![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1372852
ISH(In Situ Hybridization) ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) : Á¦Ç°º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, °æÀïIn Situ Hybridization Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Product, By Technology, By Application, By End user, By Region and By Competition |
ISH(In Situ Hybridization) ½ÃÀåÀº 2022³â 15¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç 2028³â±îÁö ¿¬Æò±Õ 7.29%ÀÇ °í¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÌ·¯ÇÑ ¹è°æ¿¡´Â COVID-19¿Í °°Àº ½ÅÁ¾ ¹ÙÀÌ·¯½ºÀÇ ÃâÇö¿¡ ÈûÀÔ¾î À¯Àü¼º Áúȯ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁø °ÍÀÌ ÇѸòÀ» Çß½À´Ï´Ù. ¶ÇÇÑ, in situ hybridization ±â¼úÀÇ Ã¤Åà Áõ°¡¿Í ÇÔ²² ºÐÀÚ Áø´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÇâÈÄ ¸î ³â µ¿¾È ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¶ÇÇÑ, Àα¸¿¡¼ À¯Àü¼º ÁúȯÀÇ À¯º´·üÀÌ ±ÞÁõÇÏ´Â °ÍÀº ¿¹Ãø ±â°£ µ¿¾È ¸Å¿ì Áß¿äÇÑ ¼ºÀå µ¿·ÂÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ¿Í ÇÔ²² in situ hybridization ±â¼ú ¹ßÀüÀ» À§ÇÑ Á¦ÈÞ, Àμö, ÇÕº´ µî ´Ù¾çÇÑ ½ÃÀå Âü¿©ÀÚµéÀÇ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê´Â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀå¿¡ Å« ±àÁ¤Àû ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÌ·¯ÇÑ Ãß¼¼¸¦ ¹Ý¿µÇÏµí ¹Ì±¹ ±¹¸³¾Ï¿¬±¸¼Ò´Â 2021³â ÇÑ ÇØ µ¿¾È ¹Ì±¹¿¡¼ 189¸¸ 8,160¸íÀÇ »õ·Î¿î ¾Ï ȯÀÚ°¡ ¹ß»ýÇϰí 60¸¸ 8,570¸íÀÌ ¾ÏÀ¸·Î ÀÎÇØ »ç¸ÁÇÒ °ÍÀ̶ó´Â ³î¶ó¿î ¼öÄ¡¸¦ º¸°íÇß½À´Ï´Ù. ÁÖ¸ñÇÒ Á¡Àº ¼¼°èº¸°Ç±â±¸(WHO)ÀÇ ÀÚ·á¿¡ µû¸£¸é 2021³â 9¿ù±îÁö ¾Ï °ü·Ã »ç¸ÁÀÚÀÇ 70%°¡ ÁßÀú¼Òµæ ±¹°¡¿¡ ÁýÁߵǾî ÀÖ´Ù´Â Á¡À» °Á¶Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 15¾ï 3,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 23¾ï 4,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 7.29% |
±Þ¼ºÀå ºÎ¹® | º´¿ø ¹× Áø´Ü ¿¬±¸¼Ò |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
¸¸¼º ÁúȯÀº ¼¼°è ISH(In Situ Hybridization) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾Ï, ÀÚ°¡ ¸é¿ª Áúȯ, °¨¿°¼º ÁúȯÀ» Æ÷ÇÔÇÑ Áúº´Àº ¼¼Æ÷ ³» À¯ÀüÀÚ ÀÌ»ó ¹× µ¹¿¬º¯ÀÌÀÇ Æ¯Â¡À» ³ªÅ¸³»¸ç, in situ hybridization ±â¼úÀ» ÅëÇÑ °ËÃâ ¹× ½Ã°¢È¿¡ ÀûÇÕÇϸç, in situ hybridizationÀÇ À¯¿ë¼ºÀº ÀÌ·¯ÇÑ Áúº´°ú °ü·ÃµÈ ƯÁ¤ ÇÙ»ê ¼¿À» ½Äº°Çϰí ÇÉ Æ÷ÀÎÆ®¿¡ ½Äº°ÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ÇÉ Æ÷ÀÎÆ®¿¡¼ ½Äº°ÇÒ ¼ö ÀÖ¾î Àû½Ã¿¡ Áø´Ü°ú Á¤¹ÐÇÑ Ä¡·á¸¦ ÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ À¯¿ëÇÕ´Ï´Ù.
