![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1377249
¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - Á¦Ç° À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, °æÀﺰHydrogen Energy Storage Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Product Type, By Application, By End User, By Region, By Competition |
¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå 2022³â ½ÃÀå ±Ô¸ð´Â 120¾ï 8,000¸¸ ´Þ·¯·Î, 2028³â±îÁöÀÇ ¿¹Ãø ±â°£ CAGRÀº 14.19%·Î °ß°íÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº ¿¡³ÊÁö ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î °ü¸®Çϱâ À§ÇÑ ¿¡³ÊÁö ¿î¹Ýü ¶Ç´Â ¸Åü·Î¼ ¼ö¼Ò¸¦ ÀúÀåÇϰí Ȱ¿ëÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃá ¼¼°è ¿¡³ÊÁö »ê¾÷ ºÐ¾ß¸¦ ¸»ÇÕ´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â À׿© ¿¡³ÊÁö¸¦ ¼ö¼Ò ÇüÅ·ΠÀúÀåÇϰí ÇÊ¿äÇÒ ¶§ Àü±â³ª ¿·Î º¯È¯ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ ´Ù¾çÇÑ ±â¼ú°ú ¼Ö·ç¼ÇÀÌ Æ÷ÇԵ˴ϴÙ. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ´õ ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö·Î ÀüȯÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº dz·ÂÀ̳ª ž籤°ú °°Àº Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ °£Ç漺¿¡ ´ëÀÀÇϱâ À§ÇØ ¹ßÀü·®ÀÌ ¸¹Àº ½Ã°£´ë¿¡ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¿¡³ÊÁö ¼ö¿ä°¡ Áõ°¡Çϰųª Àç»ý¿¡³ÊÁö ¹ßÀü·®ÀÌ ÀûÀ» ¶§ ¹æÃâÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. À̸¦ ÅëÇØ Àü·Â¸ÁÀ» ¾ÈÁ¤ÈÇϰí Żź¼ÒÈ ³ë·ÂÀ» Áö¿øÇÏ¸ç ¿¡³ÊÁö ¾Èº¸¸¦ °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â Àü±âºÐÇØ, ¼öÁõ±â ¸Þź °³Áú(SMR), ¹ÙÀÌ¿À¸Å½º °¡½ºÈ µî ´Ù¾çÇÑ ¼ö¼Ò »ý»ê ¹æ¹ý°ú ¾ÐÃà ¼ö¼Ò °¡½º, ¾×ü ¼ö¼Ò, °íü ¼ö¼Ò ÀúÀå Àç·á¿Í °°Àº ÀúÀå ¼Ö·ç¼ÇÀÌ Æ÷ÇԵ˴ϴÙ. ¼ö¼Ò´Â ¹ßÀü, ¿î¼Û, »ê¾÷ °øÁ¤, ±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀå µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è°¡ º¸´Ù ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº ±â¼ú ¹ßÀü°ú ÁøÈÇÏ´Â ¿¡³ÊÁö Á¤Ã¥¿¡ ÈûÀÔ¾î Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 120¾ï 8,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 270¾ï 2,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 14.19% |
±Þ¼ºÀå ºÎ¹® | °íÁ¤ Àü·Â |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
dz·Â, ž籤, ¼ö·Â µî Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁöÀÇ Áß¿äÇÑ °úÁ¦ Áß Çϳª´Â °£ÇæÀûÀΠƯ¼ºÀÔ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¹ßÀü·®ÀÌ ¸¹Àº ½Ã±â¿¡ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¼ö¿ä°¡ °ø±ÞÀ» ÃʰúÇÒ ¶§ ¹æÃâÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¾ÈÁ¤ÀûÀÎ Áö¼ÓÀûÀÎ ¿¡³ÊÁö °ø±ÞÀÌ °¡´ÉÇØÁ® ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö »ýŰè·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀº ȯ°æ ¸ñÇ¥¸¦ ´Þ¼ºÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¾ÈÁ¤ÀûÀÌ°í °ß°íÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ È®º¸ÇÏ´Â µ¥µµ ÇʼöÀûÀÔ´Ï´Ù. ¼ö¼Ò ÀúÀåÀº À׿© Àç»ý ¿¡³ÊÁö¸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÏ¿© ¼ö¿ä°¡ ¸¹°Å³ª Àç»ý ¿¡³ÊÁö »ý»ê·®ÀÌ ÀûÀº ½Ã±â¿¡ »ç¿ëÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Àü·Â¸Á ºÒ¾ÈÁ¤¼º ¹®Á¦¸¦ ¿ÏÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¡³ÊÁö ¾Èº¸´Â ¼¼°è °¢±¹ Á¤ºÎ¿Í »ê¾÷°èÀÇ ÃÖ¿ì¼± °úÁ¦ÀÔ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¿¡³ÊÁö ºÎÁ· ¹× ºñ»ó½Ã ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹é¾÷À» Á¦°øÇÔÀ¸·Î½á ¿¡³ÊÁö ¾Èº¸¸¦ °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¹Ì·¡ÀÇ »ç¿ëÀ» À§ÇØ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖÀ¸¸ç, ¿¹ÃøÇÒ ¼ö ¾ø´Â »óȲ¿¡¼µµ ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. Áß¿äÇÑ ÀÎÇÁ¶ó, ¿ø°ÝÁö, ÀÇ·á ¹× µ¥ÀÌÅͼ¾ÅÍ¿Í °°ÀÌ Áö¼ÓÀûÀ¸·Î ¿¡³ÊÁö°¡ ÇÊ¿äÇÑ »ê¾÷¿¡¼ ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº Áß´Ü ¾ø´Â Àü·Â °ø±ÞÀ» À¯ÁöÇϱâ À§ÇÑ ±ÍÁßÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÈÀü¼º Ãø¸éÀÌ ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
±³Åë ºÎ¹®Àº º¸´Ù ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÑ À̵¿ ¼ö´ÜÀ¸·Î Å©°Ô º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò¿¬·áÀüÁöÂ÷(FCV)´Â ±âÁ¸ÀÇ ³»¿¬±â°ü ÀÚµ¿Â÷¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¹«°øÇØ ÀÚµ¿Â÷ÀÇ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¼ö¼Ò °æÁ¦ÀÇ ¹ßÀü¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, FCVÀÇ ¼ºÀåÀ» Áö¿øÇϰí È¿À²ÀûÀÌ°í ½Å¼ÓÇÑ ¿¬·á º¸±Þ ÀÎÇÁ¶ó¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ´õ ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦¸¦ µµÀÔÇϰí ûÁ¤ ¿î¼Û¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇÔ¿¡ µû¶ó ¿î¼Û ºÎ¹®ÀÇ ¼ö¼Ò ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ö¼Ò´Â ¾ß±Ý, ÈÇÐ, Á¤À¯ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ Ȱ¿ëµµ°¡ ³ôÀº ´Ù¸ñÀû ¿¡³ÊÁö ¿î¹Ýü´Ù. »ê¾÷°è´Â Àü¹ÝÀûÀÎ ¿î¿µ È¿À²¼ºÀ» Çâ»ó½ÃŰ¸é¼ ÀÌ»êÈź¼Ò ¹èÃâ·®°ú ¿¡³ÊÁö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¿¡³ÊÁö ¼ö¿ä¸¦ °ü¸®Çϰí, »ý»ê °øÁ¤À» ÃÖÀûÈÇϸç, ¿¡³ÊÁö È¿À²À» ³ôÀÏ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀ» ÅëÇØ »ê¾÷°è´Â ¿¡³ÊÁö »ç¿ë·®À» ´õ Àß °ü¸®ÇÏ°í ºñ¿ë°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿øµ¿·ÂÀº »ê¾÷ ºÎ¹® Àü¹Ý¿¡ °ÉÃÄ ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
Á¶»ç¿Í ±â¼úÀÇ ¹ßÀü
¼ö¼Ò »ý»ê, ÀúÀå ¹× È°¿ë¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸¿Í ±â¼ú Çõ½ÅÀº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÷´Ü Àü±âºÐÇØ ±â¼ú, °íü ¼ö¼Ò ÀúÀå Àç·á, º¸´Ù È¿À²ÀûÀÎ ¿¬·áÀüÁö ±â¼ú°ú °°Àº ±â¼úÀû Çõ½ÅÀº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ Àü¹ÝÀûÀÎ È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÌ ¼º¼÷ÇÏ°í »ó¾÷ÀûÀ¸·Î ½ÇÇö °¡´ÉÇØÁö¸é ½ÃÀåÀÇ Ãß°¡ È®ÀåÀ» ÃËÁøÇÏ°í ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ¼¼°è ¿¡³ÊÁö »óȲ¿¡¼ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.
