![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1378431
¼¼°èÀÇ ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå-»ê¾÷ ±Ô¸ð, µ¿Çâ, ±âȸ, ¿¹Ãø, ¼¾¼ À¯Çüº°, ±â¼úº°, Áö¿ªº°, °æÀï(2018-2028³â)Automotive Passenger Car Emergency Braking System Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Sensor Type, By Technology, By Region, Competition, 2018-2028 |
¼¼°èÀÇ ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ(Automotive Passenger Car Emergency Braking System) ½ÃÀå ±Ô¸ð´Â 2022³â¿¡ 190¾ï ´Þ·¯¿¡¼, 2028³â±îÁöÀÇ CAGRÀº 10.5%·Î ÃßÀÌÇÏ¸ç ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È °·ÂÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀº ±â¼ú Çõ½ÅÀÇ À¶ÇÕ, ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö°í Á¤ºÎÀÇ ¾ö°ÝÇÑ ±ÔÁ¦·Î ÃÖ±Ù ¸î ³â°£ ÇöÀúÇÑ ¼ºÀå°ú º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå Æ¯Â¡Àº ADAS(÷´Ü¿îÀüÁö¿ø½Ã½ºÅÛ)°¡ ³Î¸® äÅõǰí ÀÖ´Â °ÍÀ̸ç, ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ÃÖ½ÅÀÇ ½Â¿ëÂ÷ÀÇ ±â°£ ±â´ÉÀ¸·Î¼ ´ëµÎÇØ ¿Ô½À´Ï´Ù. ÀÚµ¿ ±ä±Þ ºê·¹ÀÌÅ©(AEB) ¶Ç´Â Ãæµ¹ ȸÇÇ ½Ã½ºÅÛÀ̶ó°íµµ ºÒ¸®´Â ÀÌ ½Ã½ºÅÛÀº ·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó, ÃÊÀ½ÆÄ ¼¾¼ µî ´Ù¾çÇÑ ¼¾¼¸¦ Ȱ¿ëÇÏ¿© Â÷·® ÁÖº¯ »óȲÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÕ´Ï´Ù. ÷´Ü ¾Ë°í¸®ÁòÀÌ ÀÌ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÔÀ¸·Î½á ´Ù¸¥ Â÷·®, º¸ÇàÀÚ, ÀÚÀü°Å, µµ·Î Àå¾Ö¹° µî°úÀÇ ÀáÀçÀûÀÎ Ãæµ¹ À§ÇèÀ» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ°ú ADASÀÇ ÅëÇÕÀº ½ÃÀåÀÇ ÁÖ·ù Ãß¼¼°¡ µÇ°í ÀÖÀ¸¸ç, ´Ù¾çÇÑ »ç°í ¹æÁö ±â´ÉÀ» Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ¾ÈÀü ÆÐŰÁö¸¦ ¼ÒºñÀÚ¿¡°Ô Á¦°øÇÕ´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¡Á¡ ´õ Áøº¸µÇ°í ÀÖÀ¸¸ç °í¼Óµµ·Î ÁÖÇà ¹× ±³Â÷·Î¿Í °°Àº º¸´Ù ºü¸£°í ÀÛµ¿ÇÏ¸ç º¹ÀâÇÑ ½Ã³ª¸®¿À¸¦ ¼ö¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ±³Åë¾àÀÚÀÇ ¾ÈÀü¿¡ ´ëÇÑ »çȸÀû °ü½ÉÀ» ¹Ý¿µÇÏ¿© º¸ÇàÀÚ³ª ÀÚÀü°ÅÀÇ Å½Áö¿¡ ÁßÁ¡À» µÎ°Ô µÇ¾ú½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 190¾ï ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 343¾ï 2,000¸¸ ´Þ·¯ |
CAGR 2023³â-2028³â | 10.50% |
±Þ¼ºÀå ºÎ¹® | ·¹ÀÌ´õ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
¼¼°èÀÇ ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå ¼ºÀå ÃËÁø ¿äÀÎÀÇ Ã¹ ¹øÂ°´Â ÀÚµ¿Â÷ ¾ÈÀüÀÇ Á߿伺 Áõ°¡ÀÔ´Ï´Ù. ÃÖ±Ù, ÀÚµ¿Â÷ ¾÷°è¿¡¼´Â ¾ÈÀü ±â´ÉÀ» ¿ì¼±ÇÏ´Â ¹æÇâÀ¸·Î ÇöÀúÇÑ ½ÃÇÁÆ®°¡ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ±³Åë¾ÈÀü¿¡ ´ëÇÑ ±¹¹ÎÀÇ½Ä Áõ°¡, Á¤ºÎÀÇ ±ÔÁ¦ °È, ±³Åë»ç°í¿Í ±×¿¡ µû¸¥ »ç¸ÁÀÚ ¼öÀÇ Å« °¨¼Ò¸¦ ¹Ù¶ó´Â ¸ñ¼Ò¸® µî ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ¾î ¿Ô½À´Ï´Ù.