ºÐÀÚ»ý¹°ÇÐÀÇ ¹ßÀüÀº ¼¼°è ISH(In Situ Hybridization) ½ÃÀåÀÇ È®´ë¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ºÐÀÚ»ý¹°ÇÐÀÇ ¿µ¿ª¿¡ ¼ÓÇÏ´Â in situ hybridizationÀº ¼¼Æ÷ ¹× Á¶Á÷ ³» ƯÁ¤ ÇÙ»ê ¼¿ÀÇ Á¤È®ÇÑ °ËÃâ ¹× ±¹¼Òȸ¦ ÃËÁøÇÏ´Â ±â¼úÀ» ±¸¼ºÇÕ´Ï´Ù. ÃÖ±Ù ºÐÀÚ»ý¹°ÇÐ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº in situ hybridization assayÀÇ ¹Î°¨µµ, ƯÀ̼º ¹× Á¤È®¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù.
ÇÁ·ÎºêÀÇ ¼³°è¿Í ÇÕ¼ºÀÇ ¹ßÀüÀº in situ hybridization assayÀÇ Æ¯À̼º°ú ¹Î°¨µµ¸¦ Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ¿¹¸¦ µé¾î, ¶ôµå ÇÙ»ê(LNA) ÇÁ·Îºê´Â ƯÀ̼º°ú ¹Î°¨µµ¸¦ Çâ»ó½ÃÄÑ Àú Á¸Àç ÇÙ»ê Ç¥ÀûÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï Çϴ ȹ±âÀûÀÎ °³¹ßÀÔ´Ï´Ù. ¸¶Âù°¡Áö·Î, Ç¥Áö ¹× ½ÅÈ£ ÁõÆø ±â¼úÀÇ °³¼±À¸·Î in situ hybridization assayÀÇ S/Nºñ°¡ Çâ»óµÇ¾î ¹Ì¾àÇÑ ½ÅÈ£¿Í Àú³óµµ Ç¥ÀûÀÇ ½Äº°ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.
À̹Ì¡ ¹× Çö¹Ì°æÀÇ ¹ßÀüµµ ISH(In Situ Hybridization) ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °øÃÊÁ¡ Çö¹Ì°æ ¹× ÃÊÇØ»óµµ Çö¹Ì°æ°ú °°Àº °í±Þ Çö¹Ì°æ ¹æ¹ýÀº in situ hybridization assayÀÇ °ø°£ ÇØ»óµµ¸¦ Å©°Ô Çâ»ó½ÃÄÑ ¼¼Æ÷ ³» ±¸Á¶ ¹× ºÐÀÚ °£ »óÈ£ ÀÛ¿ëÀ» ½±°Ô ½Ã°¢ÈÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù.