Á¾ÇÕÇϸé, ¼¼°è ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº Àç»ý¿¡³ÊÁö ÅëÇÕ, Żź¼ÒÈ, ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á, ¿î¼Û Çõ¸í, »ê¾÷ ÀÀ¿ë, ±×¸®°í ÇöÀç ÁøÇà ÁßÀÎ ±â¼ú ¹ßÀü¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ¼ö¼Ò¸¦ ¹Ì·¡ ¿¡³ÊÁö »ýŰèÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇÏ¿© º¸´Ù ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÏ¸ç ¾ÈÀüÇÑ ¿¡³ÊÁöÀÇ ¹Ì·¡¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
Á¤ºÎ Á¤Ã¥ÀÌ ½ÃÀåÀ» ÃËÁøÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
Àç»ý¿¡³ÊÁö º¸Á¶±Ý ¹× Àμ¾Æ¼ºê
Àç»ý¿¡³ÊÁö º¸±ÞÀ» ÃËÁøÇÏ´Â Á¤ºÎ Á¤Ã¥Àº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥¿¡´Â ÀϹÝÀûÀ¸·Î º¸Á¶±Ý, ¼¼Á¦ ÇýÅÃ, °íÁ¤ °¡°Ý ±¸¸Å Á¦µµ µîÀÌ Æ÷ÇԵǸç, ±×¸° ¼ö¼Ò »ý»ê¿¡ ÇʼöÀûÀΠdz·Â ¹× ž籤¹ßÀü°ú °°Àº Àç»ý ±â¼úÀÇ µµÀÔÀ» Àå·ÁÇÕ´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼ Á¤ºÎ°¡ Àç»ý¿¡³ÊÁö »ý»êÀÚ¿¡°Ô ÀçÁ¤Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇÔÀ¸·Î½á ³ì»ö Àü·ÂÀÇ ºñ¿ëÀÌ ±âÁ¸ ȼ®¿¬·á¿Í °æÀïÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â À׿© Àç»ý ¿¡³ÊÁö·Î ¼ö¼Ò¸¦ »ý»êÇÏ´Â °ÍÀÌ °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇϱ⠶§¹®¿¡ Àü±âºÐÇØ¸¦ ÅëÇÑ ¼ö¼Ò »ý»ê¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº À׿© ±×¸° ¼ö¼Ò¸¦ ÀúÀåÇÏ¿© ³ªÁß¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ¿© Àü·Â¸Á ¾ÈÁ¤¼º°ú ¿¡³ÊÁö ¾Èº¸¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀϺΠÁ¤ºÎ´Â Àç»ý¿¡³ÊÁö ¹ßÀü ¸ñÇ¥¸¦ ¼³Á¤Çϰí ÃÑ ¿¡³ÊÁö ¹ßÀü·® Áß Àç»ý¿¡³ÊÁö ¹ßÀü·® ºñÀ²À» Àǹ«ÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â Àç»ý¿¡³ÊÁöÀÇ °£ÇæÀûÀΠƯ¼º°ú ±ÕÇüÀ» ¸ÂÃß°í ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö °ø±ÞÀ» º¸ÀåÇϱâ À§ÇÑ ¼ö´ÜÀ¸·Î ¼ö¼Ò ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ½ÃÀå ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ·Îµå¸Ê ¹× Àü·«
¼¼°è ¸¹Àº Á¤ºÎ´Â ¼ö¼Ò ¿¡³ÊÁö ±â¼úÀÇ °³¹ß°ú º¸±ÞÀ» À̲ø±â À§ÇØ Á¾ÇÕÀûÀÎ ¼ö¼Ò ·Îµå¸Ê°ú ±¹°¡ ¼ö¼Ò Àü·«À» ¼ö¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®¼¿¡´Â ¼ö¼Ò °æÁ¦¸¦ ÃßÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ºñÀü, ¸ñÇ¥ ¹× ÇൿÀÌ ¼³¸íµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«ÀÇ Áß¿äÇÑ Ãø¸éÀº Á¾Á¾ ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀÇ ¿¬±¸, °³¹ß ¹× ¹èÆ÷¸¦ Áö¿øÇϱâ À§ÇÑ ÀÚ±Ý ¹èºÐ ¹× Àμ¾Æ¼ºêÀÔ´Ï´Ù. ¶ÇÇÑ Á¤ºÎ´Â ¿î¼Û, »ê¾÷, ¿¡³ÊÁö »ý»ê µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ¼ö¼Ò ÀúÀå ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϱâ À§ÇØ ¾÷°è ÀÌÇØ°ü°èÀÚ¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÕ´Ï´Ù.
ÀÌ·¯ÇÑ Àü·«Àû °èȹÀº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡ ´ëÇÑ ¸íÈ®¼º°ú Àå±âÀûÀÎ ºñÀüÀ» Á¦°øÇÏ¿© ÅõÀÚÀÚ¿Í ±â¾÷ÀÌ ¼ö¼Ò ÀúÀå ÀÎÇÁ¶ó¿Í ±â¼ú¿¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ÀڽۨÀ» Á¦°øÇÕ´Ï´Ù.
ź¼Ò °¡°Ý Ã¥Á¤ ¹× ¹èÃâ·® °¨Ãà ¸ñÇ¥
±âÈÄ º¯È¿¡ ´ëÀÀÇϱâ À§ÇØ ¸¹Àº Á¤ºÎ´Â ź¼Ò¼¼, ¹èÃâ±Ç °Å·¡Á¦ µî ź¼Ò °¡°Ý ¸ÞÄ¿´ÏÁòÀ» µµÀÔÇÏ¿© ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. Àç»ýÇÑ ÀÚ¿ø¿¡¼ »ý»êµÇ°í, È¿À²ÀûÀ¸·Î ÀúÀåµÇ¸ç, ûÁ¤ ¿¡³ÊÁö ¿î¹Ýü·Î »ç¿ëµÇ´Â ¼ö¼Ò´Â »ê¾÷°ú ¹ßÀü¼Ò°¡ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò »ý»ê °øÁ¤°ú ÅëÇÕ °¡´ÉÇÑ Åº¼Ò ȸ¼ö ¹× ÀúÀå(CCS) ±â¼ú¿¡ ´ëÇÑ Àμ¾Æ¼ºê´Â ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ Á¤ºÎ Á¤Ã¥ÀÇ ¶Ç ´Ù¸¥ Ãø¸éÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº ȸ¼öµÈ CO2¸¦ ÁöÇÏ¿¡ ÀúÀåÇÔÀ¸·Î½á Àúź¼Ò ¼ö¼Ò »ý»ê ¹æ¹ýÀÇ °³¹ßÀ» Àå·ÁÇÕ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ¼ö¼Ò¸¦ ±ú²ýÇϰí Àúź¼Ò ¿¡³ÊÁö¿øÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ Á¤Ã¥À» º¸¿ÏÇÏ°í ¹èÃâ·® °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¡³ÊÁö ÀúÀå Àǹ«È ¹× ±×¸®µå ÅëÇÕ
Á¤ºÎ Á¤Ã¥Àº Á¾Á¾ ¿¡³ÊÁö ±×¸®µå ÀÎÇÁ¶ó¿¡ ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ´Â °ÍÀ» Àǹ«ÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àǹ«ÈÀÇ ¸ñÀûÀº Àü·Â¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í, °£ÇæÀûÀÎ Àç»ý¿¡³ÊÁöÀÇ ¿µÇâÀ» ÁÙÀ̰í, ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÇ ÅëÇÕÀ» Áö¿øÇÏ´Â µ¥ ÀÖ½À´Ï´Ù. ÀϺΠÁ¤ºÎ´Â Àü·Âȸ»ç¿Í Àü·Â¸Á ¿î¿µ¾÷ü°¡ ÀÏÁ¤ ºñÀ²ÀÇ ¿¡³ÊÁö ÀúÀå ¿ë·®À» Æ÷Æ®Æú¸®¿À¿¡ Æ÷ÇÔÇϵµ·Ï Àǹ«ÈÇÏ¿© ź·ÂÀûÀ̰í À¯¿¬ÇÑ Àü·Â¸ÁÀ» È®º¸Çϵµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ Àǹ«¸¦ À̵¿ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ¸¸ç, Àå½Ã°£ÀÇ ÀúÀå ¿ë·®À» Á¦°øÇÏ¿© ¼ö¿ä ÇÇÅ© ¹× ºñ»ó½Ã Àü·Â¸Á ¾ÈÁ¤È¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò ÀúÀå ½Ã½ºÅÛÀÇ ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ±×¸®µå ÅëÇÕÀ» º¸ÀåÇϱâ À§ÇØ ¼ö¼Ò ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ±â¼ú Ç¥ÁØ ¹× ¾ÈÀü Ç¥ÁØÀ» ¸¶·ÃÇÏ´Â Á¤Ã¥µµ °í·ÁÇØ¾ß ÇÕ´Ï´Ù.
ÅõÀÚ ¹× ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥
Á¤ºÎ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ ¿¬±¸°³¹ß°ú »ó¿ëȸ¦ À§ÇØ ¸¹Àº ÀÚ±ÝÀ» ¹èÁ¤ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î±×·¥Àº ÀϹÝÀûÀ¸·Î ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, ±â¼ú ºñ¿ëÀ» Àý°¨Çϸç, ½ÃÀå µµÀÔÀ» °¡¼ÓÈÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÀçÁ¤Àû Áö¿øÀº ¼ö¼Ò ÀúÀå ½ºÅ¸Æ®¾÷°ú ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ º¸Á¶±Ý, À¶ÀÚ, º¥Ã³Ä³ÇÇÅÐ ÅõÀÚ µîÀÇ ÇüÅ·ΠÀÌ·ç¾îÁý´Ï´Ù. Á¤ºÎ°¡ Áö¿øÇÏ´Â ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥Àº ¹Î°£ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ½Å±â¼ú °³¹ß¿¡ µû¸¥ À§ÇèÀ» ÁÙ¿© ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ Çõ½Å°ú ºñ¿ë Àý°¨À» ÃËÁøÇÏ°í ±â¾÷ ¹× ÅõÀÚÀÚ¿¡°Ô ´õ¿í ¸Å·ÂÀûÀÎ ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀ» ¸¸µå´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¼ö¼Ò¿¬·áÀüÁöÂ÷(FCV)ÀÇ º¸±ÞÀ» ÃËÁøÇÏ°í ¼ö¼Ò ÃæÀü ÀÎÇÁ¶ó ±¸ÃàÀ» Áö¿øÇϱâ À§ÇØ Á¤ºÎ´Â ´Ù¾çÇÑ Àμ¾Æ¼ºê¿Í Á¤Ã¥À» ½ÃÇàÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥¿¡´Â FCV ±¸¸ÅÀÚ¿¡ ´ëÇÑ ¼¼Á¦ ÇýÅÃ, ¼ö¼Ò »ý»ê ¹× À¯Åë ÀÎÇÁ¶ó¿¡ ´ëÇÑ º¸Á¶±Ý, ûÁ¤ ¿î¼Û ±â¼ú »ç¿ëÀ» Àå·ÁÇÏ´Â ¹èÃâ ±âÁذú °°Àº ±ÔÁ¦ Á¶Ä¡°¡ Æ÷ÇԵ˴ϴÙ. ¼ö¼Ò FCV°¡ ´ëÁßÈµÇ°í º¸ÆíÀûÀÎ ±³Åë¼ö´ÜÀÌ µÊ¿¡ µû¶ó ¼ö¼Ò »ý»ê°ú À¯ÅëÀ» Áö¿øÇÏ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ̸ç, ÀÌ·¯ÇÑ Á¤Ã¥Àº ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÉ °ÍÀÔ´Ï´Ù.
°á·ÐÀûÀ¸·Î, Á¤ºÎ Á¤Ã¥Àº ¼¼°è ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀçÁ¤Àû Àμ¾Æ¼ºê Á¦°ø, Àü·«Àû ·Îµå¸Ê ¼ö¸³, ¹èÃâ °¨Ãà ¸ñÇ¥ ¼³Á¤, ¿¡³ÊÁö ÀúÀå ÅëÇÕ Àǹ«È, ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥ Á¦°ø, ûÁ¤ ¿î¼Û ÃËÁø µîÀ» ÅëÇØ °¢±¹ Á¤ºÎ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå »ê¾÷ÀÇ ¹ßÀü°ú ¼ºÀåÀ» Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº ±â¼ú Çõ½Å, ÅõÀÚ, ½ÃÀå µµÀÔÀ» ÃËÁøÇÏ¿© ±Ã±ØÀûÀ¸·Î º¸´Ù Áö¼Ó°¡´ÉÇÏ°í ¾ÈÀüÇÑ ¿¡³ÊÁö ¹Ì·¡¸¦ ¸¸µå´Â µ¥ ±â¿©ÇÒ °ÍÀÔ´Ï´Ù.
