½ÃÀ庸°í¼­
»óǰÄÚµå
1370876

¼¼°èÀÇ ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå - »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) : Á¦°ø Á¦Ç°º°, ¹èÆ÷º°, ÀÚµ¿È­ À¯Çüº°, ±â¾÷ ±Ô¸ðº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº°, °æÀï¾÷üº°

Automated Machine Learning Solution Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Offering, By Deployment, By Automation Type, By Enterprise Size, By End-Users, By Region and Competition

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀº 2023-2028³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°í°´ ¼¼ºÐÈ­ ¹× ÀáÀç °í°´ Ÿ°ÙÆÃÀ» À§ÇÑ ¿¹Ãø ¸®µå ½ºÄھ ½Ã½ºÅÛÀÇ »ç¿ëÀº ¼¼°èÀûÀ¸·Î ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ÇöÀç ¸¹Àº »ê¾÷ ºÐ¾ß°¡ ¸Ó½Å·¯´×(ML)¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, °í¼º´É ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§Çؼ­´Â °íµµ·Î Àü¹®È­µÈ µ¥ÀÌÅÍ °úÇÐÀÚ ¹× Àü¹® ºÐ¾ß Àü¹®°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×Àº ÇØ´ç ºÐ¾ßÀÇ Àü¹®°¡°¡ dzºÎÇÑ Åë°è ¹× ¸Ó½Å·¯´× ±â¼ú ¾øÀ̵µ ¸Ó½Å·¯´× ¿ëµµ¸¦ ÀÚµ¿À¸·Î »ý¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á µ¥ÀÌÅÍ °úÇÐÀÚÀÇ Çʿ伺À» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °úÇаú ÀΰøÁö´ÉÀÇ ¹ßÀüÀ¸·Î ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ ±â¼ú¿¡ ´ëÇÑ °¡´É¼ºÀ» ¹ß°ßÇϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È ÀÌ ±â¼úÀÇ Ã¤Å÷üÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¾÷µéÀÌ ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» ±¸µ¶ ¼­ºñ½º·Î ÆÇ¸ÅÇϱ⠽ÃÀÛÇϸ鼭 °í°´µéÀº º¸´Ù ½±°Ô ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. ¶ÇÇÑ, Á¾·®Á¦ °ú±ÝÀÇ À¯¿¬¼ºµµ Á¦°øµË´Ï´Ù.

ÃÖ±Ù ¸Ó½Å·¯´×(ML)ÀÌ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ´õ ÀÚÁÖ »ç¿ëµÇ°í ÀÖÁö¸¸, ÀÌ·¯ÇÑ Áõ°¡¸¦ µû¶óÀâÀ» ¼ö ÀÖ´Â ¸Ó½Å·¯´× Àü¹®°¡°¡ ºÎÁ·ÇÕ´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¸ñÇ¥´Â ¸Ó½Å·¯´×À» º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. °á°úÀûÀ¸·Î Àü¹®°¡µéÀº ´õ ¸¹Àº ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̸ç, ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇϸé MLÀ» Á÷Á¢ »ç¿ëÇÏ´Â °Íº¸´Ù ´õ ÀûÀº ±â¼úÀ» ÇÊ¿ä·ÎÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ÇöÀç ÀÌ ±â¼úÀÇ ¼ö¿ëÀº ¹Ì¹ÌÇÑ ¼öÁØÀ̸ç, ÀÌ´Â ¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024³â-2028³â
2022³â ½ÃÀå ±Ô¸ð 11¾ï 2,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 93¾ï 4,000¸¸ ´Þ·¯
CAGR 2023-2028³â 42.48%
±Þ¼ºÀå ºÎ¹® Á¦Á¶¾÷
ÃÖ´ë ½ÃÀå ºÏ¹Ì

Äڷγª19 »çÅ ÀÌÈÄ Á¶Á÷Àº ¾÷¹« ÀÚµ¿È­¸¦ À§ÇÑ Áö´ÉÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ AI Ȱ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÐÅÏÀº ÇâÈÄ ¸î ³âµ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾÷¹«¿¡¼­ AIÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

È¿À²ÀûÀÎ ºÎÁ¤ÇàÀ§ ŽÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¸Ó½Å·¯´×Àº °Å·¡, ÇÁ·Î¼¼½º ÀÚµ¿È­, ½Å¿ëÁ¡¼ö, ´ëÃâ ¹× º¸Çè Àμö µî ´Ù¾çÇÑ ±ÝÀ¶ ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±ÝÀ¶ º¸¾ÈÀÇ °¡Àå Å« ¹®Á¦ Áß Çϳª´Â ±ÝÀ¶ »ç±â´Ù. ¸Ó½Å·¯´×Àº ÇöÀç ±ÝÀ¶»ç±â À§Çè Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ç±â ŽÁö ¿ëµµ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù µðÁöÅРä³ÎÀ» ÅëÇØ È®º¸ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϱâ À§ÇØ ±ÝÀ¶ ¼­ºñ½º ºÎ¹®ÀÇ ¿©·¯ ±â¾÷µéÀº ÇöÀç AI¿Í MLÀ» ÀÚ»ç »ýŰ迡 Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °í°´ Çൿ°ú ¿ì¼±¼øÀ§ÀÇ ÆÐ·¯´ÙÀÓ º¯È­µµ ÀÌ·¯ÇÑ È®»êÀ» ÃËÁøÇÏ¿© 5,000¸í ÀÌ»óÀÇ Á÷¿øÀ» º¸À¯ÇÑ ±ÝÀ¶ ¼­ºñ½º ±â¾÷ÀÇ 54%°¡ ÀÌ ±â¼úÀ» ºñÁî´Ï½º °üÇà¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ½Å¿ëÄ«µå ¿Â¶óÀÎ °áÁ¦°¡ È®»êµÊ¿¡ µû¶ó, ±â¾÷µéÀº ½Ç½Ã°£ ½ÇÇà °¡´ÉÇÑ °æ°í¸¦ Á¦°øÇÏ´Â »ç±â ŽÁö ½Ã½ºÅÛÀ» Á¡Á¡ ´õ ¸¹ÀÌ ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ¼¼°è ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

Áö´ÉÇü ºñÁî´Ï½º ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

±â¾÷µéÀÌ Â÷¼¼´ë ±â¼ú Ȱ¿ë¿¡ ´«À» µ¹¸®¸é¼­ ÀΰøÁö´É(AI) Ȱ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ ¼öÁý, ¾÷¹« ÇÁ·Î¼¼½º È¿À²È­ µî ´Ù¾çÇÑ ¸ñÀûÀ¸·Î ÀΰøÁö´ÉÀ» µµÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¼º CRM Ç÷§Æû¿¡¼­ AI ¾Ö³Î¸®Æ½½º°¡ ³Î¸® »ç¿ëµÇ¸é¼­ ¿µ¾÷ÆÀÀº ¿Âµð¸Çµå ¹æ½ÄÀ¸·Î ÅëÂû·Â ÀÖ´Â µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼¼ÀÏÁîÆ÷½ºÀÇ ¾ÆÀν´Å¸ÀÎ AI ±â¼úÀº ¾î¶² °í°´ÀÌ ¸ÅÃâÀ» ´Ã¸®°Å³ª ºê·£µå¸¦ ÀüȯÇÒ °¡´É¼ºÀÌ °¡Àå ³ôÀºÁö ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤º¸¸¦ ÅëÇØ ¿µ¾÷ ´ã´çÀÚ´Â °¡Àå Áß¿äÇÑ °÷¿¡ ½Ã°£°ú ³ë·ÂÀ» ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷ÀÌ °í°´ ¼­ºñ½º Æò°¡ ¹× °³¼±¿¡ ÁßÁ¡À» µÎ¸é¼­ Á¶Á÷ ³» AI ±â¹Ý ÇÁ·Î¼¼½º°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, AI´Â ¼ÒºñÀÚÀÇ ÃëÇâ°ú ±¸¸Å µ¿ÇâÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í, ±× °á°ú ¼ÒºñÀÚ ¸ÂÃãÇü »óǰ Á¦¾ÈÀ» ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Á¦Á¶¾÷, â°í¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ·Îº¿ µµÀÔÀÌ È®´ëµÇ¸é¼­ AI¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÄÚº¿Àº ¸Ó½ÅºñÀü°ú °°Àº AI ±â¼úÀ» ÅëÇØ ÁÖº¯ »ç¶÷µéÀ» ÀνÄÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, »ç¶÷À» ÇÇÇϱâ À§ÇØ ¼Óµµ¸¦ ÁÙÀ̰ųª ¹æÇâÀ» ¹Ù²Ù´Â µî ÀûÀýÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, »ç¶÷°ú ·Îº¿ÀÇ ´É·ÂÀ» ÃÖ´ëÇÑ ¹ßÈÖÇÒ ¼ö ÀÖ´Â ÇÁ·Î¼¼½º°¡ ź»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ÅøÀÇ µµÀÔÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.

¸Ó½Å·¯´×(ML)Àº Á¡Á¡ ´õ ¸¹Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ äÅõǰí ÀÖÁö¸¸, ¸Ó½Å·¯´× Àü¹®°¡µéÀº ÀÌ·¯ÇÑ È®ÀåÀ» µû¶óÀâÁö ¸øÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¸ñÇ¥´Â ¸Ó½Å·¯´×À» º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. ±× °á°ú Àü¹®°¡µéÀº ´õ ¸¹Àº ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̸ç, ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇÏ´Â ÀÛ¾÷Àº MLÀ» Á÷Á¢ ´Ù·ç´Â °Íº¸´Ù ´õ ÀûÀº ±â¼úÀ» ÇÊ¿ä·Î ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ÇÏÁö¸¸ ÇöÀç ÀÌ ±â¼úÀÇ ¼ö¿ëÀº ¾ÆÁ÷Àº ¹Ì¹ÌÇϸç, ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå È®´ë¿¡´Â ÇѰ谡 ÀÖ½À´Ï´Ù. ù°, ÀÚµ¿ ¸Ó½Å·¯´× Á¢±Ù ¹æ½ÄÀº »ç¿ëÇÏ±â ¾î·Æ°í Ȱ¿ë ¹æ¹ýÀ» ÀÌÇØÇϱâ À§ÇØ ¸¹Àº Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇÏ´Ù´Â ¿ÀÇØ°¡ ÀÖ½À´Ï´Ù. µÑ°, ÀÚµ¿ ¸Ó½Å·¯´× ½Ã½ºÅÛÀº »ç¿ëÀÚ µ¥ÀÌÅ͸¦ ´Ù·ê ¶§ °¡²û ¹®Á¦°¡ ¹ß»ýÇÏÁö¸¸ Ç×»ó ¹®Á¦¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â °ÍÀº ¾Æ´Õ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇϱâ À§ÇØ ÇÊ¿äÇÑ Ã³¸® ´É·Â¿¡ ´ëÇÑ ¿ì·Áµµ Á¦±âµÆ½À´Ï´Ù.

¼ºÀåÇÏ´Â ÀÇ·á ¹× ¿ëµµ

ÀÇ·á ºÐ¾ß´Â ÀÌ¹Ì ¸¹Àº ¿ëµµ¿¡¼­ ¸Ó½Å·¯´× ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº ÀÌ ºÐ¾ß¿¡¼­ ¹ß»ýÇÏ´Â ¼ö¹é¸¸ °³ÀÇ ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °á°ú¸¦ ¿¹ÃøÇϰí, ½Å¼ÓÇÑ À§Çè Æò°¡¿Í Á¤È®ÇÑ ÀÚ¿ø ¹èºÐÀ» Á¦°øÇÕ´Ï´Ù.

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ »ç¿ëÀÚµéÀÇ ÀúÇ×°¨

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå µµÀÔÀÌ ´Ê¾îÁö°í ÀÖ´Â °ÍÀº ¸Ó½Å·¯´× ±â¼ú µµÀÔÀÌ Á¦ÇÑÀûÀ̱⠶§¹®ÀÔ´Ï´Ù. ¸Ó½Å·¯´×¿¡ ÀûÇÕÇÑ ¿ª·®À» °®Ãá Àü¹®°¡¿¡ ´ëÇÑ ¼ö¿ä°¡ ¸¹±â ¶§¹®¿¡ ±â¾÷µéÀº ÇÊ¿äÇÑ Àü¹®°¡¸¦ È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Àü¹®°¡¸¦ °í¿ëÇÏ´Â µ¥ ºñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ±â¾÷Àº ¸Ó½Å·¯´×°ú °°Àº ÷´Ü ±â¼úÀ» äÅÃÇÒ °¡´É¼ºÀÌ ´õ¿í ³·¾ÆÁý´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ À¯Çüµµ ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ±â¼ú »ç¿ë¿¡ ´ëÇÑ ÀúÇ׿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¤ºÎ ±â°üÀº ½Ã¹ÎÀÇ µ¥ÀÌÅ͸¦ °ü¸®Çϰí Àֱ⠶§¹®¿¡ ÀÚµ¿È­µÈ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» »ç¿ëÇÏ´Â °ÍÀ» ²¨·ÁÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ ±â¹Ð¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» ÁÖÀúÇÏ°í ½ÃÀå È®ÀåÀ» µÐÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿©·¯ ¾÷°è Àü¹®°¡µéÀÌ ÁöÀûÇÑ ¹Ù¿Í °°ÀÌ, ±â¼úÀÇ ÇѰè·Î ÀÎÇØ »ç¶÷µéÀº ÀÌ·¯ÇÑ µµ±¸ÀÇ È°¿ëÀ» ²¨·ÁÇÕ´Ï´Ù. ÀÌ´Â ÀÚµ¿ ¸Ó½Å·¯´×ÀÌ Á÷¸éÇÑ µ¥ÀÌÅÍ ¹× ¸ðµ¨ Àû¿ë°ú °ü·ÃµÈ ¹®Á¦ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ¿ÀÇÁ¶óÀÎ µ¥ÀÌÅÍ Ã³¸® Áß¿¡ Àϰü¼º ¾ø´Â µ¥ÀÌÅͰ¡ ¹ß»ýÇϰųª ¶óº§¸µµÈ µ¥ÀÌÅÍÀÇ Ç°ÁúÀÌ ÁÁÁö ¾ÊÀ¸¸é ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÆÀÀº ±â¼úÀûÀ¸·Î ºñÁ¤Çü µ¥ÀÌÅÍ¿Í ¹ÝÁ¤Çü µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÚµ¿ ¸Ó½Å·¯´× 󸮸¦ ¿ä±¸ÇØ¾ß ÇÕ´Ï´Ù.

Á¶»ç¹üÀ§ :

ÀÌ º¸°í¼­´Â ¼¼°è ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀ» ´ÙÀ½°ú °°Àº Ä«Å×°í¸®·Î ºÐ·ùÇϰí, ¾Æ·¡¿¡¼­ ÀÚ¼¼È÷ ¼³¸íÇÏ´Â ¾÷°è µ¿Çâ°ú ÇÔ²² ´ÙÀ½°ú °°Àº Ä«Å×°í¸®·Î ºÐ·ùÇß½À´Ï´Ù.

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : Á¦Ç°º° ÇöȲ

  • Ç÷§Æû
  • ¼­ºñ½º

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : ±¸Ãະ ÇöȲ

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : ÀÚµ¿È­ À¯Çüº°

  • µ¥ÀÌÅÍ Ã³¸®
  • ±â´É ¿£Áö´Ï¾î¸µ
  • ¸ðµ¨¸µ
  • ½Ã°¢È­

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : ±â¾÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡
  • ÀÇ·á
  • Á¦Á¶¾÷

ÀÚµ¿È­µÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå : Áö¿ªº° ÇöȲ

  • ºÏ¹Ì
  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Àεµ
  • Áß±¹
  • ÀϺ»
  • Çѱ¹
  • È£ÁÖ
  • ½Ì°¡Æ÷¸£
  • ¸»·¹À̽þÆ
  • À¯·´
  • µ¶ÀÏ
  • ¿µ±¹
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ½ºÆäÀÎ
  • º§±â¿¡
  • ÀÌÅ»¸®¾Æ
  • ³²¹Ì
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª
  • ÄÝ·Òºñ¾Æ
  • Æä·ç
  • Ä¥·¹
  • Áßµ¿
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • À̽º¶ó¿¤
  • ÅÍŰ

°æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ: ¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå¿¡ Á¸ÀçÇÏ´Â ÁÖ¿ä ±â¾÷¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®.

¸ÂÃãÇü

  • Tech Sci Research´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå º¸°í¼­¿¡¼­ ±â¾÷ÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ µû¶ó ¸ÂÃãÈ­ÇÒ ¼ö ÀÖ´Â ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼­´Â ´ÙÀ½°ú °°Àº Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÕ´Ï´Ù.

±â¾÷ Á¤º¸

  • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷(ÃÖ´ë 5°³»ç)¿¡ ´ëÇÑ ½ÉÃþ ºÐ¼® ¹× ÇÁ·ÎÆÄÀϸµ

¸ñÂ÷

Á¦1Àå ¼­ºñ½º °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå COVID-19°¡ ¼¼°èÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ

Á¦4Àå ÁÖ¿ä ¿ä¾à

Á¦5Àå °í°´ÀÇ ¼Ò¸®

Á¦6Àå ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ¼¼°è ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°(Ç÷§Æû, ¼­ºñ½º)
    • Àü°³ Çüź°(¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå)
    • ÀÚµ¿È­ À¯Çüº°(µ¥ÀÌÅÍ Ã³¸®, ±â´É ¿£Áö´Ï¾î¸µ, ¸ðµ¨¸µ, ½Ã°¢È­)
    • ±â¾÷ ±Ô¸ðº°(´ë±â¾÷, Áß¼Ò±â¾÷)
    • ÃÖÁ¾»ç¿ëÀÚº°(ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI), ¼Ò¸Å ¹× E-Commerce, ÀÇ·á, Á¦Á¶¾÷)
    • Áö¿ªº°
  • ±â¾÷º°(2022³â)
  • ½ÃÀå ¸Ê

Á¦7Àå ºÏ¹ÌÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°
    • Àü°³ Çüź°
    • ÀÚµ¿È­ À¯Çüº°
    • ±â¾÷ ±Ô¸ðº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ

Á¦8Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°
    • Àü°³ Çüź°
    • ÀÚµ¿È­ À¯Çüº°
    • ±â¾÷ ±Ô¸ðº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • ½Ì°¡Æ÷¸£
    • ¸»·¹À̽þÆ

Á¦9Àå À¯·´ÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°
    • Àü°³ Çüź°
    • ÀÚµ¿È­ À¯Çüº°
    • ±â¾÷ ±Ô¸ðº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • À¯·´ : ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ½ºÆäÀÎ
    • º§±â¿¡
    • ÀÌÅ»¸®¾Æ

Á¦10Àå ³²¹ÌÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°
    • Àü°³ Çüź°
    • ÀÚµ¿È­ À¯Çüº°
    • ±â¾÷ ±Ô¸ðº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ
    • Æä·ç
    • Ä¥·¹

Á¦11Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¦°ø Á¦Ç°º°
    • Àü°³ Çüź°
    • ÀÚµ¿È­ À¯Çüº°
    • ±â¾÷ ±Ô¸ðº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • À̽º¶ó¿¤
    • ÅÍŰ

Á¦12Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦13Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

Á¦14Àå ±â¾÷ °³¿ä

  • Datarobot Inc.
  • Amazon Web Services Inc.
  • dotData Inc.
  • IBM Corporation
  • Dataiku
  • EdgeVerve Systems Limited
  • Big Squid Inc.
  • SAS Institute Inc.
  • Microsoft Corporation
  • Determined.ai Inc

Á¦15Àå Àü·«Àû Á¦¾È

Á¦16Àå Á¶»çȸ»ç¿¡ ´ëÇØ¡¤¸éÃ¥»çÇ×

LSH 23.11.10

Global automated machine learning solution market is anticipated to thrive in the forecast period 2023-2028. The usage of predictive lead scoring systems for customer segmentation and targeting potential consumers is rising the demand for the automated machine learning (AutoML) solutions across the globe.

Many areas of the industry now depend heavily on machine learning (ML). On the other hand, developing high-performance machine learning systems requires highly specialised data scientists and subject matter specialists. By enabling domain experts to automatically create machine learning applications without extensive statistical and machine learning skills, automated machine learning (AutoML) aims to reduce the need for data scientists. The advancements in data science and artificial intelligence have improved automated machine learning's performance. Because businesses see this technology's promise, its adoption rate is expected to increase during the projected period. Customers may now employ automated machine learning solutions more easily since businesses are selling them as subscription services. Additionally, it provides pay-as-you-go flexibility.

Machine learning (ML) is being utilised more often in a variety of applications lately, but there aren't enough machine learning professionals to keep up with this increase. The goal of automated machine learning (AutoML) is to make machine learning more approachable. As a result, professionals should be able to install more machine learning systems, and using AutoML would need less skill than using ML directly. The technology's acceptance, nevertheless, is currently only moderate, which limits the global automated machine learning solution market expansion.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 1.12 Billion
Market Size 2028USD 9.34 Billion
CAGR 2023-202842.48%
Fastest Growing SegmentManufacturing
Largest MarketNorth America

After the COVID-19 epidemic, organisations have been increasingly relying on intelligent solutions to automate their business operations, which is causing a rise in the use of AI. This pattern is anticipated to persist throughout the ensuing years, accelerating the adoption of AI in business operations.

Increasing Demand for Efficient Fraud Detection Solutions

Machine learning is used in a wide range of financial applications, including trading, process automation, credit scoring, and underwriting for loans and insurance. One of the major issues with financial security is financial fraud. Machine learning is currently being used for fraud detection applications to combat the rising danger of financial fraud. In order to make use of the massive data accessible from recently acquired digital channels, several firms in the financial services sector are now actively integrating AI and ML into their ecosystems. A paradigm change in customer behaviour and priorities brought about by the pandemic has also boosted its expansion, leading 54% of financial services companies with more least 5,000 workers to integrate the technology into their business practises. Businesses are increasingly in need of a fraud detection system that can provide real-time and actionable warnings as they progress towards accepting credit card payments online. These factors are driving the global automated machine learning solution market.

Demand for Intelligent Business Processes is Rising

Artificial Intelligence (AI) usage is increasing as businesses now turn to utilising next-generation technology. Businesses may employ artificial intelligence for a variety of purposes, including data collection and work process efficiency. As a result of the widespread use of AI analytics in off-the-shelf CRM platforms, sales teams can now provide insightful data on demand. Salesforce's Einstein AI technology, for instance, can forecast which customers are most likely to increase sales and to switch brands. With information like this, salespeople can concentrate their time and efforts where it counts the most. Additionally, the growing emphasis that businesses are placing on evaluating and improving customer services is fostering the expansion of AI-based processes within organisations. It gives businesses improved understanding of consumer preferences and purchasing trends, which in turn enables them to provide tailored product suggestions. The need for AI is rising as a result of the expanding deployment of robotics across a variety of industries, including manufacturing and warehousing, among others. Co-bots are aware of the people around them because to AI technologies like machine vision. They can respond appropriately, for instance by slowing down or turning around to avoid people. As a result, processes may be created to maximise the capabilities of both people and robots.

Slow Adoption of Automated Machine Learning Tools

Machine learning (ML) is being employed in a growing number of applications, but there aren't enough machine learning specialists to keep up with this expansion. The goal of automated machine learning (AutoML) is to make machine learning more approachable. As a result, specialists should be able to install more machine learning systems, and working with AutoML would need less skill than dealing with ML directly. The technology's acceptance, nevertheless, is currently moderate, which limits the automated machine learning solution market's expansion. First, there is a misconception that AutoML approaches are difficult to use and would demand a substantial initial investment to understand how to utilise them. Secondly, autoML systems occasionally have trouble working with user data but don't always identify the issue.. Concerns were also raised over the amount of processing power needed to use AutoML.

Growing Healthcare Applications

Many applications in the field of healthcare already make use of machine learning technology. This platform analyses millions of different data points from this sector vertical, forecasts results, and also offers rapid risk assessments and precise resource allocation.

The ability to diagnose and identify disorders and illnesses that might occasionally be challenging to recognise is one of this technology's most significant uses in healthcare. This can include a number of inherited conditions and tumours that are challenging to identify in the first stages. The IBM Watson Genomics is a notable illustration of this, demonstrating how genome-based tumour sequencing in conjunction with cognitive computing may facilitate cancer detection.

A major biopharmaceutical company called Berg, uses AI to provide medicinal treatments for diseases like cancer. All these factors are driving the market of global automated machine learning solution market.

Resistance among Users Regarding Automated Machine Learning Solutions

The market's delayed adoption of automated machine learning solutions is mostly due to the limited uptake of machine learning technologies. Companies struggle to obtain the domain experts they need since there is a significant demand for them in the machine learning proper ability. Additionally, because it is expensive to hire these professionals, businesses are even less likely to adopt cutting-edge technology like machine learning. The sorts of end users may also affect the resistance to using AutoML technologies. For instance, given that they manage citizen data, government organisations may show resistance to using automated machine learning solutions. As a result, concerns over privacy and the sensitivity of data may deter them from using such solutions, slowing the market's expansion. Additionally, people are reluctant to utilise such tools due to the limits of the technology, which have been noted by several industry professionals. These are issues with data and model application that AutoML encounters. For instance, inconsistent data during offline data processing and insufficiently high-quality labelled data would have negative impacts. Additionally, teams must do technical-demanding automated machine learning processing of unstructured and semi-structured data.

Market Segmentation

The automated machine learning solution market is segmented into offering, deployment, automation type, enterprise size, end-users, company, and region. Based on offering, the market is segmented into platform and service. Based on deployment, the market is segmented into on-premise and cloud. Based on automation type, the market is segmented into data processing, feature engineering, modeling, and visualization. Based on enterprise size, the market is segmented into large enterprise and SMEs. Based on end-users, the market is segmented into BFSI, retail and e-commerce, healthcare, and manufacturing. Based on region, the market is segmented into North America, Asia-Pacific, Europe, South America, and Middle East & Africa

Market Players

Some of the major market players in the global automated machine learning solution market are Datarobot Inc., Amazon Web Services Inc., dotData Inc., IBM Corporation, Dataiku, EdgeVerve Systems Limited, Big Squid Inc., SAS Institute Inc., Microsoft Corporation, and Determined.ai Inc.

Report Scope:

In this report, the global automated machine learning solution market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automated Machine Learning Solution Market, By Offering

  • Platform
  • Service

Automated Machine Learning Solution Market, By Deployment:

  • On-Premise
  • Cloud

Automated Machine Learning Solution Market, By Automation Type:

  • Data Processing
  • Feature Engineering
  • Modeling
  • Visualization

Automated Machine Learning Solution Market, By Enterprise Size:

  • Large Enterprises
  • SMEs

Automated Machine Learning Solution Market, By End-users:

  • BFSI
  • Retail and E-Commerce
  • Healthcare
  • Manufacturing

Automated Machine Learning Solution Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • India
  • China
  • Japan
  • South Korea
  • Australia
  • Singapore
  • Malaysia
  • Europe
  • Germany
  • United Kingdom
  • France
  • Russia
  • Spain
  • Belgium
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Peru
  • Chile
  • Middle East
  • Saudi Arabia
  • South Africa
  • UAE
  • Israel
  • Turkey

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the global automated machine learning solution market.

Available Customizations:

  • Global automated machine learning solution market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Service Overview

2. Research Methodology

3. Impact of COVID-19 on Global Automated Machine Learning Solution Market

4. Executive Summary

5. Voice of Customers

6. Global Automated Machine Learning Solution Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Offering( Platform, Service)
    • 6.2.2. By Deployment (On-Premise, Cloud)
    • 6.2.3. By Automation Type (Data Processing, Feature Engineering, Modeling, Visualization)
    • 6.2.4. By Enterprise Size(Large Enterprises, SMEs)
    • 6.2.5. By End-users (BFSI, Retail and E-Commerce, Healthcare, Manufacturing)
    • 6.2.6. By Region
  • 6.3. By Company (2022)
  • 6.4. Market Map

7. North America Automated Machine Learning Solution Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Offering
    • 7.2.2. By Deployment
    • 7.2.3. By Automation Type
    • 7.2.4. By Enterprise Size
    • 7.2.5. By End-users
    • 7.2.6. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Automated Machine Learning Solution Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Offering
        • 7.3.1.2.2. By Deployment
        • 7.3.1.2.3. By Automation Type
        • 7.3.1.2.4. By Enterprise Size
        • 7.3.1.2.5. By End-users
    • 7.3.2. Canada Automated Machine Learning Solution Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Offering
        • 7.3.2.2.2. By Deployment
        • 7.3.2.2.3. By Automation Type
        • 7.3.2.2.4. By Enterprise Size
        • 7.3.2.2.5. By End-users
    • 7.3.3. Mexico Automated Machine Learning Solution Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Offering
        • 7.3.3.2.2. By Deployment
        • 7.3.3.2.3. By Automation Type
        • 7.3.3.2.4. By Enterprise Size
        • 7.3.3.2.5. By End-users

8. Asia-Pacific Automated Machine Learning Solution Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Offering
    • 8.2.2. By Deployment
    • 8.2.3. By Automation Type
    • 8.2.4. By Enterprise Size
    • 8.2.5. By End-users
    • 8.2.6. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Automated Machine Learning Solution Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Offering
        • 8.3.1.2.2. By Deployment
        • 8.3.1.2.3. By Automation Type
        • 8.3.1.2.4. By Enterprise Size
        • 8.3.1.2.5. By End-users
    • 8.3.2. India Automated Machine Learning Solution Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Offering
        • 8.3.2.2.2. By Deployment
        • 8.3.2.2.3. By Automation Type
        • 8.3.2.2.4. By Enterprise Size
        • 8.3.2.2.5. By End-users
    • 8.3.3. Japan Automated Machine Learning Solution Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Offering
        • 8.3.3.2.2. By Deployment
        • 8.3.3.2.3. By Automation Type
        • 8.3.3.2.4. By Enterprise Size
        • 8.3.3.2.5. By End-users
    • 8.3.4. South Korea Automated Machine Learning Solution Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Offering
        • 8.3.4.2.2. By Deployment
        • 8.3.4.2.3. By Automation Type
        • 8.3.4.2.4. By Enterprise Size
        • 8.3.4.2.5. By End-users
    • 8.3.5. Australia Automated Machine Learning Solution Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Offering
        • 8.3.5.2.2. By Deployment
        • 8.3.5.2.3. By Automation Type
        • 8.3.5.2.4. By Enterprise Size
        • 8.3.5.2.5. By End-users
    • 8.3.6. Singapore Automated Machine Learning Solution Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Offering
        • 8.3.6.2.2. By Deployment
        • 8.3.6.2.3. By Automation Type
        • 8.3.6.2.4. By Enterprise Size
        • 8.3.6.2.5. By End-users
    • 8.3.7. Malaysia Automated Machine Learning Solution Market Outlook
      • 8.3.7.1. Market Size & Forecast
        • 8.3.7.1.1. By Value
      • 8.3.7.2. Market Share & Forecast
        • 8.3.7.2.1. By Offering
        • 8.3.7.2.2. By Deployment
        • 8.3.7.2.3. By Automation Type
        • 8.3.7.2.4. By Enterprise Size
        • 8.3.7.2.5. By End-users

9. Europe Automated Machine Learning Solution Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Offering
    • 9.2.2. By Deployment
    • 9.2.3. By Automation Type
    • 9.2.4. By Enterprise Size
    • 9.2.5. By End-users
    • 9.2.6. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Automated Machine Learning Solution Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Offering
        • 9.3.1.2.2. By Deployment
        • 9.3.1.2.3. By Automation Type
        • 9.3.1.2.4. By Enterprise Size
        • 9.3.1.2.5. By End-users
    • 9.3.2. United Kingdom Automated Machine Learning Solution Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Offering
        • 9.3.2.2.2. By Deployment
        • 9.3.2.2.3. By Automation Type
        • 9.3.2.2.4. By Enterprise Size
        • 9.3.2.2.5. By End-users
    • 9.3.3. France Automated Machine Learning Solution Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Offering
        • 9.3.3.2.2. By Deployment
        • 9.3.3.2.3. By Automation Type
        • 9.3.3.2.4. By Enterprise Size
        • 9.3.3.2.5. By End-users
    • 9.3.4. Russia Automated Machine Learning Solution Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Offering
        • 9.3.4.2.2. By Deployment
        • 9.3.4.2.3. By Automation Type
        • 9.3.4.2.4. By Enterprise Size
        • 9.3.4.2.5. By End-users
    • 9.3.5. Spain Automated Machine Learning Solution Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Offering
        • 9.3.5.2.2. By Deployment
        • 9.3.5.2.3. By Automation Type
        • 9.3.5.2.4. By Enterprise Size
        • 9.3.5.2.5. By End-users
    • 9.3.6. Belgium Automated Machine Learning Solution Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Offering
        • 9.3.6.2.2. By Deployment
        • 9.3.6.2.3. By Automation Type
        • 9.3.6.2.4. By Enterprise Size
        • 9.3.6.2.5. By End-users
    • 9.3.7. Italy Automated Machine Learning Solution Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Offering
        • 9.3.7.2.2. By Deployment
        • 9.3.7.2.3. By Automation Type
        • 9.3.7.2.4. By Enterprise Size
        • 9.3.7.2.5. By End-users

10. South America Automated Machine Learning Solution Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Offering
    • 10.2.2. By Deployment
    • 10.2.3. By Automation Type
    • 10.2.4. By Enterprise Size
    • 10.2.5. By End-users
    • 10.2.6. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Automated Machine Learning Solution Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Offering
        • 10.3.1.2.2. By Deployment
        • 10.3.1.2.3. By Automation Type
        • 10.3.1.2.4. By Enterprise Size
        • 10.3.1.2.5. By End-users
    • 10.3.2. Argentina Automated Machine Learning Solution Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Offering
        • 10.3.2.2.2. By Deployment
        • 10.3.2.2.3. By Automation Type
        • 10.3.2.2.4. By Enterprise Size
        • 10.3.2.2.5. By End-users
    • 10.3.3. Colombia Automated Machine Learning Solution Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Offering
        • 10.3.3.2.2. By Deployment
        • 10.3.3.2.3. By Automation Type
        • 10.3.3.2.4. By Enterprise Size
        • 10.3.3.2.5. By End-users
    • 10.3.4. Peru Automated Machine Learning Solution Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Offering
        • 10.3.4.2.2. By Deployment
        • 10.3.4.2.3. By Automation Type
        • 10.3.4.2.4. By Enterprise Size
        • 10.3.4.2.5. By End-users
    • 10.3.5. Chile Automated Machine Learning Solution Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Offering
        • 10.3.5.2.2. By Deployment
        • 10.3.5.2.3. By Automation Type
        • 10.3.5.2.4. By Enterprise Size
        • 10.3.5.2.5. By End-users

11. Middle East & Africa Automated Machine Learning Solution Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Offering
    • 11.2.2. By Deployment
    • 11.2.3. By Automation Type
    • 11.2.4. By Enterprise Size
    • 11.2.5. By End-users
    • 11.2.6. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Automated Machine Learning Solution Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Offering
        • 11.3.1.2.2. By Deployment
        • 11.3.1.2.3. By Automation Type
        • 11.3.1.2.4. By Enterprise Size
        • 11.3.1.2.5. By End-users
    • 11.3.2. South Africa Automated Machine Learning Solution Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Offering
        • 11.3.2.2.2. By Deployment
        • 11.3.2.2.3. By Automation Type
        • 11.3.2.2.4. By Enterprise Size
        • 11.3.2.2.5. By End-users
    • 11.3.3. UAE Automated Machine Learning Solution Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Offering
        • 11.3.3.2.2. By Deployment
        • 11.3.3.2.3. By Automation Type
        • 11.3.3.2.4. By Enterprise Size
        • 11.3.3.2.5. By End-users
    • 11.3.4. Israel Automated Machine Learning Solution Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Offering
        • 11.3.4.2.2. By Deployment
        • 11.3.4.2.3. By Automation Type
        • 11.3.4.2.4. By Enterprise Size
        • 11.3.4.2.5. By End-users
    • 11.3.5. Turkey Automated Machine Learning Solution Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Offering
        • 11.3.5.2.2. By Deployment
        • 11.3.5.2.3. By Automation Type
        • 11.3.5.2.4. By Enterprise Size
        • 11.3.5.2.5. By End-users

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

14. Company Profiles

  • 14.1. Datarobot Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel
    • 14.1.5. Key Product/Services
  • 14.2. Amazon Web Services Inc.
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel
    • 14.2.5. Key Product/Services
  • 14.3. dotData Inc.
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel
    • 14.3.5. Key Product/Services
  • 14.4. IBM Corporation
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel
    • 14.4.5. Key Product/Services
  • 14.5. Dataiku
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel
    • 14.5.5. Key Product/Services
  • 14.6. EdgeVerve Systems Limited
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel
    • 14.6.5. Key Product/Services
  • 14.7. Big Squid Inc.
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel
    • 14.7.5. Key Product/Services
  • 14.8. SAS Institute Inc.
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel
    • 14.8.5. Key Product/Services
  • 14.9. Microsoft Corporation
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel
    • 14.9.5. Key Product/Services
  • 14.10. Determined.ai Inc
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel
    • 14.10.5. Key Product/Services

15. Strategic Recommendations

16. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