¶ÇÇÑ, Çö´ë ºÐÀÚ»ý¹°ÇÐÀÇ ¼º°ú´Â in situ hybridizationÀÇ »õ·Î¿î ÀÀ¿ëÀÇ ±æÀ» ¿¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, FISH(Fluorescent In Situ Hybridization)Àº ¿©·¯ ÇÙ»ê ´ë»óÀ» µ¿½Ã¿¡ °ËÃâÇÒ ¼ö ÀÖµµ·Ï ÁøÈÇÏ¿© º¹ÀâÇÑ À¯ÀüÀû »óÈ£ ÀÛ¿ë°ú À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, RNA in situ hybridization ±â¼úÀÇ ¹ßÀüÀ¸·Î À¯ÀüÀÚ Á¶Àý ¹× Áúº´ ¹ß»ý¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ºñÄÚµù RNA¸¦ °ËÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
°³º°È ÀÇ·á´Â Àü ¼¼°è ISH(In Situ Hybridization) ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¸Å¿ì Áß¿äÇÑ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÀÇ·á Á¢±Ù¹ýÀº ȯÀÚ °íÀ¯ÀÇ À¯ÀüÀû ±¸¼º, »ýȰ½À°ü ¹× ȯ°æÀû ¿µÇâ¿¡ µû¶ó ȯÀÚ °³°³Àο¡°Ô ¸ÂÃãÈµÈ Ä¡·á¹ýÀ» Á¦°øÇÏ´Â °ÍÀ» Áß½ÉÀ¸·Î Àü°³µË´Ï´Ù. ÀÌ ÆÐ·¯´ÙÀÓ¿¡¼ in situ hybridizationÀÇ Áß¿äÇÑ ¿ªÇÒÀº ƯÁ¤ Áúº´°ú °ü·ÃµÈ ƯÁ¤ À¯ÀüÀÚ µ¹¿¬º¯ÀÌ ¹× ¹ÙÀÌ¿À¸¶Ä¿¸¦ ¹ß±¼ÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù.
FISH(Fluorescent In Situ Hybridization) ¹× CISH(Chromogenic In Situ Hybridization)°ú °°Àº in situ hybridization ½ºÆåÆ®·³ÀÇ ±â¼úÀº ¾ÏÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ º´¸®¿Í °ü·ÃµÈ Ç¥Àû À¯ÀüÀÚÀÇ µ¹¿¬º¯ÀÌ ¹× º¯È¸¦ °¨ÁöÇÏ´Â µ¥ ÀÖ¾î Àü¸é¿¡ µîÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ÀÇ»ç´Â °¢ ȯÀÚ¿¡°Ô °¡Àå ÀûÇÕÇÑ Ä¡·á¹ýÀ» ¼±ÅÃÇÒ ¼ö ÀÖÀ¸¸ç, Ä¡·á È¿°ú¸¦ ³ôÀÌ¸é¼ ºÎÀÛ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
in situ hybridizationÀÇ ±¤¹üÀ§ÇÑ ¿ªÇÒÀº µ¿¹ÝÁø´Ü ¿µ¿ª±îÁö È®ÀåµÇ°í ÀÖ½À´Ï´Ù. µ¿¹ÝÁø´ÜÀº ƯÁ¤ Ä¡·á·ÎºÎÅÍ °¡Àå Å« ÇýÅÃÀ» ¹ÞÀ» °¡´É¼ºÀÌ ³ôÀº ȯÀÚ¸¦ ½Äº°ÇÏ´Â °Ë»ç·Î ±â´ÉÇÕ´Ï´Ù. ÀÓ»ó½ÃÇè¿¡¼ ȯÀÚ ¼±º°, Ä¡·á ¹ÝÀÀ ¸ð´ÏÅ͸µ, ¿ë·® Á¶Àý µî¿¡ Ȱ¿ëµÇ´Â µ¿¹ÝÁø´ÜÀº ȯÀÚ °á°ú¸¦ °³¼±Çϰí ÀÇ·áºñ ÁöÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
°³ÀÎÈ ÀÇ·á¿¡¼ in situ hybridizationÀÇ ¿ªÇÒÀº °¡±î¿î ¹Ì·¡¿¡ Å©°Ô È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿øµ¿·ÂÀº À¯ÀüÀÚ Á¤º¸ÀÇ °¡¿ë¼º Áõ°¡¿Í Á¤¹ÐÄ¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. Çõ½ÅÀûÀÎ in situ hybridization ±â¼ú°ú ºÐ¼®¹ýÀÇ µ¿½Ã °³¹ßÀº ¼¼°è ISH(In Situ Hybridization) ½ÃÀåÀÇ ÁøÈ¸¦ °¡¼ÓÈÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¬±¸ °³¹ß ³ë·ÂÀº ¼¼°è ISH(In Situ Hybridization) ½ÃÀå È®´ë¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. ³¯·Î ¹ßÀüÇÏ´Â ±â¼úÀÎ in situ hybridizationÀÇ ¼ºÀåÀº ºÐ¼®ÀÇ Á¤È®¼º, ¹Î°¨µµ, ƯÀ̼º, ƯÀ̼º ¹× Á¤È®¼ºÀ» Çâ»ó½ÃŰ¸é¼ Àû¿ë ¹üÀ§¸¦ È®´ëÇÏ´Â »õ·Î¿î ºÐ¼® ¹× ±â¼úÀ» Áö¼ÓÀûÀ¸·Î âÃâÇÏ´Â µ¥ ´Þ·Á ÀÖ½À´Ï´Ù. ÇÁ·ÎºêÀÇ °³¼±, Ç¥Áö ¹× ½ÅÈ£ ÁõÆø ±â¼úÀÇ ÃÖÀûÈ, À̹Ì¡ ¹× Çö¹Ì°æ ±â¹ýÀÇ ¹ßÀüÀ» Áß½ÉÀ¸·Î ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¿¹¸¦ µé¾î, ÆéŸÀ̵å ÇÙ»ê(PNA) ÇÁ·Îºê¿Í ¶ôµå ÇÙ»ê(LNA) ÇÁ·Îºê¿Í °°Àº Çõ½ÅÀûÀÎ ÇÁ·Îºê ±â¼úÀÇ ÃâÇöÀº in situ hybridization assayÀÇ ¹Î°¨µµ¿Í ƯÀ̼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. Ƽ¶ó¹Ìµå ½ÅÈ£ ÁõÆø(TSA)À¸·Î ´ëÇ¥µÇ´Â Ç¥Áö ¹× ½ÅÈ£ ÁõÆø ±â¼úÀÇ ¹ßÀüÀº ÀÌ·¯ÇÑ ºÐ¼®ÀÇ ½ÅÈ£ ´ë ÀâÀ½ºñ¸¦ Çâ»ó½ÃÄÑ ¹Ì¾àÇÑ ½ÅÈ£ ¶Ç´Â ÀûÀº ¾çÀÇ Ç¥ÀûÀ» ½Äº°ÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù. µ¿½Ã¿¡ À̹Ì¡ ¹× Çö¹Ì°æ ±â¼úÀÇ ¹ßÀüµµ ISH(In Situ Hybridization) ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °øÃÊÁ¡ Çö¹Ì°æ ¹× ÃÊÇØ»óµµ Çö¹Ì°æ°ú °°Àº °íÇØ»óµµ Çö¹Ì°æÀº in situ hybridization assayÀÇ °ø°£ ÇØ»óµµ¸¦ Å©°Ô Çâ»ó½ÃÄÑ ¼¼Æ÷ ³» ±¸Á¶¿Í ºÐÀÚ °£ »óÈ£ ÀÛ¿ëÀ» ½±°Ô ½Ã°¢ÈÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù.
¶ÇÇÑ, ¿¬±¸ °³¹ßÀÇ ¹üÀ§´Â in situ hybridizationÀÇ »õ·Î¿î ÀÀ¿ëÀ» ޱ¸ÇÏ´Â µ¥±îÁö È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ ¿¹·Î´Â ºñ¾ÏÈ£È RNAÀÇ ºÐÆ÷ ¹× ¹ßÇö ÆÐÅÏ ¿¬±¸¿¡ ÀÌ ±â¼úÀ» Àû¿ëÇÑ °ÍÀ» µé ¼ö ÀÖ½À´Ï´Ù. ºñÄÚµå RNA°¡ À¯ÀüÀÚ Á¶Àý°ú Áúº´ ÁøÇà¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ÀÌ Æ¯Á¤ ¹æ¹ýÀº Áß¿äÇÑ Àǹ̰¡ ÀÖ½À´Ï´Ù.
ÀÇ·áºñ ÁöÃâÀº ¼¼°è ISH(In Situ Hybridization) ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸Å¿ì Áß¿äÇÑ °áÁ¤¿äÀÎÀ¸·Î, in situ hybridization assay ¹× ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ƯÈ÷ ¾ÏÀ» ºñ·ÔÇÑ ´Ù¾çÇÑ Áúº´¿¡ ´ëÇÑ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Áø´Ü µµ±¸ ¹× Ä¡·á¹ýÀÇ Çʿ伺°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. °ú º»ÁúÀûÀ¸·Î ¿¬°üµÇ¾î ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï °æÁ¦ ±¹°¡µéÀº R&D Ȱµ¿°ú ÷´Ü ÀÇ·á ±â¼ú µµÀÔ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·ÂÀû ÃßÁø·ÂÀº °íÁ¤¹Ð, °í°¨µµ, ƯÀ̼º, Àû¿ë¼ºÀ» Ư¡À¸·Î ÇÏ´Â »õ·Ó°í µ¶Ã¢ÀûÀÎ in situ hybridization ±â¼ú°ú ºÐ¼®¹ýÀ» ź»ý½ÃÄ×½À´Ï´Ù.
¶ÇÇÑ, ÀÇ·á ÁöÃâ°ú Áø´Ü µµ±¸ ¹× Ä¡·á¹ýÀ» Æ÷ÇÔÇÑ ÀÇ·á ¼ºñ½º Á¦°øÀÇ ¿¬°è´Â ISH(In Situ Hybridization) ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ÁöÃâÀÇ Áõ°¡´Â º´¿ø, Ŭ¸®´Ð, ¿¬±¸¼Ò µî ÀÇ·á ÀÎÇÁ¶óÀÇ ¹ß´ÞÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç, in situ hybridization assay¸¦ Æ÷ÇÔÇÑ Áø´Ü µµ±¸ÀÇ °¡¿ë¼º°ú Á¢±Ù¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
ÀÌ¿Í ÇÔ²² ÀÇ·áºñ »ó½ÂÀº °³ÀÎÈ ÀǷḦ ÃËÁøÇÏ¿© ISH(In Situ Hybridization) ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÀÇ·á´Â ȯÀÚÀÇ À¯ÀüÀû ±¸¼º, »ýȰ½À°ü, ȯ°æÀû ¿µÇâ¿¡ µû¸¥ ¸ÂÃãÇü Ä¡·á¸¦ °Á¶ÇÕ´Ï´Ù. ƯÈ÷, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡¼ in situ hybridizationÀÇ Áß¿äÇÑ ¿ªÇÒÀº ƯÁ¤ Áúº´°ú °ü·ÃµÈ ƯÁ¤ À¯ÀüÀÚ µ¹¿¬º¯ÀÌ ¹× ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°ÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÇÇØ ´õ¿í °Á¶µË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ¼¼°è ISH(In Situ Hybridization) ½ÃÀåÀ» ´ÙÀ½°ú °°Àº ¹üÁÖ·Î ºÐ·ùÇÕ´Ï´Ù.
The In Situ Hybridization market was valued at USD 1.53 Billion in 2022, and is poised for remarkable growth with a CAGR Of 7.29% by 2028.. This can be attributed to the heightened awareness surrounding genetic disorders, propelled by the emergence of novel viruses such as COVID-19. Additionally, the escalating demand for molecular diagnostic tools, coupled with the increasing adoption of in situ hybridization technology, is poised to underpin the market's growth in the forthcoming years.
Furthermore, the surging prevalence of genetic disorders within the population is poised to be a pivotal driver of growth during the forecast period. Simultaneously, the strategic initiatives undertaken by various market players, including partnerships, acquisitions, and mergers, aimed at the advancement of in situ hybridization techniques, are expected to exert a substantial positive impact on market growth throughout the forecast period.
Illustrating this trend, the U.S. National Cancer Institute reported a staggering count of 1,898,160 new cancer cases and 608,570 cancer-related fatalities in the United States during 2021. Notably, the World Health Organization's data emphasizes that, by September 2021, a significant 70% of cancer-related deaths were concentrated in low- and middle-income nations.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 1.53 Billion |
Market Size 2028 | USD 2.34 Billion |
CAGR 2023-2028 | 7.29% |
Fastest Growing Segment | Hospitals and Diagnostic Laboratories |
Largest Market | North America |
Chronic ailments wield substantial influence over the trajectory of the global in situ hybridization market. Conditions encompassing cancer, autoimmune diseases, and infectious diseases exhibit a hallmark of genetic aberrations or mutations within cells, lending themselves to detection and visualization through in situ hybridization techniques. The utility of in situ hybridization resides in its ability to identify and pinpoint specific nucleic acid sequences linked to these maladies, thereby enabling timely diagnoses and precision therapies.
The mounting prevalence of chronic diseases propels the demand for in situ hybridization across diagnostic and research applications. In accordance with data from the World Health Organization (WHO), chronic diseases stand as the primary cause of worldwide mortality, accounting for a substantial 71% of all global deaths. Among these, cancer holds significant prominence, contributing significantly to the global chronic disease burden with an estimated 18.1 million new cases and 9.6 million fatalities in 2018. In the realm of cancer, in situ hybridization emerges as a pivotal tool, underpinning diagnosis, prognosis, and treatment. Its prowess in identifying specific genetic aberrations like gene amplification, gene fusion, or gene expression changes guides treatment decisions, tracks disease progression, and predicts therapeutic outcomes.
Beyond cancer, in situ hybridization extends its sphere of influence to encompass other chronic conditions such as infectious diseases and autoimmune disorders. For instance, its application spans the detection of distinct viral or bacterial nucleic acid sequences within infected cells or tissues, facilitating prompt diagnoses and targeted interventions.
The evolution of molecular biology has wielded a substantial influence over the expansion of the global in situ hybridization market. Positioned within the realm of molecular biology, in situ hybridization constitutes a technique facilitating the precise detection and localization of specific nucleic acid sequences within cells or tissues. Recent technological progressions in molecular biology have significantly elevated the sensitivity, specificity, and precision of in situ hybridization assays.
Advancements in the design and synthesis of probes have notably augmented the specificity and sensitivity of in situ hybridization assays. Locked nucleic acid (LNA) probes, for instance, represent a breakthrough development enabling the discernment of low-abundance nucleic acid targets with heightened specificity and sensitivity. Likewise, refinements in labeling and signal amplification techniques have elevated the signal-to-noise ratio of in situ hybridization assays, enabling the discernment of faint signals and low-abundance targets.
The strides in imaging and microscopy have additionally contributed to the augmentation of the in situ hybridization market. Advanced microscopy methods such as confocal microscopy and super-resolution microscopy have substantially heightened the spatial resolution of in situ hybridization assays, thereby facilitating the visualization of subcellular structures and molecular interactions.
Moreover, contemporary molecular biology achievements have paved the way for novel applications of in situ hybridization. For example, fluorescence in situ hybridization (FISH) has evolved to facilitate the simultaneous detection of multiple nucleic acid targets, enabling the analysis of intricate genetic interactions and gene expression patterns. Furthermore, the progress in RNA in situ hybridization techniques has empowered the detection of non-coding RNAs, pivotal players in gene regulation and the genesis of diseases.
Personalized medicine stands as a pivotal catalyst propelling the expansion of the global in situ hybridization market. This healthcare approach revolves around tailoring treatments to individual patients based on their unique genetic composition, lifestyle, and environmental influences. The pivotal role of in situ hybridization in this paradigm lies in its capacity to unearth specific genetic mutations or biomarkers linked to distinct ailments, thus rendering it a critical tool in personalized medicine's development.
Techniques such as fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) within the in situ hybridization spectrum come to the fore in detecting targeted genetic mutations or alterations tied to diverse conditions, including cancer. These insights equip physicians to curate optimal treatment pathways for each patient, elevating treatment efficacy while mitigating untoward side effects.
The pervasive role of in situ hybridization extends to the realm of companion diagnostics, which function as tests identifying patients most likely to benefit from specific treatments. Leveraged for patient selection in clinical trials, treatment response monitoring, and dosage adjustments, companion diagnostics enhance patient outcomes and mitigate healthcare expenditures.
The trajectory of in situ hybridization's role within personalized medicine is poised for a significant expansion in the foreseeable future. This impetus stems from the growing availability of genetic information and an escalating demand for precision therapies. The concurrent development of innovative in situ hybridization technologies and assays is set to amplify the evolution of the global in situ hybridization market.
Research and development endeavors exert a pronounced influence over the expansion of the global in situ hybridization market. As an ever-evolving technique, in situ hybridization's growth hinges on the continual creation of novel assays and technologies that extend its application spectrum while enhancing the precision, sensitivity, specificity, and accuracy of its assays. Within the in situ hybridization domain, research and development activities pivot around the refinement of probes, optimization of labeling and signal amplification techniques, and the advancement of imaging and microscopy methodologies.
For instance, the advent of innovative probe technologies like peptide nucleic acid (PNA) probes and locked nucleic acid (LNA) probes has elicited significant enhancements in the sensitivity and specificity of in situ hybridization assays. Progressions in labeling and signal amplification techniques, typified by tyramide signal amplification (TSA), have bolstered the signal-to-noise ratio of these assays, thereby enabling the discernment of faint signals and low-abundance targets. In tandem, the evolution of imaging and microscopy technologies has contributed to the growth trajectory of the in situ hybridization market. High-resolution microscopy modalities such as confocal microscopy and super-resolution microscopy have markedly elevated the spatial resolution of in situ hybridization assays, facilitating the visualization of subcellular structures and molecular interactions.
Furthermore, the purview of research and development initiatives spans the exploration of fresh applications for in situ hybridization. A noteworthy illustration is the technique's employment in studying the distribution and expression patterns of non-coding RNAs. This specific avenue assumes significance due to non-coding RNAs' pivotal role in gene regulation and the progression of diseases.
Healthcare expenditure stands as a pivotal determinant influencing the expansion of the global in situ hybridization market. The surge in demand for in situ hybridization assays and technologies is inherently intertwined with the imperative for precise and dependable diagnostic tools and therapies across a spectrum of maladies, notably cancer. This surge is intrinsically tied to escalating healthcare expenditure, particularly evident in advanced economies, where substantial investments are directed towards research and development activities and the adoption of cutting-edge healthcare technologies. This concerted impetus has engendered the creation of novel and inventive in situ hybridization technologies and assays, characterized by heightened accuracy, sensitivity, specificity, and applicability.
Furthermore, the nexus between healthcare expenditure and the provision of healthcare services, encompassing diagnostic tools and therapies, serves as a linchpin propelling the in-situ hybridization market's growth. Elevated healthcare expenditure has underpinned the emergence of enhanced healthcare infrastructure, encomassning hospitals, clinics, and laboratories, therein augmenting the availability and accessibility of diagnostic tools, including in situ hybridization assays.
In parallel, the escalating healthcare expenditure landscape has galvanized the advance of personalized medicine, which, in turn, buttresses the expansion of the in-situ hybridization market. Personalized medicine underscores treatment customization aligned with patients' genetic composition, lifestyle, and environmental influences. Notably, in situ hybridization's pivotal role in personalized medicine is underscored by its capability to identify specific genetic mutations or biomarkers linked to distinct ailments. This synergy fuels the market's growth trajectory.
Global In Situ Hybridization market can be segmented on the basis of product, technology, application, end user and region. Based on product, the market can be further divided into consumables, instruments, and software. Based on technology, the market can be further divided into fluorescent in situ hybridization v/s chromogenic in situ hybridization. Based on application, the market can be further divided into cancer diagnostics, cytology, infectious diseases diagnostics, neuroscience, and immunology. Based on end user, the market is further divided into hospitals and diagnostic laboratories, academic & research institutes, pharmaceutical & biotechnology companies, and contract research organizations.
Abbott Laboratories., F. Hoffmann Roche AG., Thermo Fisher Scientific Inc., Danaher Corp., Agilent Technologies Inc., Biocare Medical LLC., Biotechne Corporation., Qiagen N.V, Merck KGAA., Perkinelmer Inc. are some of the leading players operating in the global In Situ Hybridization market.
In this report, Global In Situ Hybridization market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: