![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1370876
¼¼°èÀÇ ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå - »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) : Á¦°ø Á¦Ç°º°, ¹èÆ÷º°, ÀÚµ¿È À¯Çüº°, ±â¾÷ ±Ô¸ðº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº°, °æÀï¾÷üº°Automated Machine Learning Solution Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Offering, By Deployment, By Automation Type, By Enterprise Size, By End-Users, By Region and Competition |
¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀº 2023-2028³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°í°´ ¼¼ºÐÈ ¹× ÀáÀç °í°´ Ÿ°ÙÆÃÀ» À§ÇÑ ¿¹Ãø ¸®µå ½ºÄھ ½Ã½ºÅÛÀÇ »ç¿ëÀº ¼¼°èÀûÀ¸·Î ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
ÇöÀç ¸¹Àº »ê¾÷ ºÐ¾ß°¡ ¸Ó½Å·¯´×(ML)¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, °í¼º´É ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§Çؼ´Â °íµµ·Î Àü¹®ÈµÈ µ¥ÀÌÅÍ °úÇÐÀÚ ¹× Àü¹® ºÐ¾ß Àü¹®°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×Àº ÇØ´ç ºÐ¾ßÀÇ Àü¹®°¡°¡ dzºÎÇÑ Åë°è ¹× ¸Ó½Å·¯´× ±â¼ú ¾øÀ̵µ ¸Ó½Å·¯´× ¿ëµµ¸¦ ÀÚµ¿À¸·Î »ý¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á µ¥ÀÌÅÍ °úÇÐÀÚÀÇ Çʿ伺À» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °úÇаú ÀΰøÁö´ÉÀÇ ¹ßÀüÀ¸·Î ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ ±â¼ú¿¡ ´ëÇÑ °¡´É¼ºÀ» ¹ß°ßÇϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È ÀÌ ±â¼úÀÇ Ã¤Å÷üÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¾÷µéÀÌ ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» ±¸µ¶ ¼ºñ½º·Î ÆÇ¸ÅÇϱ⠽ÃÀÛÇÏ¸é¼ °í°´µéÀº º¸´Ù ½±°Ô ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. ¶ÇÇÑ, Á¾·®Á¦ °ú±ÝÀÇ À¯¿¬¼ºµµ Á¦°øµË´Ï´Ù.
ÃÖ±Ù ¸Ó½Å·¯´×(ML)ÀÌ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ´õ ÀÚÁÖ »ç¿ëµÇ°í ÀÖÁö¸¸, ÀÌ·¯ÇÑ Áõ°¡¸¦ µû¶óÀâÀ» ¼ö ÀÖ´Â ¸Ó½Å·¯´× Àü¹®°¡°¡ ºÎÁ·ÇÕ´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¸ñÇ¥´Â ¸Ó½Å·¯´×À» º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. °á°úÀûÀ¸·Î Àü¹®°¡µéÀº ´õ ¸¹Àº ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̸ç, ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇϸé MLÀ» Á÷Á¢ »ç¿ëÇÏ´Â °Íº¸´Ù ´õ ÀûÀº ±â¼úÀ» ÇÊ¿ä·ÎÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ÇöÀç ÀÌ ±â¼úÀÇ ¼ö¿ëÀº ¹Ì¹ÌÇÑ ¼öÁØÀ̸ç, ÀÌ´Â ¼¼°è ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024³â-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 11¾ï 2,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 93¾ï 4,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 42.48% |
±Þ¼ºÀå ºÎ¹® | Á¦Á¶¾÷ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