ÁÖ¿ä ½ÃÀå °úÁ¦
ºñ¿ë °æÀï°ú ÀÎÇÁ¶ó ±¸Ãà
¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀÇ º¸±ÞÀ» °¡·Î¸·´Â °¡Àå Å« ¹®Á¦ Áß Çϳª´Â ´ëü ¿¡³ÊÁö ÀúÀå ±â¼ú, ƯÈ÷ ¸®Æ¬À̿ ¹èÅ͸®¿Í ºñ±³ÇßÀ» ¶§ ºñ¿ë °æÀï·ÂÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ¼ö¼ÒÀÇ »ý»ê°ú ÀúÀåÀº ±âÁ¸ ¹èÅ͸® ½Ã½ºÅÛº¸´Ù ºñ¿ëÀÌ ³ô°í ¿¡³ÊÁö È¿À²ÀÌ ³·½À´Ï´Ù. ÁÖ¿ä ºñ¿ë ¿ä¼Ò Áß Çϳª´Â ¼ö¼Ò¸¦ »ý»êÇϱâ À§ÇÑ Àü±âºÐÇØ °øÁ¤ÀÔ´Ï´Ù. ÀüÇØÁ¶´Â ¸¹Àº ¾çÀÇ Àü·ÂÀ» ÇÊ¿ä·Î Çϴµ¥, Àç»ý ÀÚ¿øÀ̳ª Àúź¼Ò ¹æ½ÄÀ¸·Î ¹ßÀüÇÏ¸é ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ ÀüÇØ ½Ã½ºÅÛ¿¡ »ç¿ëµÇ´Â Àç·á¿Í ºÎǰÀº °í°¡À̸ç, ¼ö¼Ò »ý»êÀÇ ÃÑ ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ ¼ö¼ÒÀÇ ÀúÀå°ú ¿î¼Û¿¡´Â ÆÄÀÌÇÁ¶óÀÎ, ÀúÀå ÅÊÅ©, À¯Åë¸Á µî Ư¼öÇÑ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϸç, À̸¦ °Ç¼³Çϰí À¯ÁöÇÏ´Â µ¥ ¸¹Àº ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. Á¾ÇÕÀûÀÎ ¼ö¼Ò ÀÎÇÁ¶ó¸¦ ±¸ÃàÇϱâ À§Çؼ´Â ¸·´ëÇÑ ¼±ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¤ºÎ¿Í ±â¾÷ÀÌ ÀÌ ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀ» ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¹× ÀÎÇÁ¶ó¿Í °ü·ÃµÈ ³ôÀº Ãʱ⠺ñ¿ëÀº ¸¹Àº ÀáÀçÀû »ç¿ëÀÚ¿¡°Ô ÁøÀÔÀ庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¹Ý¸é, ¸®Æ¬À̿ ¹èÅ͸®´Â Áö³ 10³â°£ »ó´çÇÑ ºñ¿ë Àý°¨À» ´Þ¼ºÇÏ¿© ´Ü±â°£ ¿¡³ÊÁö ÀúÀå ¿ëµµ¿¡¼ °æÁ¦ÀûÀ¸·Î ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÌ ¼ºÀåÇϱâ À§Çؼ´Â ºñ¿ë °æÀï·Â ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. Á¤ºÎ¿Í ¾÷°è ÀÌÇØ°ü°èÀÚµéÀÌ Çù·ÂÇÏ¿© ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí, ±Ô¸ðÀÇ °æÁ¦¸¦ ÃËÁøÇϰí, ¼ö¼Ò Á¦Á¶, ÀúÀå, ¿î¼Û ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ ½ÃÇàÇØ¾ß ÇÕ´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇϰí Á¦Á¶ ¹æ¹ýÀÌ °³¼±µÇ¸é ¼ö¼ÒÀÇ ºñ¿ë °æÀï·ÂÀÌ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ ¹®Á¦¸¦ ±Øº¹ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ Áß¿äÇÑ Àå¾Ö¹°ÀÔ´Ï´Ù.
¿¡³ÊÁö º¯È¯ È¿À² ¹× ÀúÀå ±â°£
¼¼°è ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÌ Á÷¸éÇÑ ¶Ç ´Ù¸¥ Å« °úÁ¦´Â ¿¡³ÊÁö º¯È¯ È¿À² ¹®Á¦¿Í Àå±â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÔ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ¿¡³ÊÁö º¯È¯ °úÁ¤ÀÇ ¿©·¯ ´Ü°è¿¡¼ ¼Õ½Ç¿¡ Á÷¸éÇÕ´Ï´Ù. ù°, Àü±âºÐÇØ ¹× ±âŸ ¹æ¹ýÀ¸·Î ¼ö¼Ò¸¦ »ý»êÇÒ ¶§ ÀÔ·Â ¿¡³ÊÁöÀÇ ÀϺΰ¡ Æó¿·Î ¼Õ½ÇµË´Ï´Ù. ´ÙÀ½À¸·Î, ¿¬·áÀüÁö³ª ¿¬¼Ò¸¦ ÅëÇØ ¼ö¼Ò¸¦ Àü±â·Î º¯È¯ÇÏ´Â °úÁ¤¿¡¼ ¶Ç ´Ù¸¥ ¿¡³ÊÁö°¡ ¿·Î ¼Õ½ÇµË´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ¼Õ½ÇÀº Àüü ½Ã½ºÅÛÀÇ È¿À²À» ¶³¾î¶ß¸®±â ¶§¹®¿¡ ¿Õº¹ È¿À²ÀÌ ³ôÀº ´Ù¸¥ ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ºñÇØ ¸Å·ÂÀûÀÌÁö ¾Ê½À´Ï´Ù. ¶ÇÇÑ ¼ö¼ÒÀÇ ¿¡³ÊÁö ¹Ðµµ´Â ´Ù¸¥ ¸¹Àº ¿¡³ÊÁö ÀúÀå ¸Åüº¸´Ù ³·±â ¶§¹®¿¡ Á¼Àº °ø°£¿¡ ¸¹Àº ¾çÀÇ ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÇѰ谡 ÀÖ½À´Ï´Ù. ÀÌ´Â Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ °èÀýÀû º¯µ¿¿¡ ´ëÀÀÇϱâ À§ÇÑ ±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀåÀ̳ª Àå±â°£ÀÇ Àú¿¡³ÊÁö ¹ßÀü½Ã ¹é¾÷ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇÑ ¿¡³ÊÁö ÀúÀå°ú °°ÀÌ Àå½Ã°£ ¿¡³ÊÁö ÀúÀåÀÌ ÇÊ¿äÇÑ ¿ëµµ¿¡ µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ¿¬±¸ÀÚ¿Í ¿£Áö´Ï¾îµéÀº ¼ö¼Ò »ý»ê ¹× º¯È¯ ±â¼úÀÇ È¿À²¼º Çâ»ó, ÷´Ü ¼ö¼Ò ÀúÀå Àç·á °³¹ß, Àå½Ã°£ ÀúÀå ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¼³°è¿¡ Àû±Ø ³ª¼°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ßÀÇ Çõ½ÅÀº ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀÇ °æÀï·ÂÀ» ³ôÀÌ°í ´õ ³ÐÀº ¹üÀ§ÀÇ ¿ëµµ¿¡ ´ëÇÑ ¸Å·ÂÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
°á·ÐÀûÀ¸·Î, ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁöÀÇ ¹Ì·¡¸¦ À§ÇØ Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖÁö¸¸, ºñ¿ë °æÀï·Â°ú ¿¡³ÊÁö º¯È¯ È¿À²¿¡ ´ëÇÑ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°À» ±Øº¹Çϱâ À§Çؼ´Â Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß°ú Á¤ºÎ, »ê¾÷°è, ¿¬±¸±â°üÀÇ Çù·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀÌ ÇØ°áµÇ¸é ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀº ´õ ±ú²ýÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·Î ÀüȯÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù.
ºÎ¹®º° ÀλçÀÌÆ®
°¡½º ÀλçÀÌÆ®
°¡½º ºÎ¹®Àº 2022³â¿¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß¿¡µµ À¯ÁöµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âü ¼ö¼Ò ÀúÀå ¹æ½ÄÀº °íü ÀúÀå ¹æ½Ä¿¡ ºñÇØ ¿¡³ÊÁö ¹Ðµµ°¡ »ó´ëÀûÀ¸·Î ³ô½À´Ï´Ù. ÀÌ´Â »ó´ëÀûÀ¸·Î ÀûÀº ºÎÇÇ·Î ¸¹Àº ¾çÀÇ ¼ö¼Ò¸¦ ÀúÀåÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇϸç, »ê¾÷ °øÁ¤ ¹× ¿¡³ÊÁö ÀúÀåÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¾ÐÃà ¼ö¼Ò °¡½º¿Í ¾×ü ¼ö¼Ò ÀúÀåÀº ÀÌ¹Ì È®¸³µÈ ¼º¼÷ÇÑ ±â¼úÀÔ´Ï´Ù. À̵éÀº ¼ö½Ê³â°£ Ç×°ø¿ìÁÖ ¹× ÈÇÐ ºÐ¾ß¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ »ê¾÷¿¡¼ »ç¿ëµÇ¾î ¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ ¼º¼÷µµ·Î ÀÎÇØ ÀÌ·¯ÇÑ ÀúÀå ¹æ¹ýÀÇ ÀÎÇÁ¶ó¿Í Àåºñ´Â Àß ¹ß´ÞµÇ¾î ÀÖ½À´Ï´Ù. °¡½º ±â¹Ý ÀúÀå ¹æ½ÄÀº È®À强ÀÌ ¶Ù¾î³ª ¼Ò±Ô¸ðºÎÅÍ ´ë±Ô¸ð±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ È®À强Àº ´Ù¾çÇÑ »ê¾÷ ¹× ¿¡³ÊÁö ÀúÀå ÇÁ·ÎÁ§Æ®ÀÇ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±âü ¹× ¾×ü ¼ö¼Ò´Â °íü ÀúÀå ¹°Áú¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ¿î¼ÛÀÌ ¿ëÀÌÇÕ´Ï´Ù. ¼ö¼Ò´Â ¾ÐÃà ¶Ç´Â ¾×ÈÇÏ¿© Æ®·°À̳ª ÆÄÀÌÇÁ¶óÀο¡ ÀûÀçÇÏ¿© ÇÊ¿äÇÑ Àå¼Ò·Î ¿î¼Û ÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡½º ±â¹Ý ÀúÀå ¹æ¹ýÀº ¼ö¼Ò »ç¿ë ¹æ½Ä¿¡ À¯¿¬¼ºÀ» °¡Á®´Ù ÁÝ´Ï´Ù. ½±°Ô Àü±â·Î ȯ¿øÇϰųª ÀÚµ¿Â÷ ¼ö¼Ò¿¬·áÀüÁö, ¹ßÀü, ÈÇÐ »ý»ê µî ´Ù¾çÇÑ »ê¾÷ °øÁ¤¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼´Â ÀÌ¹Ì ¾ÐÃà °¡½º ÀúÀå ½Ã¼³°ú ¾×ü ¼ö¼Ò »ý»ê ¹× °ø±Þ ³×Æ®¿öÅ©¿Í °°Àº ¼ö¼Ò ÀúÀå ÀÎÇÁ¶ó°¡ ±¸ÃàµÇ¾î ÀÖ½À´Ï´Ù. µû¶ó¼ °¡½º ±â¹Ý ÀúÀå ¹æ½ÄÀ» ÀÌ¿ëÇÏ´Â °ÍÀÌ ´õ Æí¸®ÇÏ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù.
.
Á¤ÂøÇü ¹ßÀüÀÇ ÀλçÀÌÆ®
Á¤ÂøÇü Àü·Â ºÐ¾ß´Â 2022³â °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ¿¹Ãø ±â°£ Áß ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ßÀü¿ë ¼ö¼Ò ¿¬·áÀüÁö »ç¿ë°ú °°Àº °íÁ¤½Ä Àü·Â ¿ëµµ´Â dz·Â ¹× ž籤°ú °°Àº Àç»ý ¿¡³ÊÁö¿øÀ» Àü·Â¸Á¿¡ ÅëÇÕÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â Àç»ý¿¡³ÊÁö »ý»ê·®ÀÌ ¸¹À» ¶§ ¹ß»ýÇÏ´Â À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¼ö¿ä°¡ °ø±ÞÀ» ÃʰúÇÒ ¶§ ¹æÃâÇÒ ¼ö ÀÖÀ¸¸ç, Àü·Â¸Á ¾ÈÁ¤È¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â ƯÈ÷ ´ë±Ô¸ð ¿ëµµ¿¡¼ ½ÇÇà °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â Àå±â°£ ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖÀ¸¹Ç·Î °£ÇæÀûÀÎ Àç»ý¿¡³ÊÁö ¹ßÀüÀÌ ¾øÀ» ¶§ ºÎÇϸ¦ ºÐ»êÇÏ°í ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁö´Â µ¥ÀÌÅͼ¾ÅÍ, º´¿ø, ÀÀ±Þ ´ëÀÀ ¼¾ÅÍ¿Í °°Àº Áß¿äÇÑ ¿ëµµ¿¡ ¾ÈÁ¤ÀûÀÎ ¹é¾÷ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â Àü·Â¸ÁÀÌ ÁߴܵǴ µ¿¾È ¼ö¼Ò°¡ Á¦°øÇÒ ¼ö ÀÖ´Â ¹«Áß´Ü Àü·Â °ø±ÞÀ» Áß¿äÇÏ°Ô ¿©±é´Ï´Ù. ¼ö¼Ò¿¬·áÀüÁö´Â ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ µµÀÔÇÒ ¼ö ÀÖÀ¸¹Ç·Î Áß¾Ó ÁýÁᫎ ¹ßÀü¼Ò³ª Àå°Å¸® ¼ÛÀü¼±·ÎÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¡³ÊÁö º¹¿ø·ÂÀ» ³ôÀÌ°í ¼ÛÀü ¼Õ½ÇÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀϺΠÁö¿ª¿¡¼´Â Á¤ºÎ°¡ ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ°í ´õ ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇϱâ À§ÇÑ ³ë·ÂÀÇ ÀÏȯÀ¸·Î °íÁ¤½Ä Àü¿ø ¿ëµµ¿¡ ¼ö¼Ò¸¦ »ç¿ëÇϵµ·Ï Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. º¸Á¶±Ý, ¼¼Á¦ ÇýÅÃ, À¯¸®ÇÑ ±ÔÁ¦´Â °íÁ¤½Ä Àü·Â¿¡ ¼ö¼Ò¸¦ µµÀÔÇÏ´Â °ÍÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â ÈÇÐ Á¦Á¶ ¹× Á¤Á¦¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ »ê¾÷ °øÁ¤¿¡¼ ¿ø·á·Î »ç¿ëµË´Ï´Ù. °íÁ¤½Ä ¼ö¼Ò ¹ßÀüÀº ÀÌ·¯ÇÑ »ê¾÷¿¡ ¾ÈÁ¤ÀûÀÎ ¼ö¼Ò °ø±Þ¿øÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº Á¶Á÷°ú Á¤ºÎ´Â ź¼Ò Á߸³À» ´Þ¼ºÇϰí ź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Àü±âºÐÇØ¸¦ ÅëÇØ Àç»ýÇÑ ÀÚ¿ø¿¡¼ ¼ö¼Ò¸¦ »ý»êÇÏ¸é ±ú²ýÇϰí ź¼Ò Á߸³ÀûÀÎ ¿¬·á°¡ µÇ¾î Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁöÀÇ È¿À²°ú ºñ¿ë È¿À²¼º °³¼± µî °íÁ¤½Ä Àü·Â ¿ëµµ¿¡ ´ëÇÑ ¿¬±¸°³¹ßÀº ¼ö¼Ò ¿¬·áÀüÁöÀÇ Ã¤ÅÃÀ» È®´ëÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
.
Áö¿ªº° ÀλçÀÌÆ®
¾Æ½Ã¾ÆÅÂÆò¾ç
¾Æ½Ã¾ÆÅÂÆò¾çÀº ´ÙÀ½°ú °°Àº ¿äÀÎÀ¸·Î ÀÎÇØ ÇâÈÄ ¸î³â¾È¿¡ ¼ö¼Ò ¿¡³ÊÁö ÀúÀåÀÇ ÃÖ´ë ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àç»ý¿¡³ÊÁö ºÐ¾ßÀÇ °·ÂÇÑ ¼ºÀå: ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡´Â ¼¼°è¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Àç»ý¿¡³ÊÁö ½ÃÀåÀÌ ÀÖ½À´Ï´Ù. ÀÌ´Â À׿© Àç»ý¿¡³ÊÁöÀÇ ÀúÀå¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡: ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¸¹Àº Á¤ºÎ°¡ ¼ö¼Ò ±â¼ú °³¹ßÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö´Â ³»¿¬±â°üÀ» ´ëüÇÒ ¼ö ÀÖ´Â ¹«°øÇØ ¿¬·áÀüÁö·Î¼ ¿î¼Û ºÐ¾ß¿¡¼ ¼ö¿ä Áõ°¡¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿î¼Û ºÐ¾ß¿¡¼ÀÇ ¼ö¼Ò ¿¬·áÀüÁö ¼ö¿ä Áõ°¡´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ±â¼ú ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
À¯·´
À¯·´ ½ÃÀåµµ ´ÙÀ½°ú °°Àº ¿äÀÎÀ¸·Î ÀÎÇØ ÇâÈÄ ¼ö³â°£ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
EUÀÇ Å»Åº¼ÒÈ ³ë·Â: À¯·´À§¿øÈ¸´Â 2050³â±îÁö ±âÈÄ Á߸³À» ´Þ¼ºÇϰڴٴ ¸ñÇ¥¸¦ ¼¼¿ü½À´Ï´Ù. ¼ö¼Ò´Â ÀÌ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇÑ Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö Á¦Á¶¾÷üÀÇ Á¸Àç°¨ À¯·´¿¡´Â ¼¼°è À¯¼öÀÇ ¼ö¼Ò ¿¬·áÀüÁö Á¦Á¶¾÷ü°¡ ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡: À¯·´ÀÇ ¸¹Àº Á¤ºÎ°¡ ¼ö¼Ò ±â¼ú °³¹ßÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¼Ò ¿¡³ÊÁö ÀúÀå ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
Global Hydrogen Energy Storage Market has valued at USD 12.08 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 14.19% through 2028.
The hydrogen energy storage market refers to the sector of the global energy industry focused on the storage and utilization of hydrogen as an energy carrier or medium for the efficient management of energy resources. This market encompasses a range of technologies and solutions designed to store surplus energy in the form of hydrogen, which can then be converted back into electricity or heat when needed. Hydrogen energy storage serves as a critical component in the transition toward a cleaner and more sustainable energy landscape. It addresses the intermittency of renewable energy sources like wind and solar power by storing excess energy during periods of high generation and releasing it when energy demand is elevated or renewable energy production is low. This facilitates grid stability, supports decarbonization efforts, and enhances energy security. The market includes various hydrogen production methods, such as electrolysis, steam methane reforming (SMR), and biomass gasification, as well as storage solutions like compressed hydrogen gas, liquid hydrogen, and solid-state hydrogen storage materials. It finds applications across diverse sectors, including electricity generation, transportation, industrial processes, and grid-scale energy storage. As the world seeks cleaner and more sustainable energy solutions, the hydrogen energy storage market continues to grow, driven by technological advancements and evolving energy policies.
Key Market Drivers
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 12.08 billion |
Market Size 2028 | USD 27.02 billion |
CAGR 2023-2028 | 14.19% |
Fastest Growing Segment | Stationary Power |
Largest Market | Asia-Pacific |
The global shift towards renewable energy sources, such as wind, solar, and hydropower, has catalyzed the growth of the hydrogen energy storage market. One of the key challenges with renewables is their intermittent nature; they generate electricity when the wind blows or the sun shines. Hydrogen energy storage addresses this issue by providing a means to store surplus energy during periods of high generation and release it when demand exceeds supply. This facilitates a reliable and continuous energy supply, reducing dependence on fossil fuels and supporting the transition to a sustainable energy ecosystem. Renewable energy integration is not only essential for achieving environmental goals but also for ensuring a stable and resilient energy infrastructure. Hydrogen storage allows excess renewable energy to be stored efficiently and tapped into during periods of high demand or when renewable energy production is low, thereby mitigating grid instability issues.
Decarbonization and Climate Goals:
The urgency to combat climate change and reduce greenhouse gas emissions is a major driver of the hydrogen energy storage market. Hydrogen is a clean energy carrier when produced using renewable energy or low-carbon methods like electrolysis. This "green hydrogen" can be stored and utilized without emitting harmful pollutants or greenhouse gases. Many countries and regions have set ambitious decarbonization targets, which often include the increased use of hydrogen as a clean energy source. Hydrogen energy storage plays a pivotal role in achieving these goals by enabling the efficient storage and utilization of clean energy, reducing reliance on fossil fuels, and contributing to a more sustainable energy landscape.
Energy security is a top priority for governments and industries globally. Hydrogen energy storage enhances energy security by providing a reliable backup during energy shortages or emergencies. It allows surplus energy to be stored for future use, ensuring a stable energy supply even in unpredictable situations. For critical infrastructure, remote regions, and industries with continuous energy needs such as healthcare and data centers, hydrogen energy storage offers a valuable solution for maintaining uninterrupted power supply. This security aspect drives the adoption of hydrogen energy storage technologies.
The transportation sector is undergoing a significant transformation toward cleaner and more sustainable mobility options. Hydrogen fuel cell vehicles (FCVs) are emerging as a viable zero-emission alternative to conventional internal combustion engine vehicles. Hydrogen energy storage is integral to the development of the hydrogen economy, supporting the growth of FCVs and enabling efficient and rapid refueling infrastructure. As governments worldwide introduce stricter emissions regulations and incentives for clean transportation, the demand for hydrogen energy storage in the transportation sector is expected to surge.
Hydrogen is a versatile energy carrier with applications across various industries, including metallurgy, chemicals, and refining. Industries are actively seeking ways to reduce carbon emissions and energy costs while improving overall operational efficiency. Hydrogen energy storage offers a solution for managing energy demand, optimizing production processes, and enhancing energy efficiency. By using hydrogen energy storage, industries can better control their energy usage, reducing costs and environmental impact. This driver stimulates the adoption of hydrogen energy storage technologies across industrial sectors.
Research and Technological Advancements:
Continual research and innovation in hydrogen production, storage, and utilization are fostering the growth of the hydrogen energy storage market. Technological breakthroughs, such as advanced electrolysis techniques, solid-state hydrogen storage materials, and more efficient fuel cell technologies, are enhancing the overall efficiency and cost-effectiveness of hydrogen energy storage systems. As these innovations mature and become commercially viable, they will drive further market expansion and make hydrogen energy storage an increasingly integral part of the global energy landscape.
In summary, the global hydrogen energy storage market is being propelled by the integration of renewables, decarbonization imperatives, energy security concerns, the transportation revolution, industrial applications, and ongoing technological advancements. These drivers collectively position hydrogen as a crucial element of the future energy ecosystem, facilitating a cleaner, more sustainable, and secure energy future.
Government Policies are Likely to Propel the Market
Renewable Energy Subsidies and Incentives:
Government policies promoting renewable energy sources play a pivotal role in driving the growth of the hydrogen energy storage market. These policies typically include subsidies, tax incentives, and feed-in tariffs that encourage the adoption of renewable technologies, such as wind and solar power, which are essential for producing green hydrogen. In many countries, governments offer financial incentives to renewable energy producers, making the cost of green electricity competitive with conventional fossil fuel sources. This has a direct impact on hydrogen production via electrolysis, as it becomes more economically viable to use surplus renewable energy to produce hydrogen. These policies stimulate investment in hydrogen energy storage systems that can store excess green hydrogen for later use, contributing to grid stability and energy security. Moreover, some governments set renewable energy targets, mandating a specific percentage of total energy generation from renewable sources. This creates a sustained market demand for hydrogen energy storage as a means to balance the intermittent nature of renewables and ensure a reliable energy supply.
Hydrogen Roadmaps and Strategies:
Many governments worldwide have developed comprehensive hydrogen roadmaps and national hydrogen strategies to guide the development and deployment of hydrogen energy technologies. These documents outline the government's vision, goals, and actions for advancing the hydrogen economy. A key aspect of these strategies is often the allocation of funding and incentives to support research, development, and deployment of hydrogen storage solutions. Governments also establish partnerships with industry stakeholders to accelerate the adoption of hydrogen storage technologies in various sectors, including transportation, industry, and energy production.
These strategic plans provide clarity and a long-term vision for the hydrogen energy storage market, giving investors and businesses confidence to invest in hydrogen storage infrastructure and technologies.
Carbon Pricing and Emissions Reduction Targets:
To combat climate change, many governments implement carbon pricing mechanisms, such as carbon taxes or cap-and-trade systems, to incentivize emissions reduction. Hydrogen produced from renewable sources, stored efficiently, and used as a clean energy carrier can help industries and power plants reduce their carbon footprint. Incentives for carbon capture and storage (CCS) technologies, which can be integrated with hydrogen production processes, are another facet of government policies aiming to reduce greenhouse gas emissions. By storing captured CO2 underground, these policies encourage the development of low-carbon hydrogen production methods. Hydrogen energy storage complements these policies by enabling the use of hydrogen in various sectors as a clean, low-carbon energy source, thereby contributing to achieving emissions reduction targets.
Energy Storage Mandates and Grid Integration:
Government policies often mandate the inclusion of energy storage solutions, including hydrogen storage, in the energy grid infrastructure. These mandates aim to enhance grid reliability, reduce the impact of intermittent renewable energy sources, and support the integration of distributed energy resources. Some governments require utilities and grid operators to include a certain percentage of energy storage capacity in their portfolios, ensuring a resilient and flexible grid. Hydrogen energy storage systems can play a crucial role in meeting these mandates, providing long-duration storage capabilities and helping to stabilize the grid during peak demand periods or emergencies. Additionally, policies may establish technical and safety standards for hydrogen storage systems to ensure their safe and reliable integration into the grid.
Investment and Funding Programs:
Governments often allocate substantial funding for research, development, and commercialization of hydrogen energy storage technologies. These programs are typically aimed at fostering innovation, reducing technology costs, and accelerating market adoption. Financial support can come in the form of grants, loans, or venture capital investments in hydrogen storage startups and projects. Government-backed funding programs stimulate private-sector investment, reduce the risks associated with developing new technologies, and facilitate the deployment of hydrogen storage solutions. These policies are instrumental in driving innovation and cost reduction in the hydrogen energy storage market, making it more attractive to businesses and investors.
To promote the adoption of hydrogen fuel cell vehicles (FCVs) and support the development of hydrogen refueling infrastructure, governments often implement a range of incentives and policies. These policies may include tax incentives for FCV purchasers, subsidies for hydrogen production and distribution infrastructure, and regulatory measures such as emissions standards that encourage the use of clean transportation technologies. As hydrogen FCVs gain popularity and become a more common mode of transportation, the demand for hydrogen energy storage systems to support hydrogen production and distribution will continue to grow, making these policies essential in shaping the future of the hydrogen energy storage market.
In conclusion, government policies have a profound impact on the global hydrogen energy storage market. By providing financial incentives, establishing strategic roadmaps, setting emissions reduction targets, mandating energy storage integration, offering funding programs, and promoting clean transportation, governments worldwide play a critical role in shaping the development and growth of the hydrogen energy storage industry. These policies drive innovation, investment, and market adoption, ultimately contributing to a more sustainable and secure energy future.
Key Market Challenges
Cost Competitiveness and Infrastructure Development:
One of the most significant challenges hindering the widespread adoption of hydrogen energy storage is the cost competitiveness compared to alternative energy storage technologies, particularly lithium-ion batteries. The production and storage of hydrogen are generally more expensive and less energy-efficient than traditional battery systems. One major cost factor is the electrolysis process used to produce hydrogen. Electrolyzers require large amounts of electricity, which can be costly if generated from renewable sources or low-carbon methods. Additionally, the materials and components used in electrolysis systems can be expensive, further driving up the overall cost of hydrogen production. Furthermore, hydrogen storage and transportation require specialized infrastructure, including pipelines, storage tanks, and distribution networks, which can be costly to build and maintain. Developing a comprehensive hydrogen infrastructure is a substantial upfront investment that can deter governments and businesses from committing to the technology. The high initial costs associated with hydrogen energy storage systems and infrastructure can create a barrier to entry for many potential users. In contrast, lithium-ion batteries have seen significant cost reductions over the past decade, making them a more financially attractive option for short-duration energy storage applications.
Addressing the cost competitiveness challenge is essential for the hydrogen energy storage market to thrive. Governments and industry stakeholders must collaborate to invest in research and development, promote economies of scale, and implement policies and incentives that reduce the cost of hydrogen production, storage, and transportation. As technology advances and production methods improve, hydrogen is expected to become more cost-competitive, but overcoming this challenge remains a critical hurdle.
Energy Conversion Efficiency and Storage Duration:
Another significant challenge facing the global hydrogen energy storage market is the issue of energy conversion efficiency and the need for long-duration energy storage solutions. Hydrogen energy storage systems face losses at multiple stages of the energy conversion process. First, during the production of hydrogen through electrolysis or other methods, a portion of the input energy is lost as waste heat. Then, when hydrogen is converted back into electricity using fuel cells or combustion, additional energy is lost as heat. These energy losses can reduce the overall efficiency of the system, making it less attractive compared to other energy storage technologies that may have higher round-trip efficiency. Additionally, hydrogen's energy density is lower than that of many other energy storage mediums, which limits its ability to store large quantities of energy in compact spaces. This poses a challenge for applications that require long-duration energy storage, such as grid-scale energy storage to address seasonal variations in renewable energy production or to provide backup power during extended periods of low energy generation. To address these challenges, researchers and engineers are actively working to improve the efficiency of hydrogen production and conversion technologies, develop advanced hydrogen storage materials, and design innovative energy storage systems that can better accommodate long-duration storage needs. Innovations in these areas are essential for making hydrogen energy storage more competitive and attractive for a broader range of applications.
In conclusion, while hydrogen energy storage holds great promise for a sustainable energy future, it faces challenges related to cost competitiveness and energy conversion efficiency. Overcoming these hurdles will require ongoing research, development, and collaboration among governments, industries, and research institutions. As these challenges are addressed, hydrogen energy storage has the potential to play a crucial role in supporting the transition to a cleaner and more reliable energy system.
Segmental Insights
Gas Insights
The Gas segment had the largest market share in 2022 & expected to maintain it in the forecast period. Gaseous hydrogen storage methods offer relatively high energy density compared to solid-state storage methods. This means that a significant amount of hydrogen can be stored in a relatively small volume, making it suitable for various applications, including industrial processes and energy storage. Compressed hydrogen gas and liquid hydrogen storage are well-established and mature technologies. They have been used for decades in various industries, including the aerospace and chemical sectors. This maturity has led to well-developed infrastructure and equipment for these storage methods. Gas-based storage methods are highly scalable, making them suitable for both small-scale and large-scale applications. This scalability is essential for meeting the diverse needs of different industries and energy storage projects. Gaseous and liquid hydrogen are relatively easy to transport compared to solid-state storage materials. Hydrogen can be compressed or liquefied, loaded onto trucks or pipelines, and transported to where it is needed, which is crucial for supplying hydrogen to various end-users. Gas-based storage methods provide flexibility in terms of how hydrogen is used. It can be easily converted back into electricity or used in a wide range of industrial processes, such as hydrogen fuel cells for vehicles, power generation, and chemical production. In many regions, there is already an existing infrastructure for hydrogen storage in the form of compressed gas storage facilities and liquid hydrogen production and distribution networks. This makes it more convenient and cost-effective to use gas-based storage methods.
.
Stationary Power Insights
The Stationary Power segment had the largest market share in 2022 and is projected to experience rapid growth during the forecast period. Stationary power applications, such as using hydrogen fuel cells for electricity generation, play a crucial role in integrating renewable energy sources like wind and solar into the grid. Hydrogen can store excess energy generated during times of high renewable energy production and release it when demand exceeds supply, helping to stabilize the grid. Hydrogen is seen as a viable energy storage solution, especially for large-scale applications. It can store energy over extended periods, making it suitable for load balancing and ensuring a reliable power supply when intermittent renewable sources are not generating electricity. Hydrogen fuel cells can provide reliable backup power in critical applications, such as data centers, hospitals, and emergency response centers. These applications value the uninterrupted power supply that hydrogen can offer during grid outages. Hydrogen fuel cells can be deployed in decentralized energy systems, reducing the need for centralized power plants and long-distance transmission lines. This can improve energy resilience and reduce transmission losses. In some regions, governments have incentivized the use of hydrogen in stationary power applications as part of their efforts to reduce greenhouse gas emissions and transition to cleaner energy sources. Subsidies, tax incentives, and favorable regulations can promote the adoption of hydrogen for stationary power. Hydrogen is used as a feedstock in various industrial processes, including chemical manufacturing and refining. Stationary hydrogen power generation can provide a stable source of hydrogen for these industries. Many organizations and governments are striving to achieve carbon neutrality or reduce carbon emissions. Hydrogen, when produced from renewable sources using electrolysis, can be a clean and carbon-neutral fuel, aligning with sustainability goals. Research and development efforts in stationary power applications, including improving the efficiency and cost-effectiveness of hydrogen fuel cells, have contributed to their increased adoption.
.
Regional Insights
Asia Pacific
The Asia Pacific region is expected to be the largest market for hydrogen energy storage in the coming years, due to the following factors:
Strong growth of the renewable energy sector: The Asia Pacific region is home to some of the fastest growing renewable energy markets in the world. This is driving the demand for hydrogen energy storage technologies, which can be used to store excess renewable energy.
Increasing government support for hydrogen technologies: Many governments in the Asia Pacific region are supporting the development of hydrogen technologies. This is creating a favorable environment for the growth of the hydrogen energy storage market.
Growing demand for hydrogen fuel cells in transportation: Hydrogen fuel cells are a zero-emissions alternative to internal combustion engines. The growing demand for hydrogen fuel cells in the transportation sector is driving the demand for hydrogen energy storage technologies.
Europe
The European market is also expected to grow significantly in the coming years, driven by the following factors:
EU's commitment to decarbonize its economy: The European Commission has set a target of achieving climate neutrality by 2050. Hydrogen is seen as a key technology to help achieve this goal.
Strong presence of hydrogen fuel cell manufacturers: Europe is home to some of the leading hydrogen fuel cell manufacturers in the world. This is creating a favorable environment for the growth of the hydrogen energy storage market.
Increasing government support for hydrogen technologies: Many governments in Europe are supporting the development of hydrogen technologies. This is creating a favorable environment for the growth of the hydrogen energy storage market.
Air Liquide S.A.
Linde Plc
Praxair Inc
Iwatani Corporation
Nel ASA
McPhy Energy SAS
Siemens AG
Toyota Motor Corporation
Hyundai Motor Company
Honda Motor Company Limited.
In this report, the Global Hydrogen Energy Storage Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: