![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1370785
ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - ÄÄÆ÷³ÍÆ®º°, Á¦Ç° À¯Çüº°, ¿ëµµº°, ¾÷°èº°, Áö¿ªº°, °æÀﺰ ºÐ¼®Computer Vision Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Component, By Product Type, By Application, By Vertical, By Region and Competition |
¼¼°èÀÇ ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀº ¿¹Ãø ±â°£ Áß °ÇÀüÇÑ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÄÄÇ»ÅÍ ºñÀüÀº ÄÄÇ»ÅͰ¡ ½Ã°¢ Á¤º¸¸¦ º¸°í, ÀÌÇØÇϰí, ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ÀΰøÁö´ÉÀÇ ÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ÇコÄɾî, Á¦Á¶¾÷, ¼Ò¸Å¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ÀÀ¿ëµÇ°í ÀÖ´Â ´ÙÀç´Ù´ÉÇÑ ±â¼úÀÔ´Ï´Ù. ¿¹¸¦ µé¾î À̹ÌÁö³ª ¿µ»ó¿¡¼ »ç¶÷ÀÇ ¾ó±¼À» ½Äº°Çϰí È®ÀÎÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ÃâÀÔ °ü¸®¸¦ À§ÇÑ ¾ó±¼ Àνİú °°Àº º¸¾È ¸ñÀûÀ̳ª »çÁø¿¡ Ä£±¸¸¦ ű×ÇÏ´Â °Í°ú °°Àº ¼Ò¼È¹Ìµð¾î ¿ëµµ¿¡ »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ÀÚÀ²ÁÖÇàÂ÷°¡ ÁÖº¯ ȯ°æÀ» ÀνÄÇϰí Àå¾Ö¹°, ±³Åë Ç¥ÁöÆÇ, º¸ÇàÀÚ, ´Ù¸¥ Â÷·®À» °¨ÁöÇÏ¿© ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÁÖÇàÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ÀÇ»ç¿Í ¹æ»ç¼±»ç°¡ Áúº´À» Áø´ÜÇϰí, Á¾¾çÀ» °¨ÁöÇϰí, Àå±â¿Í Á¶Á÷À» ÃøÁ¤Çϰí, ¼ö¼úÀ» ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ±×·¡ÇÈ, »ç¿îµå, ÅØ½ºÆ®, ºñµð¿À µîÀÇ µðÁöÅÐ Á¤º¸·Î Çö½Ç ¼¼°è¸¦ È®ÀåÇÏ¿© °ÔÀÓ, ±³À°, °ü±¤ µî¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ·Îº¿°ú ±â°è°¡ ǰÁú °ü¸®, °áÇÔ °¨Áö, ¼±º°, Æ÷Àå µî À°¾È °Ë»ç°¡ ÇÊ¿äÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ¸¹Àº º¹ÀâÇÑ ¹®Á¦¸¦ ÇØ°áÇØ¾ß ÇÏ´Â µµÀüÀûÀÎ ºÐ¾ßÀÔ´Ï´Ù. °¡Àå ¾î·Á¿î °úÁ¦ Áß Çϳª´Â Ä«¸Þ¶ó¿Í ¼¾¼¿¡¼ °íǰÁú À̹ÌÁö¿Í ºñµð¿À¸¦ ĸóÇÏ´Â °ÍÀÔ´Ï´Ù. À̹ÌÁö¿Í ºñµð¿À´Â Á¶¸í, ³ëÀÌÁî, ¿Ö°î, ¿ÀŬ·çÀü µîÀÇ ¿äÀο¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀº À̹ÌÁö¿Í ºñµð¿ÀÀÇ Ç°ÁúÀ» °³¼±Çϰí, Å©±â¸¦ ÁÙÀ̰í, Ãß°¡ ºÐ¼®À» À§ÇØ À¯¿ëÇÑ Æ¯Â¡À» ÃßÃâÇϱâ À§ÇØ À̹ÌÁö¿Í ºñµð¿À¸¦ Àüó¸®ÇØ¾ß ÇÕ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀº ¼¼ºÐÈ, ºÐ·ù, °¨Áö, ÀνÄ, ÃßÀû µî ´Ù¾çÇÑ ¹æ¹ýÀ» »ç¿ëÇÏ¿© À̹ÌÁö¿Í ºñµð¿À¸¦ ÇØ¼®ÇØ¾ß ÇÕ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀº Àå¸é ÀÌÇØ, ¹°Ã¼ ÀνÄ, ¾ó±¼ ÀνÄ, ÀÚ¿¬¾î ó¸® µîÀÇ ±â¼úÀ» »ç¿ëÇÏ¿© À̹ÌÁö¿Í µ¿¿µ»óÀÇ ÀÇ¹Ì¿Í ¸Æ¶ôÀ» ÀÌÇØÇØ¾ß ÇÕ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ¸Ó½Å·¯´×, µö·¯´×, À̹ÌÁö ó¸® µî ¸¹Àº ±â¼ú°ú Åø¿¡ ÀÇÁ¸ÇÏ´Â ºü¸£°Ô ¹ßÀüÇÏ´Â ºÐ¾ßÀÔ´Ï´Ù. µö·¯´×Àº ´ë·®ÀÇ µ¥ÀÌÅÍ¿¡¼ ÇнÀÇϰí Àΰø ½Å°æ¸ÁÀ» »ç¿ëÇÏ¿© º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇÏ´Â ¸Ó½Å·¯´×ÀÇ ÇÏÀ§ ÁýÇÕÀÔ´Ï´Ù. µö·¯´×Àº À̹ÌÁö ºÐ·ù, ¹°Ã¼ °¨Áö, ¾ó±¼ Àνİú °°Àº ÄÄÇ»ÅÍ ºñÀü ÀÛ¾÷¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, OpenCV´Â ÄÄÇ»ÅÍ ºñÀüÀ» À§ÇÑ Á¾ÇÕÀûÀÎ ±â´É°ú ¾Ë°í¸®Áò ¼¼Æ®¸¦ Á¦°øÇÏ´Â ¿ÀǼҽºÀ̸ç, C, Python, Java¿Í °°Àº ´Ù¾çÇÑ ÇÁ·Î±×·¡¹Ö ¾ð¾î¸¦ Áö¿øÇÕ´Ï´Ù. TensorFlow´Â ¸Ó½Å·¯´× ¸ðµ¨ ±¸Ãà ¹× ¹èÆ÷¸¦ À§ÇÑ Ç÷§ÆûÀ» Á¦°øÇÏ´Â ¿ÀǼҽºÀ̸ç, TensorFlow´Â C, Python, Java µî ´Ù¾çÇÑ ÇÁ·Î±×·¡¹Ö ¾ð¾î¸¦ Áö¿øÇϸç, Windows, Linux, Android µî ´Ù¾çÇÑ Ç÷§Æû¿¡¼ ½ÇÇàµÈ´Ù, Python, C µî ´Ù¾çÇÑ ÇÁ·Î±×·¡¹Ö ¾ð¾î¸¦ Áö¿øÇϸç, CPU, GPU, TPU µî ´Ù¾çÇÑ ±â±â¿¡¼ ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº »çȸ¿Í Àηù¿¡°Ô ¸¹Àº ÇýÅÃÀ» °¡Á®´ÙÁÖ´Â ¸Å·ÂÀûÀ̰í Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ±×·¯³ª ÄÄÇ»ÅÍ ºñÀüÀº ½ÅÁßÇÏ°Ô ´Ù·ï¾ß ÇÒ À±¸®Àû, »çȸÀû ¹®Á¦µµ Á¦±âÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÄÄÇ»ÅÍ ºñÀüÀº »ç¶÷µéÀÇ ¾ó±¼, Àå¼Ò, Ȱµ¿, ÃëÇâ µîÀ» µ¿Àdzª Áö½Ä ¾øÀÌ Æ÷ÂøÇÔÀ¸·Î½á »ç¶÷µéÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ Ä§ÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ½ºÇªÇÎ, °¨½Ã, Çдë, Â÷º°À» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ÈÆ·ÃµÈ µ¥ÀÌÅÍ¿Í »ç¿ëÇÏ´Â ¾Ë°í¸®Áò¿¡ µû¶ó Æí°ßÀÌ »ý±æ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú ¼ºº°, ÀÎÁ¾, ³ªÀÌ µî¿¡ µû¶ó ƯÁ¤ ±×·ì¿¡ ºÒ°øÁ¤Çϰųª ºÎÁ¤È®ÇÑ °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº »ç¶÷µéÀÇ »î°ú Çູ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
ÄÄÇ»ÅÍ ºñÀüÀº ÀΰøÁö´É(AI)ÀÇ ÇÑ ºÐ¾ß·Î, ÄÄÇ»ÅÍ¿Í ½Ã½ºÅÛÀÌ µðÁöÅÐ À̹ÌÁö, ºñµð¿À ¹× ±âŸ ½Ã°¢Àû ÀԷ¿¡¼ ÀÇ¹Ì ÀÖ´Â Á¤º¸¸¦ µµÃâÇϰí À̸¦ ±â¹ÝÀ¸·Î ÇൿÀ» ÃëÇϰųª ÃßõÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀÇ °¡Àå À¯¸ÁÇϰí Çõ½ÅÀûÀÎ ¿ëµµ Áß Çϳª´Â ·Îº¿ °øÇÐÀÔ´Ï´Ù. ·Îº¿Àº ÄÄÇ»ÅÍ ºñÀüÀ» »ç¿ëÇÏ¿© ÁÖº¯ ȯ°æÀ» ÀνÄÇϰí, ¹°Ã¼¸¦ ÀνÄÇϰí, ÀÚÀ²ÀûÀ¸·Î À̵¿Çϰí, ¹°Ã¼¸¦ Á¶ÀÛÇϰí, º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀº Ä«¸Þ¶ó³ª ¼¾¼¸¦ ÀÔ·ÂÀ¸·Î »ï¾Æ ·Îº¿ÀÌ È¯°æ°ú »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ÄÄÇ»ÅÍ ºñÀü ±â¼úÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀº 2D¿Í 3DÀÇ µÎ °¡Áö ¹üÁÖ·Î ³ª´µ´Âµ¥, 2D ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀº ±âÁ¸ÀÇ Ä«¸Þ¶ó¸¦ »ç¿ëÇÏ¿© Àå¸éÀÇ À̹ÌÁö¸¦ ĸóÇÏ°í Æ¯Â¡, °¡ÀåÀÚ¸®, ¸ð¾ç, »ö»ó µîÀ» °¨ÁöÇÏ´Â ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ó¸®ÇÕ´Ï´Ù. º§Æ® ÄÁº£À̾ ¹èÄ¡ÇÏ´Â °Í°ú °°ÀÌ °£´ÜÇÑ ¹°Ã¼ ÀÎ½Ä ¹× Á¤·ÄÀÌ ÇÊ¿äÇÑ ÀÛ¾÷¿¡ ÀûÇÕÇϸç, 3D ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀº ½ºÅ×·¹¿À Ä«¸Þ¶ó, ±¸Á¶ÈµÈ ºû ¶Ç´Â ·¹ÀÌÀú ½ºÄ³³Ê¸¦ »ç¿ëÇÏ¿© Àå¸éÀÇ ±íÀÌ Á¤º¸¸¦ ȹµæÇϰí ȯ°æÀÇ 3D ¸ðµ¨À» »ý¼ºÇÕ´Ï´Ù. ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀº ºÎǰ Á¶¸³, ¹Ú½º µð ÆÈ·¹Å¸ÀÌ¡°ú °°ÀÌ Á¤È®ÇÑ ¹°Ã¼ °¨Áö, ÇöÁöÈ, ¹æÇâ ¹× ÀÚ¼¼ ÃßÁ¤ÀÌ ÇÊ¿äÇÑ º¸´Ù º¹ÀâÇÑ ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð | 156¾ï 5,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 427¾ï 9,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 18.21% |
±Þ¼ºÀå ºÎ¹® | ¼ÒÇÁÆ®¿þ¾î |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
3D ºñÀü °¡ÀÌµå ½Ã½ºÅÛÀÇ ÇÑ ¿¹·Î KEYENCEÀÇ 3D ºñÀü °¡ÀÌµå ·Îº¿ ½Ã½ºÅÛÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Á¶¸³, ÆÈ·¹Å¸ÀÌ¡ ¹× ±â°è ÅÙµù ÇÁ·Î¼¼½º¸¦ ÀÚµ¿ÈÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, 3D µ¥ÀÌÅ͸¦ ¼öÁýÇϱâ À§ÇØ 4°³ÀÇ Ä«¸Þ¶ó¿Í 1°³ÀÇ ÇÁ·ÎÁ§ÅÍ·Î ±¸¼ºµÈ À̹Ì¡ À¯´ÖÀº °í¼Ó ÇÁ·ÎÁ§ÅͰ¡ ´ë»ó Àüü¿¡ ¿©·¯ °³ÀÇ ÁÙ¹«´Ì ºû ÆÐÅÏÀ» Á¶»çÇϰí ÃÑ 136°³ÀÇ À̹ÌÁö¸¦ ĸóÇÕ´Ï´Ù. »ç¿ëÀÚ´Â ·Îº¿°ú Ä«¸Þ¶óÀÇ ÀÚµ¿ º¸Á¤À» Æ÷ÇÔÇÑ °£´ÜÇÑ ¼³Á¤ °úÁ¤À» °ÅÃÄ¾ß ÇÕ´Ï´Ù.
EV°¡ ´ëÁßȵʿ¡ µû¶ó ÄÄÇ»ÅÍ ºñÀüÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº ÀÚÀ²ÁÖÇà, ¿îÀü Áö¿ø, ¾ÈÀü, ³»ºñ°ÔÀ̼Ç, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî EVÀÇ ´Ù¾çÇÑ ¿ëµµ¿¡ »ç¿ëµÉ ¼ö ÀÖÀ¸¸ç, EV¿¡¼ ÄÄÇ»ÅÍ ºñÀü ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ÀÚÀ²ÁÖÇàÀÇ Çʿ伺ÀÔ´Ï´Ù. ÀÚÀ²ÁÖÇàÀº ¼¾¼, Ä«¸Þ¶ó ¹× ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÏ¿© ÁÖº¯ ȯ°æÀ» °¨ÁöÇϰí ÀÌ¿¡ ´ëÀÀÇÏ¿© Àΰ£ÀÇ °³ÀÔ ¾øÀÌ Â÷·®À» ¿îÀüÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ¸»ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÀº ¹è±â°¡½º ¹èÃâ·® °¨¼Ò, È¿À²¼º Çâ»ó, ¾ÈÀü °È, ½Ã°£ ¹× ºñ¿ë Àý°¨ µî Àü±âÀÚµ¿Â÷¿¡ ¸¹Àº ÀÌÁ¡À» °¡Á®´ÙÁÖ¸ç, Àü±âÀÚµ¿Â÷¿¡¼ ÄÄÇ»ÅÍ ºñÀü ¼ö¿ä¸¦ Áõ°¡½ÃŰ´Â ¶Ç ´Ù¸¥ ¿äÀÎÀº ÃËÁø¿äÀÎ Áö¿øÀÇ Çʿ伺ÀÔ´Ï´Ù. ÃËÁø¿äÀÎ Áö¿øÀº ÁÖÂ÷, Â÷¼± À¯Áö, Ãæµ¹ ¹æÁö, ±³Åë Ç¥ÁöÆÇ ÀνÄ, »ç°¢Áö´ë °¨Áö µî ´Ù¾çÇÑ ÀÛ¾÷¿¡¼ ÃËÁø¿äÀÎÀ» Áö¿øÇÏ´Â ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀ» »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÃËÁø¿äÀÎ Áö¿øÀº EVÀÇ ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó ÃËÁø¿äÀΰú µ¿½ÂÀÚ¿¡°Ô Æí¸®ÇÔ°ú Æí¾ÈÇÔÀ» Á¦°øÇÕ´Ï´Ù. ¾ÈÀüÀº µµ³, ÆÄ¼Õ, ÈÀç, »ç°í µî ´Ù¾çÇÑ À§ÇèÀ¸·ÎºÎÅÍ Â÷·®°ú ž½ÂÀÚ¸¦ °¨½ÃÇÏ°í º¸È£Çϱâ À§ÇØ ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀ» »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ¾ÈÀüÀº EVÀÇ ¼Õ»ó°ú ºÎ»óÀ» ¿¹¹æÇϰųª ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÉ»Ó¸¸ ¾Æ´Ï¶ó ¼ÒÀ¯ÀÚ¿Í »ç¿ëÀÚ¿¡°Ô ¾È½É°ú ¾ÈÀüÀ» Á¦°øÇÕ´Ï´Ù.
°á·ÐÀûÀ¸·Î, EV¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¼¼°è ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀº EV¿¡ ¸¹Àº ÀÀ¿ëÀÌ °¡´ÉÇϸç, »ç¿ëÀÚ¿Í »çȸ¿¡ ´Ù¾çÇÑ ÇýÅÃÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÏ°í ¼ÒºñÀÚÀÇ ÃëÇâÀÌ º¯ÈÇÔ¿¡ µû¶ó ÄÄÇ»ÅÍ ºñÀüÀº ¸ðºô¸®Æ¼ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Alphabet Inc., Cognex Corporation, Intel Corporation, Keyence Corporation, Matterport, Inc., National Instruments Corp., Omron Corporation, Sony Group Corporation, Teledyne Technologies Inc., Texas Instruments Incorporated. µîÀÌ ¼¼°èÀÇ ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ±â¾÷ÀÔ´Ï´Ù.
ÄÄÇ»ÅÍ ºñÀü ¼¼°è ½ÃÀåÀ» ÀÌÇÏ Ä«Å×°í¸®·Î ºÐ·ùÇϰí, ¾÷°è µ¿Çâ¿¡ ´ëÇØ¼µµ »ó¼úÇϰí ÀÖ½À´Ï´Ù. :
(ÁÖ : ±â¾÷ ¸®½ºÆ®´Â °í°´ ¿ä±¸¿¡ µû¶ó Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÕ´Ï´Ù.)
KSA 23.11.06Global computer vision market is expected to grow at a healthy CAGR during the forecast period. Computer vision is a branch of artificial intelligence that enables computers to see, understand, and process visual information. Computer vision is a versatile technology with applications in many domains such as healthcare, manufacturing, and retail. For example, it can be used to identify and verify people's faces from images or videos. This can be used for security purposes, such as facial recognition for access control or for social media applications, such as tagging friends in photos. Computer vision can help autonomous vehicles to perceive their surroundings, detect obstacles, traffic signs, pedestrians, and other vehicles, and navigate safely and efficiently. Computer vision can assist doctors and radiologists in diagnosing diseases, detecting tumors, measuring organs and tissues, and performing surgeries. It can enhance the real world with digital information, such as graphics, sounds, texts, and videos, which can be used for gaming, education, tourism, and more. Computer vision can enable robots and machines to perform tasks that require visual inspection, such as quality control, defect detection, sorting, and packaging. Computer vision is a challenging field that requires solving many complex problems. One of the most challenging problems is capturing high-quality images or videos from cameras or sensors. This is because the images or videos can be affected by factors such as lighting, noise, distortion, and occlusion. Computer vision systems need to pre-process the images or videos to enhance their quality, reduce their size, and extract useful features for further analysis. Computer vision systems need to interpret the images or videos using various methods, such as segmentation, classification, detection, recognition, and tracking. Computer vision systems need to understand the meaning and context of the images or videos using techniques such as scene understanding, object recognition, face recognition, and natural language processing. Computer vision is a rapidly evolving field that relies on many technologies and tools, such as machine learning, deep learning, and image processing. Deep learning is a subset of machine learning that uses artificial neural networks to learn from large amounts of data and perform complex tasks. Deep learning has been widely used for computer vision tasks such as image classification, object detection, and face recognition. OpenCV is an open source that provides a comprehensive set of functions and algorithms for computer vision. OpenCV supports various programming languages such as C++, Python, and Java, and can run on various platforms such as Windows, Linux, and Android. TensorFlow is an open source provides a platform for building and deploying machine learning models. TensorFlow supports various programming languages such as Python and C++, and can run on various devices such as CPUs, GPUs, and TPUs. Computer vision is a fascinating and important field that has many benefits for society and humanity. However, computer vision also poses some ethical and social issues that need to be addressed carefully. For example, computer vision can invade people's privacy by capturing their faces, locations, activities, and preferences without their consent or knowledge. This can lead to identity theft, surveillance, abuse, or discrimination. Computer vision can be biased by the data it is trained on or the algorithms it uses. This can result in unfair or inaccurate outcomes for certain groups of people based on their gender, race, or age. Computer vision can have significant impacts on people's lives and well-being.
Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs and take actions or make recommendations based on that information. One of the most promising and innovative applications of computer vision is in robotics. Robots can use computer vision to perceive their surroundings, recognize objects, navigate autonomously, manipulate items, and perform complex tasks. Vision-guided systems are a type of computer vision technology that allow robots to interact with their environment using cameras and sensors as inputs. Vision-guided systems can be classified into two categories: 2D and 3D. 2D vision-guided systems use conventional cameras to capture images of the scene and process them using algorithms to detect features, edges, shapes, colors, etc. 2D vision-guided systems are suitable for tasks that require simple object recognition and alignment, such as picking and placing items on a conveyor belt. 3D vision-guided systems use stereo cameras, structured light, or laser scanners to capture depth information of the scene and create a 3D model of the environment. 3D vision-guided systems can handle more complex tasks that require accurate object detection, localization, orientation, and pose estimation, such as assembling parts or de-palletizing boxes.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 15.65 Billion |
Market Size 2028 | USD 42.79 Billion |
CAGR 2023-2028 | 18.21% |
Fastest Growing Segment | Software |
Largest Market | North America |
One example of a 3D vision-guided system is the 3D vision-guided robotics system from KEYENCE, which is designed for unparalleled object detection capability and ease-of-use. This system can be used in the automation of assembly, de-palletizing, and machine tending processes. To gather 3D data, the four-camera, one-projector imaging unit captures 136 total images as the high-speed projector emits multiple striped-light patterns across the target. The user follows a simple setup process, including automatic robot-camera calibration.
Vision-guided systems enable robots to perform tasks that were previously impossible or impractical for humans or machines. They also reduce the need for expensive and time-consuming fixtures, templates, or markers that are used to guide robots in traditional methods. Vision-guided systems can adapt to changes in the environment or the task without requiring manual intervention or reprogramming. Vision-guided systems also improve the quality and consistency of the output by minimizing errors and defects.
As robots become more intelligent and capable with the help of computer vision, they will be able to take on more roles and responsibilities in various domains. This will create new opportunities and challenges for businesses and consumers alike. Vision-guided systems are not only fueling the market for computer vision but also transforming the future of robotics.
As EVs become more popular, computer vision is playing an increasingly important role in their development. Computer vision can be used for a variety of applications in EVs, such as autonomous driving, driver assistance, safety, navigation, and entertainment. One of the main factors that is driving the demand for computer vision in EVs is the need for autonomous driving. Autonomous driving refers to the ability of a vehicle to operate without human intervention, using sensors, cameras, and software to detect and respond to the surrounding environment. Autonomous driving can offer many benefits for EVs, such as reducing emissions, improving efficiency, enhancing safety, and saving time and money. Another factor that is boosting the demand for computer vision in EVs is the need for driver assistance. Driver assistance refers to the use of computer vision systems to assist drivers in various tasks, such as parking, lane keeping, collision avoidance, traffic sign recognition, and blind spot detection. Driver assistance can help improve the performance and safety of EVs, as well as provide convenience and comfort for drivers and passengers. A third factor that is fuelling the demand for computer vision in EVs is the need for safety. Safety refers to the use of computer vision systems to monitor and protect the vehicle and its occupants from various hazards, such as theft, vandalism, fire, and accidents. Safety can help prevent or mitigate damage and injury for EVs, as well as provide peace of mind and security for owners and users.
In conclusion, the rising demand for EVs is driving the global computer vision market. Computer vision has many applications in EVs that can offer various benefits for users and society. As technology advances and consumer preferences change, computer vision will play an increasingly important role in shaping the future of mobility.
Based on components, the market is segmented into hardware and software. Based on product type, the market is segmented into smart camera-based and PC-based. Based on application, the market is further bifurcated into quality assurance & inspection, positioning & guidance, measurement, identification, 3D visualization & interactive 3D modelling, and predictive maintenance. Based on vertical, the market is further split into industrial and non-industrial. The market analysis also studies the regional segmentation to devise regional market segmentation, divided among North America, Europe, Asia-Pacific, South America, and Middle East & Africa.
Alphabet Inc., Cognex Corporation, Intel Corporation, Keyence Corporation, Matterport, Inc., National Instruments Corp., Omron Corporation, Sony Group Corporation, Teledyne Technologies Inc., and Texas Instruments Incorporated. are among the major players that are driving the growth of the global Computer Vision market.
In this report, the global computer vision market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
(Note: The companies list can be customized based on the client requirements.)