Äڷγª19 »çÅ ÀÌÈÄ Á¶Á÷Àº ¾÷¹« ÀÚµ¿È¸¦ À§ÇÑ Áö´ÉÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼ AI Ȱ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÐÅÏÀº ÇâÈÄ ¸î ³âµ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾÷¹«¿¡¼ AIÀÇ Ã¤ÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¸Ó½Å·¯´×Àº °Å·¡, ÇÁ·Î¼¼½º ÀÚµ¿È, ½Å¿ëÁ¡¼ö, ´ëÃâ ¹× º¸Çè Àμö µî ´Ù¾çÇÑ ±ÝÀ¶ ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±ÝÀ¶ º¸¾ÈÀÇ °¡Àå Å« ¹®Á¦ Áß Çϳª´Â ±ÝÀ¶ »ç±â´Ù. ¸Ó½Å·¯´×Àº ÇöÀç ±ÝÀ¶»ç±â À§Çè Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ç±â ŽÁö ¿ëµµ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù µðÁöÅРä³ÎÀ» ÅëÇØ È®º¸ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϱâ À§ÇØ ±ÝÀ¶ ¼ºñ½º ºÎ¹®ÀÇ ¿©·¯ ±â¾÷µéÀº ÇöÀç AI¿Í MLÀ» ÀÚ»ç »ýŰ迡 Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °í°´ Çൿ°ú ¿ì¼±¼øÀ§ÀÇ ÆÐ·¯´ÙÀÓ º¯Èµµ ÀÌ·¯ÇÑ È®»êÀ» ÃËÁøÇÏ¿© 5,000¸í ÀÌ»óÀÇ Á÷¿øÀ» º¸À¯ÇÑ ±ÝÀ¶ ¼ºñ½º ±â¾÷ÀÇ 54%°¡ ÀÌ ±â¼úÀ» ºñÁî´Ï½º °üÇà¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ½Å¿ëÄ«µå ¿Â¶óÀÎ °áÁ¦°¡ È®»êµÊ¿¡ µû¶ó, ±â¾÷µéÀº ½Ç½Ã°£ ½ÇÇà °¡´ÉÇÑ °æ°í¸¦ Á¦°øÇÏ´Â »ç±â ŽÁö ½Ã½ºÅÛÀ» Á¡Á¡ ´õ ¸¹ÀÌ ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ¼¼°è ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
±â¾÷µéÀÌ Â÷¼¼´ë ±â¼ú Ȱ¿ë¿¡ ´«À» µ¹¸®¸é¼ ÀΰøÁö´É(AI) Ȱ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ ¼öÁý, ¾÷¹« ÇÁ·Î¼¼½º È¿À²È µî ´Ù¾çÇÑ ¸ñÀûÀ¸·Î ÀΰøÁö´ÉÀ» µµÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¼º CRM Ç÷§Æû¿¡¼ AI ¾Ö³Î¸®Æ½½º°¡ ³Î¸® »ç¿ëµÇ¸é¼ ¿µ¾÷ÆÀÀº ¿Âµð¸Çµå ¹æ½ÄÀ¸·Î ÅëÂû·Â ÀÖ´Â µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼¼ÀÏÁîÆ÷½ºÀÇ ¾ÆÀν´Å¸ÀÎ AI ±â¼úÀº ¾î¶² °í°´ÀÌ ¸ÅÃâÀ» ´Ã¸®°Å³ª ºê·£µå¸¦ ÀüȯÇÒ °¡´É¼ºÀÌ °¡Àå ³ôÀºÁö ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤º¸¸¦ ÅëÇØ ¿µ¾÷ ´ã´çÀÚ´Â °¡Àå Áß¿äÇÑ °÷¿¡ ½Ã°£°ú ³ë·ÂÀ» ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷ÀÌ °í°´ ¼ºñ½º Æò°¡ ¹× °³¼±¿¡ ÁßÁ¡À» µÎ¸é¼ Á¶Á÷ ³» AI ±â¹Ý ÇÁ·Î¼¼½º°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, AI´Â ¼ÒºñÀÚÀÇ ÃëÇâ°ú ±¸¸Å µ¿ÇâÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í, ±× °á°ú ¼ÒºñÀÚ ¸ÂÃãÇü »óǰ Á¦¾ÈÀ» ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Á¦Á¶¾÷, â°í¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ·Îº¿ µµÀÔÀÌ È®´ëµÇ¸é¼ AI¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÄÚº¿Àº ¸Ó½ÅºñÀü°ú °°Àº AI ±â¼úÀ» ÅëÇØ ÁÖº¯ »ç¶÷µéÀ» ÀνÄÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, »ç¶÷À» ÇÇÇϱâ À§ÇØ ¼Óµµ¸¦ ÁÙÀ̰ųª ¹æÇâÀ» ¹Ù²Ù´Â µî ÀûÀýÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, »ç¶÷°ú ·Îº¿ÀÇ ´É·ÂÀ» ÃÖ´ëÇÑ ¹ßÈÖÇÒ ¼ö ÀÖ´Â ÇÁ·Î¼¼½º°¡ ź»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸Ó½Å·¯´×(ML)Àº Á¡Á¡ ´õ ¸¹Àº ÀÀ¿ë ºÐ¾ß¿¡¼ äÅõǰí ÀÖÁö¸¸, ¸Ó½Å·¯´× Àü¹®°¡µéÀº ÀÌ·¯ÇÑ È®ÀåÀ» µû¶óÀâÁö ¸øÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ ¸Ó½Å·¯´×ÀÇ ¸ñÇ¥´Â ¸Ó½Å·¯´×À» º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µå´Â °ÍÀÔ´Ï´Ù. ±× °á°ú Àü¹®°¡µéÀº ´õ ¸¹Àº ¸Ó½Å·¯´× ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̸ç, ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇÏ´Â ÀÛ¾÷Àº MLÀ» Á÷Á¢ ´Ù·ç´Â °Íº¸´Ù ´õ ÀûÀº ±â¼úÀ» ÇÊ¿ä·Î ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ÇÏÁö¸¸ ÇöÀç ÀÌ ±â¼úÀÇ ¼ö¿ëÀº ¾ÆÁ÷Àº ¹Ì¹ÌÇϸç, ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå È®´ë¿¡´Â ÇѰ谡 ÀÖ½À´Ï´Ù. ù°, ÀÚµ¿ ¸Ó½Å·¯´× Á¢±Ù ¹æ½ÄÀº »ç¿ëÇÏ±â ¾î·Æ°í Ȱ¿ë ¹æ¹ýÀ» ÀÌÇØÇϱâ À§ÇØ ¸¹Àº Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇÏ´Ù´Â ¿ÀÇØ°¡ ÀÖ½À´Ï´Ù. µÑ°, ÀÚµ¿ ¸Ó½Å·¯´× ½Ã½ºÅÛÀº »ç¿ëÀÚ µ¥ÀÌÅ͸¦ ´Ù·ê ¶§ °¡²û ¹®Á¦°¡ ¹ß»ýÇÏÁö¸¸ Ç×»ó ¹®Á¦¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â °ÍÀº ¾Æ´Õ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿ ¸Ó½Å·¯´×À» »ç¿ëÇϱâ À§ÇØ ÇÊ¿äÇÑ Ã³¸® ´É·Â¿¡ ´ëÇÑ ¿ì·Áµµ Á¦±âµÆ½À´Ï´Ù.
ÀÇ·á ºÐ¾ß´Â ÀÌ¹Ì ¸¹Àº ¿ëµµ¿¡¼ ¸Ó½Å·¯´× ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº ÀÌ ºÐ¾ß¿¡¼ ¹ß»ýÇÏ´Â ¼ö¹é¸¸ °³ÀÇ ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °á°ú¸¦ ¿¹ÃøÇϰí, ½Å¼ÓÇÑ À§Çè Æò°¡¿Í Á¤È®ÇÑ ÀÚ¿ø ¹èºÐÀ» Á¦°øÇÕ´Ï´Ù.
ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀå µµÀÔÀÌ ´Ê¾îÁö°í ÀÖ´Â °ÍÀº ¸Ó½Å·¯´× ±â¼ú µµÀÔÀÌ Á¦ÇÑÀûÀ̱⠶§¹®ÀÔ´Ï´Ù. ¸Ó½Å·¯´×¿¡ ÀûÇÕÇÑ ¿ª·®À» °®Ãá Àü¹®°¡¿¡ ´ëÇÑ ¼ö¿ä°¡ ¸¹±â ¶§¹®¿¡ ±â¾÷µéÀº ÇÊ¿äÇÑ Àü¹®°¡¸¦ È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Àü¹®°¡¸¦ °í¿ëÇÏ´Â µ¥ ºñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ±â¾÷Àº ¸Ó½Å·¯´×°ú °°Àº ÷´Ü ±â¼úÀ» äÅÃÇÒ °¡´É¼ºÀÌ ´õ¿í ³·¾ÆÁý´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ À¯Çüµµ ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ±â¼ú »ç¿ë¿¡ ´ëÇÑ ÀúÇ׿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¤ºÎ ±â°üÀº ½Ã¹ÎÀÇ µ¥ÀÌÅ͸¦ °ü¸®Çϰí Àֱ⠶§¹®¿¡ ÀÚµ¿ÈµÈ ÀÚµ¿ ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» »ç¿ëÇÏ´Â °ÍÀ» ²¨·ÁÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ ±â¹Ð¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» ÁÖÀúÇÏ°í ½ÃÀå È®ÀåÀ» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿©·¯ ¾÷°è Àü¹®°¡µéÀÌ ÁöÀûÇÑ ¹Ù¿Í °°ÀÌ, ±â¼úÀÇ ÇѰè·Î ÀÎÇØ »ç¶÷µéÀº ÀÌ·¯ÇÑ µµ±¸ÀÇ È°¿ëÀ» ²¨·ÁÇÕ´Ï´Ù. ÀÌ´Â ÀÚµ¿ ¸Ó½Å·¯´×ÀÌ Á÷¸éÇÑ µ¥ÀÌÅÍ ¹× ¸ðµ¨ Àû¿ë°ú °ü·ÃµÈ ¹®Á¦ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ¿ÀÇÁ¶óÀÎ µ¥ÀÌÅÍ Ã³¸® Áß¿¡ Àϰü¼º ¾ø´Â µ¥ÀÌÅͰ¡ ¹ß»ýÇϰųª ¶óº§¸µµÈ µ¥ÀÌÅÍÀÇ Ç°ÁúÀÌ ÁÁÁö ¾ÊÀ¸¸é ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÆÀÀº ±â¼úÀûÀ¸·Î ºñÁ¤Çü µ¥ÀÌÅÍ¿Í ¹ÝÁ¤Çü µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÚµ¿ ¸Ó½Å·¯´× 󸮸¦ ¿ä±¸ÇØ¾ß ÇÕ´Ï´Ù.
ÀÌ º¸°í¼´Â ¼¼°è ÀÚµ¿ÈµÈ ¸Ó½Å·¯´× ¼Ö·ç¼Ç ½ÃÀåÀ» ´ÙÀ½°ú °°Àº Ä«Å×°í¸®·Î ºÐ·ùÇϰí, ¾Æ·¡¿¡¼ ÀÚ¼¼È÷ ¼³¸íÇÏ´Â ¾÷°è µ¿Çâ°ú ÇÔ²² ´ÙÀ½°ú °°Àº Ä«Å×°í¸®·Î ºÐ·ùÇß½À´Ï´Ù.
Global automated machine learning solution market is anticipated to thrive in the forecast period 2023-2028. The usage of predictive lead scoring systems for customer segmentation and targeting potential consumers is rising the demand for the automated machine learning (AutoML) solutions across the globe.
Many areas of the industry now depend heavily on machine learning (ML). On the other hand, developing high-performance machine learning systems requires highly specialised data scientists and subject matter specialists. By enabling domain experts to automatically create machine learning applications without extensive statistical and machine learning skills, automated machine learning (AutoML) aims to reduce the need for data scientists. The advancements in data science and artificial intelligence have improved automated machine learning's performance. Because businesses see this technology's promise, its adoption rate is expected to increase during the projected period. Customers may now employ automated machine learning solutions more easily since businesses are selling them as subscription services. Additionally, it provides pay-as-you-go flexibility.
Machine learning (ML) is being utilised more often in a variety of applications lately, but there aren't enough machine learning professionals to keep up with this increase. The goal of automated machine learning (AutoML) is to make machine learning more approachable. As a result, professionals should be able to install more machine learning systems, and using AutoML would need less skill than using ML directly. The technology's acceptance, nevertheless, is currently only moderate, which limits the global automated machine learning solution market expansion.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 1.12 Billion |
Market Size 2028 | USD 9.34 Billion |
CAGR 2023-2028 | 42.48% |
Fastest Growing Segment | Manufacturing |
Largest Market | North America |
After the COVID-19 epidemic, organisations have been increasingly relying on intelligent solutions to automate their business operations, which is causing a rise in the use of AI. This pattern is anticipated to persist throughout the ensuing years, accelerating the adoption of AI in business operations.
Machine learning is used in a wide range of financial applications, including trading, process automation, credit scoring, and underwriting for loans and insurance. One of the major issues with financial security is financial fraud. Machine learning is currently being used for fraud detection applications to combat the rising danger of financial fraud. In order to make use of the massive data accessible from recently acquired digital channels, several firms in the financial services sector are now actively integrating AI and ML into their ecosystems. A paradigm change in customer behaviour and priorities brought about by the pandemic has also boosted its expansion, leading 54% of financial services companies with more least 5,000 workers to integrate the technology into their business practises. Businesses are increasingly in need of a fraud detection system that can provide real-time and actionable warnings as they progress towards accepting credit card payments online. These factors are driving the global automated machine learning solution market.
Artificial Intelligence (AI) usage is increasing as businesses now turn to utilising next-generation technology. Businesses may employ artificial intelligence for a variety of purposes, including data collection and work process efficiency. As a result of the widespread use of AI analytics in off-the-shelf CRM platforms, sales teams can now provide insightful data on demand. Salesforce's Einstein AI technology, for instance, can forecast which customers are most likely to increase sales and to switch brands. With information like this, salespeople can concentrate their time and efforts where it counts the most. Additionally, the growing emphasis that businesses are placing on evaluating and improving customer services is fostering the expansion of AI-based processes within organisations. It gives businesses improved understanding of consumer preferences and purchasing trends, which in turn enables them to provide tailored product suggestions. The need for AI is rising as a result of the expanding deployment of robotics across a variety of industries, including manufacturing and warehousing, among others. Co-bots are aware of the people around them because to AI technologies like machine vision. They can respond appropriately, for instance by slowing down or turning around to avoid people. As a result, processes may be created to maximise the capabilities of both people and robots.
Machine learning (ML) is being employed in a growing number of applications, but there aren't enough machine learning specialists to keep up with this expansion. The goal of automated machine learning (AutoML) is to make machine learning more approachable. As a result, specialists should be able to install more machine learning systems, and working with AutoML would need less skill than dealing with ML directly. The technology's acceptance, nevertheless, is currently moderate, which limits the automated machine learning solution market's expansion. First, there is a misconception that AutoML approaches are difficult to use and would demand a substantial initial investment to understand how to utilise them. Secondly, autoML systems occasionally have trouble working with user data but don't always identify the issue.. Concerns were also raised over the amount of processing power needed to use AutoML.
Many applications in the field of healthcare already make use of machine learning technology. This platform analyses millions of different data points from this sector vertical, forecasts results, and also offers rapid risk assessments and precise resource allocation.
The ability to diagnose and identify disorders and illnesses that might occasionally be challenging to recognise is one of this technology's most significant uses in healthcare. This can include a number of inherited conditions and tumours that are challenging to identify in the first stages. The IBM Watson Genomics is a notable illustration of this, demonstrating how genome-based tumour sequencing in conjunction with cognitive computing may facilitate cancer detection.
A major biopharmaceutical company called Berg, uses AI to provide medicinal treatments for diseases like cancer. All these factors are driving the market of global automated machine learning solution market.
The market's delayed adoption of automated machine learning solutions is mostly due to the limited uptake of machine learning technologies. Companies struggle to obtain the domain experts they need since there is a significant demand for them in the machine learning proper ability. Additionally, because it is expensive to hire these professionals, businesses are even less likely to adopt cutting-edge technology like machine learning. The sorts of end users may also affect the resistance to using AutoML technologies. For instance, given that they manage citizen data, government organisations may show resistance to using automated machine learning solutions. As a result, concerns over privacy and the sensitivity of data may deter them from using such solutions, slowing the market's expansion. Additionally, people are reluctant to utilise such tools due to the limits of the technology, which have been noted by several industry professionals. These are issues with data and model application that AutoML encounters. For instance, inconsistent data during offline data processing and insufficiently high-quality labelled data would have negative impacts. Additionally, teams must do technical-demanding automated machine learning processing of unstructured and semi-structured data.
The automated machine learning solution market is segmented into offering, deployment, automation type, enterprise size, end-users, company, and region. Based on offering, the market is segmented into platform and service. Based on deployment, the market is segmented into on-premise and cloud. Based on automation type, the market is segmented into data processing, feature engineering, modeling, and visualization. Based on enterprise size, the market is segmented into large enterprise and SMEs. Based on end-users, the market is segmented into BFSI, retail and e-commerce, healthcare, and manufacturing. Based on region, the market is segmented into North America, Asia-Pacific, Europe, South America, and Middle East & Africa
Some of the major market players in the global automated machine learning solution market are Datarobot Inc., Amazon Web Services Inc., dotData Inc., IBM Corporation, Dataiku, EdgeVerve Systems Limited, Big Squid Inc., SAS Institute Inc., Microsoft Corporation, and Determined.ai Inc.
In this report, the global automated machine learning solution market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: