell Spatial Analysis as a Technological Advancement

This emerging technology enables researchers to investigate the spatial organization of individual cells within tissues, providing critical insights into the microenvironment and cellular interactions within organs. By offering a spatial dimension to single cell analysis, this approach opens up new avenues for research and clinical applications. As the demand for comprehensive and context-rich data continues to surge, Single Cell Spatial Analysis is expected to foster innovation, drive adoption, and significantly contribute to the expansion of the single cell analysis market in the years to come, particularly in fields such as oncology, neuroscience, and immunology.

Single Cell Epigenomics

This cutting-edge technology empowers researchers to delve into the epigenetic modifications occurring at the single-cell level, shedding light on DNA methylation, histone modifications, and chromatin accessibility. These insights are invaluable in understanding gene regulation, cell differentiation, and disease mechanisms, making Single Cell Epigenomics an indispensable tool in various fields, including cancer research and regenerative medicine. It will also provide researchers with the tools they need to unlock the epigenetic complexities of individual cells.

Clinical Applications and Personalized Medicine

The ability to dissect individual cells and decipher their unique molecular profiles has profound implications for tailoring medical treatments to individual patients. Single cell analysis is at the forefront of this revolution, enabling healthcare professionals to diagnose diseases with unparalleled precision, predict patient responses to therapies, and optimize treatment strategies. As the healthcare industry increasingly shifts toward personalized medicine, the demand for single cell analysis technologies will skyrocket. These technologies empower clinicians and researchers to make more informed decisions, ultimately improving patient outcomes and reducing healthcare costs. This convergence of clinical applications and personalized medicine is set to propel the global single cell analysis market to new heights, as it becomes an indispensable component of the healthcare ecosystem, revolutionizing how diseases are diagnosed and treated on an individualized basis.

Segmental Insights

Product Insights

The global single-cell analysis market can be classified into two main product categories: Consumables and Instruments. In the year 2022, the Consumables segment emerged as the reigning leader in this market, and this dominance is anticipated to persist until the year 2028. The reason behind this sustained supremacy lies in the pivotal role that consumables play within the intricate workflows of single-cell analysis. Researchers heavily depend on consumables to ensure the precision and reliability of their findings.

High-quality consumables are the lifeblood of single-cell analysis, serving as essential components that researchers rely on to obtain accurate and consistent results. Even the slightest variability in the quality or performance of these critical products can have a profound impact on the integrity of the data generated. Consequently, researchers are inclined to select established and reputable brands when it comes to consumables, as they offer a sense of trust and reliability that is paramount in the world of single-cell analysis.

In essence, the Consumables segment's dominance in the global single-cell analysis market is a direct reflection of the fundamental role these products play in ensuring the credibility and robustness of research outcomes. As a result, this segment is expected to maintain its leadership position as the preferred choice for researchers and practitioners in the single-cell analysis field for the foreseeable future, driving market growth and innovation.

Technique Insights

The global single-cell analysis market can be categorized by technique into Flow cytometry, Next Generation Sequencing, PCR, Microscopy, Mass Spectrometry, and other techniques. In the year 2022, the Flow cytometry segment emerged as the frontrunner in this market, and this dominance is projected to persist until 2028. The enduring supremacy of flow cytometry can be attributed to its unique capability to dissect and scrutinize individual cells within heterogeneous populations. This feature holds immense significance in the realm of single-cell analysis, where unraveling the intricacies of cell population diversity is a common and critical pursuit. Flow cytometry, as a technique, excels in its ability to provide insights into the subtle variations within a mixed population of cells, making it indispensable for researchers in the field of single-cell analysis. Its precision and capacity to discriminate between individual cells based on numerous parameters place it at the forefront of techniques used for in-depth cellular exploration.

In essence, the Flow cytometry segment's continued dominance in the global single-cell analysis market underscores its pivotal role in unraveling the complexities of heterogeneous cell populations. This position is expected to persist, driving further advancements in single-cell analysis and maintaining its status as the preferred choice for researchers and practitioners in this field.

Regional Insights

North America stands as the dominant force in the global single-cell analysis market for several compelling reasons. First and foremost, the region boasts a robust ecosystem for scientific research and innovation, with a concentration of world-renowned universities, research institutions, and biotechnology companies. This intellectual and technological hub fosters a fertile ground for the development and adoption of cutting-edge single-cell analysis technologies.

Additionally, North America enjoys a significant advantage in terms of financial investment and funding for research endeavors. Government agencies, private investors, and venture capital firms in the region generously support initiatives in the life sciences, including single-cell analysis research. This substantial financial backing enables continuous innovation and accelerates the commercialization of new products and technologies. Moreover, the region's healthcare infrastructure is highly developed, facilitating the integration of single-cell analysis techniques into clinical settings. This application in personalized medicine and diagnostics bolsters market growth significantly.

Furthermore, the presence of key market players, coupled with a culture of early technology adoption, positions North America as a leader in the field. These factors collectively make North America the epicenter of the global single-cell analysis market, with the region expected to maintain its dominant position in the foreseeable future.

Key Market Players

  • Thermo Fisher Scientific Inc.
  • Qiagen N.V.
  • Danaher Corporation.
  • Becton, Dickinson and Company.
  • Merck KGaA.
  • 10X Genomics
  • Takara Bio Inc.
  • Standard BioTools Inc.
  • Bio-Rad Laboratories Inc.
  • Illumina Inc.

Report Scope:

In this report, the Global Single Cell Analysis Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Single Cell Analysis Market, By Product:

  • Consumables
  • Instruments

Single Cell Analysis Market, By Technique:

  • Flow cytometry
  • Next Generation Sequencing
  • PCR, Microscopy
  • Mass Spectrometry
  • Other techniques

Single Cell Analysis Market, By Cell Type:

  • Human
  • Microbial
  • Animal

Single Cell Analysis Market, By Application:

  • Research Field
  • Medical Field

Single Cell Analysis Market, By End User:

  • Academic & Research laboratories
  • Biotechnology & Pharmaceutical companies
  • Hospital & diagnostic laboratories
  • Cell banks & IVF Centres

Single Cell Analysis Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Single Cell Analysis Market.

Available Customizations:

  • Global Single Cell Analysis market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Single Cell Analysis Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Consumables, Instruments)
    • 5.2.2. By Technique (Flow cytometry, Next Generation Sequencing, PCR, Microscopy, Mass Spectrometry, Other techniques)
    • 5.2.3. By Cell Type (Human, Microbial, Animal)
    • 5.2.4. By Application (Research Field, Medical Field)
    • 5.2.5. By End User (Academic & Research laboratories, Biotechnology & Pharmaceutical companies, Hospital & diagnostic laboratories, Cell banks & IVF Centers)
    • 5.2.6. By Region
    • 5.2.7. By Company (Shares of Top 5 Market Players)
  • 5.3. Market Map
    • 5.3.1. By Product
    • 5.3.2. By Technique
    • 5.3.3. By Cell Type
    • 5.3.4. By Application
    • 5.3.5. By End User
    • 5.3.6. By Region

6. North America Single Cell Analysis Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Technique
    • 6.2.3. By Cell Type
    • 6.2.4. By Application
    • 6.2.5. By End User
    • 6.2.6. By Country
      • 6.2.6.1. United States Single Cell Analysis Market Outlook
        • 6.2.6.1.1. Market Size & Forecast
        • 6.2.6.1.1.1. By Value
        • 6.2.6.1.2. Market Share & Forecast
        • 6.2.6.1.2.1. By Product
        • 6.2.6.1.2.2. By Technique
        • 6.2.6.1.2.3. By Cell Type
        • 6.2.6.1.2.4. By Application
        • 6.2.6.1.2.5. By End User
      • 6.2.6.2. Canada Single Cell Analysis Market Outlook
        • 6.2.6.2.1. Market Size & Forecast
        • 6.2.6.2.1.1. By Value
        • 6.2.6.2.2. Market Share & Forecast
        • 6.2.6.2.2.1. By Product
        • 6.2.6.2.2.2. By Technique
        • 6.2.6.2.2.3. By Cell Type
        • 6.2.6.2.2.4. By Application
        • 6.2.6.2.2.5. By End User
      • 6.2.6.3. Mexico Single Cell Analysis Market Outlook
        • 6.2.6.3.1. Market Size & Forecast
        • 6.2.6.3.1.1. By Value
        • 6.2.6.3.2. Market Share & Forecast
        • 6.2.6.3.2.1. By Product
        • 6.2.6.3.2.2. By Technique
        • 6.2.6.3.2.3. By Cell Type
        • 6.2.6.3.2.4. By Application
        • 6.2.6.3.2.5. By End User

7. Europe Single Cell Analysis Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Technique
    • 7.2.3. By Cell Type
    • 7.2.4. By Application
    • 7.2.5. By End User
    • 7.2.6. By Country
      • 7.2.6.1. France Single Cell Analysis Market Outlook
        • 7.2.6.1.1. Market Size & Forecast
        • 7.2.6.1.1.1. By Value
        • 7.2.6.1.2. Market Share & Forecast
        • 7.2.6.1.2.1. By Product
        • 7.2.6.1.2.2. By Technique
        • 7.2.6.1.2.3. By Cell Type
        • 7.2.6.1.2.4. By Application
        • 7.2.6.1.2.5. By End User
      • 7.2.6.2. Germany Single Cell Analysis Market Outlook
        • 7.2.6.2.1. Market Size & Forecast
        • 7.2.6.2.1.1. By Value
        • 7.2.6.2.2. Market Share & Forecast
        • 7.2.6.2.2.1. By Product
        • 7.2.6.2.2.2. By Technique
        • 7.2.6.2.2.3. By Cell Type
        • 7.2.6.2.2.4. By Application
        • 7.2.6.2.2.5. By End User
      • 7.2.6.3. United Kingdom Single Cell Analysis Market Outlook
        • 7.2.6.3.1. Market Size & Forecast
        • 7.2.6.3.1.1. By Value
        • 7.2.6.3.2. Market Share & Forecast
        • 7.2.6.3.2.1. By Product
        • 7.2.6.3.2.2. By Technique
        • 7.2.6.3.2.3. By Cell Type
        • 7.2.6.3.2.4. By Application
        • 7.2.6.3.2.5. By End User
      • 7.2.6.4. Italy Single Cell Analysis Market Outlook
        • 7.2.6.4.1. Market Size & Forecast
        • 7.2.6.4.1.1. By Value
        • 7.2.6.4.2. Market Share & Forecast
        • 7.2.6.4.2.1. By Product
        • 7.2.6.4.2.2. By Technique
        • 7.2.6.4.2.3. By Cell Type
        • 7.2.6.4.2.4. By Application
        • 7.2.6.4.2.5. By End User
      • 7.2.6.5. Spain Single Cell Analysis Market Outlook
        • 7.2.6.5.1. Market Size & Forecast
        • 7.2.6.5.1.1. By Value
        • 7.2.6.5.2. Market Share & Forecast
        • 7.2.6.5.2.1. By Product
        • 7.2.6.5.2.2. By Technique
        • 7.2.6.5.2.3. By Cell Type
        • 7.2.6.5.2.4. By Application
        • 7.2.6.5.2.5. By End User

8. Asia Pacific Single Cell Analysis Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Technique
    • 8.2.3. By Cell Type
    • 8.2.4. By Application
    • 8.2.5. By End User
    • 8.2.6. By Country
      • 8.2.6.1. China Single Cell Analysis Market Outlook
        • 8.2.6.1.1. Market Size & Forecast
        • 8.2.6.1.1.1. By Value
        • 8.2.6.1.2. Market Share & Forecast
        • 8.2.6.1.2.1. By Product
        • 8.2.6.1.2.2. By Technique
        • 8.2.6.1.2.3. By Cell Type
        • 8.2.6.1.2.4. By Application
        • 8.2.6.1.2.5. By End User
      • 8.2.6.2. India Single Cell Analysis Market Outlook
        • 8.2.6.2.1. Market Size & Forecast
        • 8.2.6.2.1.1. By Value
        • 8.2.6.2.2. Market Share & Forecast
        • 8.2.6.2.2.1. By Product
        • 8.2.6.2.2.2. By Technique
        • 8.2.6.2.2.3. By Cell Type
        • 8.2.6.2.2.4. By Application
        • 8.2.6.2.2.5. By End User
      • 8.2.6.3. South Korea Single Cell Analysis Market Outlook
        • 8.2.6.3.1. Market Size & Forecast
        • 8.2.6.3.1.1. By Value
        • 8.2.6.3.2. Market Share & Forecast
        • 8.2.6.3.2.1. By Product
        • 8.2.6.3.2.2. By Technique
        • 8.2.6.3.2.3. By Cell Type
        • 8.2.6.3.2.4. By Application
        • 8.2.6.3.2.5. By End User
      • 8.2.6.4. Japan Single Cell Analysis Market Outlook
        • 8.2.6.4.1. Market Size & Forecast
        • 8.2.6.4.1.1. By Value
        • 8.2.6.4.2. Market Share & Forecast
        • 8.2.6.4.2.1. By Product
        • 8.2.6.4.2.2. By Technique
        • 8.2.6.4.2.3. By Cell Type
        • 8.2.6.4.2.4. By Application
        • 8.2.6.4.2.5. By End User
      • 8.2.6.5. Australia Single Cell Analysis Market Outlook
        • 8.2.6.5.1. Market Size & Forecast
        • 8.2.6.5.1.1. By Value
        • 8.2.6.5.2. Market Share & Forecast
        • 8.2.6.5.2.1. By Product
        • 8.2.6.5.2.2. By Technique
        • 8.2.6.5.2.3. By Cell Type
        • 8.2.6.5.2.4. By Application
        • 8.2.6.5.2.5. By End User

9. South America Single Cell Analysis Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Technique
    • 9.2.3. By Cell Type
    • 9.2.4. By Application
    • 9.2.5. By End User
    • 9.2.6. By Country
      • 9.2.6.1. Brazil Single Cell Analysis Market Outlook
        • 9.2.6.1.1. Market Size & Forecast
        • 9.2.6.1.1.1. By Value
        • 9.2.6.1.2. Market Share & Forecast
        • 9.2.6.1.2.1. By Product
        • 9.2.6.1.2.2. By Technique
        • 9.2.6.1.2.3. By Cell Type
        • 9.2.6.1.2.4. By Application
        • 9.2.6.1.2.5. By End User
      • 9.2.6.2. Argentina Single Cell Analysis Market Outlook
        • 9.2.6.2.1. Market Size & Forecast
        • 9.2.6.2.1.1. By Value
        • 9.2.6.2.2. Market Share & Forecast
        • 9.2.6.2.2.1. By Product
        • 9.2.6.2.2.2. By Technique
        • 9.2.6.2.2.3. By Cell Type
        • 9.2.6.2.2.4. By Application
        • 9.2.6.2.2.5. By End User
      • 9.2.6.3. Colombia Single Cell Analysis Market Outlook
        • 9.2.6.3.1. Market Size & Forecast
        • 9.2.6.3.1.1. By Value
        • 9.2.6.3.2. Market Share & Forecast
        • 9.2.6.3.2.1. By Product
        • 9.2.6.3.2.2. By Technique
        • 9.2.6.3.2.3. By Cell Type
        • 9.2.6.3.2.4. By Application
        • 9.2.6.3.2.5. By End User

10. Middle East & Africa Single Cell Analysis Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product
    • 10.2.2. By Technique
    • 10.2.3. By Cell Type
    • 10.2.4. By Application
    • 10.2.5. By End User
    • 10.2.6. By Country
      • 10.2.6.1. South Africa Single Cell Analysis Market Outlook
        • 10.2.6.1.1. Market Size & Forecast
        • 10.2.6.1.1.1. By Value
        • 10.2.6.1.2. Market Share & Forecast
        • 10.2.6.1.2.1. By Product
        • 10.2.6.1.2.2. By Technique
        • 10.2.6.1.2.3. By Cell Type
        • 10.2.6.1.2.4. By Application
        • 10.2.6.1.2.5. By End User
      • 10.2.6.2. Saudi Arabia Single Cell Analysis Market Outlook
        • 10.2.6.2.1. Market Size & Forecast
        • 10.2.6.2.1.1. By Value
        • 10.2.6.2.2. Market Share & Forecast
        • 10.2.6.2.2.1. By Product
        • 10.2.6.2.2.2. By Technique
        • 10.2.6.2.2.3. By Cell Type
        • 10.2.6.2.2.4. By Application
        • 10.2.6.2.2.5. By End User
      • 10.2.6.3. UAE Single Cell Analysis Market Outlook
        • 10.2.6.3.1. Market Size & Forecast
        • 10.2.6.3.1.1. By Value
        • 10.2.6.3.2. Market Share & Forecast
        • 10.2.6.3.2.1. By Product
        • 10.2.6.3.2.2. By Technique
        • 10.2.6.3.2.3. By Cell Type
        • 10.2.6.3.2.4. By Application
        • 10.2.6.3.2.5. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Technology Launches

13. Competitive Landscape

  • 13.1. Thermo Fisher Scientific Inc.
    • 13.1.1. Business Overview
    • 13.1.2. Treatment Offerings
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. SWOT Analysis
  • 13.2. Qiagen N.V.
  • 13.3. Danaher Corporation.
  • 13.4. Becton, Dickinson and Company.
  • 13.5. Merck KGaA.
  • 13.6. 10X Genomics.
  • 13.7. Takara Bio Inc.
  • 13.8. Standard BioTools Inc.
  • 13.9. Bio-Rad Laboratories Inc.
  • 13.10. Illumina Inc.
  • 13.11. Luminex Corporation.
  • 13.12. Promega Corporation.

14. Strategic Recommendations

15. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