±â¼ú Áøº¸´Â ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϴµ¥ ÀÖ¾î¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÁÖ·Î ¼¾¼ ±â¼ú, ÀΰøÁö´É ¹× ¸Ó½Å·¯´× Çõ½ÅÀ¸·Î ¼ö³â°£ Å©°Ô ÁøÈÇØ ¿Ô½À´Ï´Ù.
Ãֽбä±ÞÁ¦µ¿ ½Ã½ºÅÛ¿¡´Â ·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó, ÃÊÀ½ÆÄ ¼¾¼ µî ¼¾¼°¡ ÀåÂøµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼´Â ÇÔ²² ÀÛµ¿ÇÏ¿© Ç×»ó Â÷·® ÁÖº¯À» ¸ð´ÏÅ͸µÇϰí ÀáÀçÀûÀÎ Ãæµ¹ À§ÇèÀ» °¨ÁöÇÕ´Ï´Ù. ÷´Ü ¾Ë°í¸®ÁòÀÌ ÀÌ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºê·¹ÀÌÅ© ÀÛµ¿À» ½ÃÀÛÇÒ ½Ã±â¸¦ Áï½Ã °áÁ¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀÇ ÅëÇÕÀ¸·Î °íÁ¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÌ Åº»ýÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ Àΰ£ ¿îÀüÀÚº¸´Ù ºü¸£°í Á¤È®ÇÏ°Ô ¹ÝÀÀÇÏ´Â ´É·ÂÀº ¼³µæ·ÂÀÖ´Â ÆÇ¸Å Æ÷ÀÎÆ®ÀÔ´Ï´Ù. ¼ÒºñÀÚ¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷ü ¸ðµÎ Ãßµ¹ »ç°í¸¦ ¹æÁöÇÏ°í »ç°íÀÇ ½É°¢¼ºÀ» ÁÙÀÏ °¡´É¼ºÀ» ÀνÄÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¼±Áø ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÌ ÀÚµ¿Â÷ ¾ÈÀü¿¡ °üÇÑ ±¤¹üÀ§ÇÑ »ýŰ迡 ÅëÇյǴ °Íµµ Áß¿äÇÑ µ¿ÇâÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, ·¹ÀÎŰÇÎ ¾î½Ã½ºÅϽº, ºí¶óÀÎµå ½ºÆÌ ¸ð´ÏÅ͸µ µî ±â´ÉÀ» Æ÷ÇÔÇÑ ´õ Å« ¾ÈÀü ÆÐŰÁöÀÇ ÀϺÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÔÀ¸·Î½á ½Â¿ëÂ÷ÀÇ Àü¹ÝÀûÀÎ ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ°í ¼ÒºñÀÚ¿¡°Ô Á¾ÇÕÀûÀÎ ¾ÈÀü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
¼ÒºñÀÚ Àǽİú ¼ö¿ä´Â ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø ¿äÀÎÀÔ´Ï´Ù. ¾ÈÀüÀº Ç×»ó ¼ÒºñÀÚÀÇ °ü½É»ç¿´Áö¸¸, ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¾ÈÀü ´ÜüÀÇ ÃÖ±Ù ³ë·ÂÀ¸·Î ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ÀåÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ Å©°Ô ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¼±µµÀûÀÎ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ÁÖ¸ñÇÒ¸¸ÇÑ ¸¶ÄÉÆÃ Ä·ÆäÀÎÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ´É·ÂÀ» ¼Ò°³Çϸç, Á¾Á¾ ±ØÀûÀÎ Çö½Ç ½Ã³ª¸®¿À¸¦ »ç¿ëÇÏ¿© ±× È¿°ú¸¦ ÀÔÁõÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ä·ÆäÀÎÀº ±ä±Þ ºê·¹ÀÌÅ©ÀÇ ÀÌÁ¡À» ¼ÒºñÀÚ¿¡°Ô °è¸ùÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ÀÌ ±â¼ú¿¡ ´ëÇÑ ½Å·Ú°¨µµ ³º°í ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä´Â ÀÎÁöµµ¿Í ¿¬µ¿ÇÏ¿© ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ½ÅÂ÷¸¦ ±¸ÀÔÇÒ ¶§, ¸¹Àº ¼ÒºñÀÚ´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ ¾ÈÀü Àåºñ¸¦ ¾çº¸ÇÒ ¼ö ¾ø´Â Á¶°ÇÀ¸·Î ¿ì¼±ÇÏ°Ô µÇ¾î ÀÖ½À´Ï´Ù. ±×µéÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ÀθíÀ» ±¸Çϰí, º¸Çè·á¸¦ ÁÙÀ̰í, °í°¡ÀÇ »ç°í¸¦ ¿¹¹æÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀÌÇØÇÕ´Ï´Ù.
ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ Àú·ÅÇÏ°í ´Ù¾çÇÑ Â÷·® ºÎ¹®¿¡¼ ³Î¸® ÀÌ¿ëµÉ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó, ¼ÒºñÀÚ ¼ö¿ä´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø ¿äÀÎÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ÒºñÀÚ´Â ¾ÈÀü¿¡ ´ëÇÑ ÅõÀÚ ÀÇ¿åÀ» ³ôÀ̰í ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷üµé¿¡°Ô ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±ÍÁßÇÑ ÆÇ¸Å Æ÷ÀÎÆ®°¡µÇ¾ú½À´Ï´Ù.
Á¤ºÎ ±ÔÁ¦¿Í ¾ÈÀü ±âÁØÀº ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå¿¡ ¸Å¿ì Áß¿äÇÑ ½ÃÀå ¼ºÀå ÃËÁø ¿äÀÎÀÔ´Ï´Ù. ¼¼°è °¢±¹ÀÇ Á¤ºÎ´Â ±³Åë¾ÈÀü¿¡ ´ëÇÑ ´ëó°¡ ±Þ¹«ÀÓÀ» ÀνÄÇϰí ÀÚµ¿Â÷°¡ ÀÏÁ¤ÇÑ ¾ÈÀü±âÁØÀ» ÃæÁ·Çϵµ·Ï ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ½Ç½ÃÇß½À´Ï´Ù.
±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â °¡Àå ¿µÇâ·ÂÀÖ´Â ±ÔÁ¦ Áß Çϳª´Â À¯·´ ½ÅÂ÷ Æò°¡ ÇÁ·Î±×·¥(Euro NCAP)°ú ´Ù¸¥ Áö¿ª¿¡¼ ´ëÀÀÀÔ´Ï´Ù. ¿¹¸¦ µé¾î À¯·Î NCAP´Â ½ÅÂ÷ÀÇ ¾ÈÀü¼ºÀ» Æò°¡ÇÏ°í ´Ù¾çÇÑ ¾ÈÀü ±âÁØ¿¡ µû¶ó º° Æò°¡¸¦ Á¦°øÇÕ´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ µî ¼±Áø ¾ÈÀü Àåºñ¸¦ žÀçÇÑ Â÷·®Àº º¸´Ù ³ôÀº Æò°¡¸¦ ¹Þ½À´Ï´Ù. ÀÚ¹ßÀûÀÎ ¾ÈÀü¼º Æò°¡ ÇÁ·Î±×·¥ ¿Ü¿¡µµ °¢±¹ Á¤ºÎ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡°Ô ÀÚµ¿Â÷¿¡ ƯÁ¤ ¾ÈÀü ±â¼úÀ» ¼³Ä¡ÇÒ °ÍÀ» Àǹ«ÈÇÏ´Â ±ÔÁ¦¸¦ ºÎ°úÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, À¯·´ ¿¬ÇÕ(EU)ÀÇ ÀÏ¹Ý ¾ÈÀü ±ÔÄ¢(GSR)Àº ¸ðµç ½ÅÇü ½Â¿ëÂ÷¿¡ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ °í±Þ ¾ÈÀü ±â´ÉÀ» žÀçÇØ¾ß ÇÕ´Ï´Ù.
º¸Çè Àμ¾Æ¼ºê¿Í ºñ¿ë Àý°¨Àº ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø ¿äÀÎÀÔ´Ï´Ù. º¸Çè ȸ»ç´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ »ç°íÀÇ ºóµµ¿Í ½É°¢¼ºÀ» ÁÙÀÌ°í º¸Çè û±¸ ¹× ÁöºÒ ±Ý¾×ÀÇ °¨¼Ò·Î À̾îÁú °¡´É¼ºÀ» ÀνÄÇÕ´Ï´Ù.
±× °á°ú, ¸¹Àº º¸Çè ȸ»ç´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ °í±Þ ¾ÈÀü ±â´ÉÀ» °®Ãá ÀÚµ¿Â÷¸¦ ¼ÒÀ¯ÇÏ´Â º¸Çè °è¾àÀÚ¿¡°Ô ÇÒÀΰú Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àμ¾Æ¼ºê´Â ¼ÒºñÀÚ°¡ ÀÌ·¯ÇÑ ±â¼úÀ» žÀçÇÑ ÀÚµ¿Â÷¸¦ ¼±ÅÃÇÏ´Â °·ÂÇÑ µ¿±â ºÎ¿©°¡ µË´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ¸·Î ÀÎÇÑ ºñ¿ë Àý°¨ È¿°ú´Â º¸Çè·á¿¡¸¸ ±×Ä¡Áö ¾Ê½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Ãßµ¹ »ç°í¸¦ ¹æÁöÇÏ°í ¼ö¸® ºñ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °æ¿ì¿¡ µû¶ó »ç°í¸¦ ¿ÏÀüÈ÷ ¸·°í ÀθíÀ» ±¸ÇÏ°í °³Àΰú »çȸÀÇ °æÁ¦Àû ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ »ý»ê°ú ÅëÇÕÀÌ Ç¥ÁØÈµÇ¸é ±Ô¸ðÀÇ °æÁ¦°¡ ´Þ¼ºµË´Ï´Ù. ±× °á°ú Àüü Á¦Á¶ ºñ¿ëÀÌ ³·¾ÆÁ®¼ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» žÀçÇÑ ÀÚµ¿Â÷ÀÇ ±¸¸Å °¡°Ýµµ ³·¾ÆÁý´Ï´Ù. ÀÌ ºñ¿ë Àý°¨Àº ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» º¸´Ù Æø³ÐÀº ¼ÒºñÀڵ鿡°Ô ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô Çϰí, ±× º¸±ÞÀ» ´õ¿í Çâ»ó½Ãŵ´Ï´Ù.
¼¼°èÀÇ ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÌ Á÷¸éÇÑ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ °³¹ß, Á¦Á¶ ¹× Â÷·® ÅëÇÕ°ú °ü·ÃµÈ ºñ¿ë Á¦¾àÀÔ´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ¾ÈÀü Ãø¸é¿¡¼ Å« ÀÌÁ¡À» Á¦°øÇÏÁö¸¸, ±¸Çö¿¡ ÇÊ¿äÇÑ °í±Þ ±â¼úÀº ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù. ·¹ÀÌ´õ ¹× LiDAR°ú °°Àº ÇÊ¿äÇÑ ¼¾¼ ºñ¿ë°ú ½Ç½Ã°£ ºÐ¼® ¹× ÀÇ»ç °áÁ¤¿¡ ÇÊ¿äÇÑ °è»ê ´É·ÂÀº Àüü ½Ã½ºÅÛ ºñ¿ë¿¡ Å©°Ô ±â¿©ÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµé¿¡°Ô ÀÌ·¯ÇÑ °í±Þ ¾ÈÀü ±â´ÉÀÇ ÅëÇÕ°ú Â÷·® °¡°Ý °æÀï·ÂÀ» À¯ÁöÇÒ Çʿ伺ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº ¾î·Á¿î ÀÛ¾÷ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
¼ÒºñÀÚ´Â °¡°Ý¿¡ ¹Î°¨Çϰí ÀáÀçÀûÀÎ ÀÌÁ¡À» ÀÌÇØÇÏ´õ¶óµµ ¸ðµç »ç¶÷ÀÌ ¾ÈÀü ±â´É¿¡ ÇÁ¸®¹Ì¾öÀ» ÁöºÒÇϱ⸦ ¿øÇÏÁö´Â ¾Ê½À´Ï´Ù. ÀÌ ºñ¿ë Á¦¾àÀ¸·Î ÀÎÇØ ƯÈ÷ ½Â¿ëÂ÷ ½ÃÀåÀÇ °¡°Ý¿¡ ¹Î°¨ÇÑ ºÎ¹®¿¡¼´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå ħÅõ°¡ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ º¸¼ö¡¤¼ö¸® ºñ¿ëµµ ¼ÒºñÀÚÀÇ ¿ì·Á»çÇ×ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ °íÀåÀ̳ª ¼Õ»óÀÌ ¹ß»ýÇÏ¸é ¼ö¸® ºñ¿ëÀÌ ³ôÀ» ¼ö ÀÖÀ¸¹Ç·Î ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÌ ÀåÂøµÈ Â÷·®À» ¼±ÅÃÇÏ´Â °ÍÀ» ¸Á¼³ÀÌ´Â ±¸¸ÅÀÚ°¡ ³ª¿Ã ¼ö ÀÖ½À´Ï´Ù.
¼ÒºñÀÚÀÇ ±³À°°ú ÀǽÄÀº ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå¿¡ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÎÁöµµ°¡ ³ô¾ÆÁö°í ÀÖ´Â °Í, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ¾î¶»°Ô ÀÛµ¿Çϰí, ¾î¶² ÀÌÁ¡ÀÌ ÀÖ°í, ¾î¶² ÇѰ谡 ÀÖ´ÂÁö¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ Áö½ÄÀº ¿©ÀüÈ÷ »ó´çÇÑ Â÷À̰¡ ÀÖ½À´Ï´Ù. ¸¹Àº ¼ÒºñÀÚµéÀº ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ±â´ÉÀ» Àß ÀÌÇØÇÏÁö ¸øÇϰųª ´Ù¸¥ ADAS(÷´Ü ¿îÀü Áö¿ø ½Ã½ºÅÛ)¿Í È¥µ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ°¡ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ½ÇÇöµÉ ¼ö ÀÖ´Â °Í¿¡ ´ëÇØ Çö½ÇÀûÀÎ ±â´ë¸¦ °®°Ô Çϱâ À§Çؼ´Â ¸íÈ®ÇÑ Ä¿¹Â´ÏÄÉÀ̼ǰú ±³À°ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ¾î¶»°Ô ÀÛµ¿ÇÏ´ÂÁö¿¡ ´ëÇÑ Åõ¸í¼ºÀÌ ºÎÁ·Çϱ⠶§¹®¿¡ ¿ÀÇØ³ª ºÒ½ÅÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ Áß¿¡´Â ¿ÀÀÛµ¿À̳ª ¿À·ù¸¦ µÎ·Á¿öÇϰí ÀÚµ¿ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ¿¡ ¼ø°£ÀûÀÎ ÆÇ´ÜÀ» ¸Ã±â´Â °ÍÀ» ÁÖÀúÇÏ´Â »ç¶÷µµ ÀÖÀ»Áöµµ ¸ð¸¨´Ï´Ù. ÀÌ·¯ÇÑ ½Å·ÚÀÇ ºÎÁ·Àº äÅÃÀÇ À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
½Â¿ëÂ÷¿¡ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â °ÍÀº ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡°Ô Å« µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ºê·¹ÀÌÅ© ½Ã½ºÅÛ, ½ºÆ¼¾î¸µ, ÀüÀÚ Á¦¾î ÀåÄ¡(ECU)¿Í °°Àº ´Ù¸¥ Â÷·® ±¸¼º ¿ä¼Ò¿Í ¿øÈ°ÇÏ°Ô ÅëÇյǾî¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ Á¶È·Ó°Ô ÀÛµ¿ÇÏ°í ´Ù¸¥ Â÷·® ±â´ÉÀ» ¹æÇØÇÏÁö ¾Êµµ·Ï ÇÏ´Â °ÍÀº º¹ÀâÇÑ ¿£Áö´Ï¾î¸µ ÀÛ¾÷ÀÔ´Ï´Ù. ¶ÇÇÑ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ ¹× ·¹ÀÎŰÇÎ ¾î½Ã½ºÅϽº¿Í °°Àº ´Ù¸¥ ADAS ±â´É°ú Åë½ÅÇÏ¿© Á¾ÇÕÀûÀÎ ¾ÈÀü ÆÐŰÁö¸¦ Á¦°øÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. ÀÌ ÅëÇÕ¿¡´Â Ç¥ÁØÈµÈ Åë½Å ÇÁ·ÎÅäÄݰú ´Ù¸¥ ±¸¼º ¿ä¼Ò¿Í ¼ÒÇÁÆ®¿þ¾î ½Ã½ºÅÛ °£ÀÇ ½ÅÁßÇÑ Á¶Á¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù.
¶ÇÇÑ ½ÃÀå¿¡´Â ´Ù¾çÇÑ Â÷Á¾°ú ºê·£µå°¡ ÀÖ¾î ÅëÇÕÀÇ º¹À⼺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. °¢ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â °íÀ¯ÇÑ ½Ã½ºÅÛ°ú »ç¾çÀ» °¡Áú ¼ö ÀÖÀ¸¹Ç·Î ¼·Î ´Ù¸¥ Á¦Á¶¾÷ü¿Í ¸ðµ¨°£¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â º¸ÆíÀûÀÎ ¼Ö·ç¼ÇÀ» ¸¸µå´Â °ÍÀº ¾î·Æ½À´Ï´Ù. »óÈ£ ¿î¿ë¼º°ú ȣȯ¼º ¹®Á¦´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ º¸±ÞÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀڴ ȣȯ¼º Á¦¾àÀ¸·Î ÀÎÇØ ¾ÖÇÁÅ͸¶ÄÏ ¼Ö·ç¼ÇÀ» ¼±ÅÃÇϰųª ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ÀåÂøµÈ Â÷·®À» °³Á¶ÇϱⰡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù.
Ã¥ÀÓ°ú ¹ýÀû ¿ì·Á´Â ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÌ Á÷¸éÇÑ ½É°¢ÇÑ °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀÚÀ²ÀûÀ¸·Î ÀÛµ¿ÇÏ¿© Ãæµ¹ °¡´É¼ºÀ» °¨ÁöÇÏ°í ´ëÀÀÇϹǷΠ½Ã½ºÅÛ ¿ÀÀÛµ¿À̳ª °íÀåÀÌ ¹ß»ýÇÑ °æ¿ì Ã¥ÀÓÀÇ À§Ä¡¿¡ ´ëÇØ Àǹ®ÀÌ »ý±é´Ï´Ù. Ã¥ÀÓÀÇ À§Ä¡¸¦ °áÁ¤ÇÏ´Â °ÍÀº º¹ÀâÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ã½ºÅÛÀÇ °íÀåÀ¸·Î »ç°í°¡ ¹ß»ýÇÑ °æ¿ì¿¡ Ã¥ÀÓÀ» Áö´Â °ÍÀº ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÎÁö, ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ°ø±ÞÀÚÀÎÁö, ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚÀÎÁö, ¾Æ´Ï¸é Â÷·®ÀÇ ¼ÒÀ¯ÀÚÀΰ¡. ÀÚÀ²¾ÈÀü½Ã½ºÅÛÀ» µÑ·¯½Ñ ¹ýÀû ƲÀº ¾ÆÁ÷ ¹ßÀüµµ»óÀ̸ç Ã¥ÀÓ ¹®Á¦¸¦ Á¾ÇÕÀûÀ¸·Î ´Ù·ç±â À§Çؼ´Â ¸íÈ®ÇÑ ±ÔÁ¦°¡ ÇÊ¿äÇÕ´Ï´Ù.
¶ÇÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ì·Á°¡ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ¼¾¼ ¹× µ¥ÀÌÅÍ Ã³¸®¿¡ ÀÇÁ¸ÇÏ¸ç »çÀ̹ö °ø°Ý ¹× ¹«´Ü ¾×¼¼½º¿¡ Ãë¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¹Ð µ¥ÀÌÅ͸¦ º¸È£Çϰí ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ º¸¾ÈÀ» È®º¸ÇÏ´Â °ÍÀº ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ¾ò±â À§ÇØ ³ë·ÂÇØ¾ß ÇÏ´Â Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù.
Ç¥ÁØÈ¿Í ±ÔÁ¦´Â ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå¿¡ ¾î·Á¿ò°ú µ¿½Ã¿¡ ±âȸÀ̱⵵ ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ¾ÈÀü°ú È¿°ú¸¦ º¸ÀåÇϱâ À§Çؼ´Â ±ÔÁ¦°¡ ÇÊ¿äÇÏÁö¸¸, Áö¿ª¿¡ µû¶ó ±âÁذú ¿ä±¸»çÇ×ÀÌ ´Ù¸£±â ¶§¹®¿¡ ½ÃÀå ¿ªÇÐÀÌ º¹ÀâÇØÁú ¼ö ÀÖ½À´Ï´Ù. ±¹°¡¿Í Áö¿ª¿¡ µû¶ó ÀÚü ¾ÈÀü ±ÔÁ¤°ú ½ÃÇè ÀýÂ÷°¡ ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯·´, ¹Ì±¹, ¾Æ½Ã¾Æ¿¡¼´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ¼º´É Æò°¡ ±âÁØÀÌ ¾à°£ ´Ù¸¦ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ¿©·¯ ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ ½Ã½ºÅÛÀ» ÁؼöÇØ¾ß ÇÏ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ °æ¿ì Ãß°¡ ºñ¿ëÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ, ±ÔÁ¦´Â ±â¼ú Áøº¸¿¡ µû¶ó ²÷ÀÓ¾øÀÌ ÁøÈÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü¿¡°Ô ÀÌ·¯ÇÑ ÁøÈÇϴ ǥÁØÀ» ÁؼöÇÏ´Â °ÍÀº ¸¹Àº ÀÚ¿øÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±×·¯³ª Ç¥ÁØÈ´Â ±âȸÀ̱⵵ÇÕ´Ï´Ù. °³¹ß ¹× Å×½ºÆ® ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÔÀ¸·Î½á ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¼¼°è ¾ÈÀü ±âÁØÀ» ÁؼöÇÏ´Â ÀÚµ¿Â÷ÀÇ ¼³°è ¹× Á¦Á¶¸¦ ¿ëÀÌÇÏ°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÇè ÀýÂ÷ÀÇ Ç¥ÁØÈ´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú È¿À²¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ³ôÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå¿¡¼ ÁÖ¸ñÇÒ¸¸ÇÑ µ¿Çâ Áß Çϳª´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ°ú ´Ù¸¥ ADAS ±â´É°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö Áö¿ø, ºí¶óÀÎµå ½ºÆÌ ¸ð´ÏÅ͸µ, ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ µî ±â´ÉÀ» Æ÷ÇÔÇÑ Á¾ÇÕÀûÀÎ ¾ÈÀü ÆÐŰÁö¸¦ Á¦°øÇÕ´Ï´Ù.
ÀÌ·¯ÇÑ ÅëÇÕÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ÅëÇÕµÇ¾î ±â´ÉÇÔÀ¸·Î½á ÀÚµ¿Â÷ ÀüüÀÇ ¾ÈÀü¼ºÀ» ³ôÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ°ú Åë½ÅÇÏ¿© Àü¹æ ±³Åë »óȲ¿¡ µû¶ó Â÷·®ÀÇ ¼Óµµ¸¦ Á¶Á¤ÇÒ ¼ö ÀÖ¾î º¸´Ù ºÎµå·´°í È¿À²ÀûÀÎ ±³Åë È帧À¸·Î À̾îÁý´Ï´Ù. ¸¶Âù°¡Áö·Î, ±ä±Þ ºê·¹ÀÌÅ©¿Í Â÷¼± À¯Áö º¸Á¶¿ÍÀÇ ¿¬°è´Â Â÷¼± ÆíÂ÷·Î ÀÎÇÑ »ç°í ¹æÁö¿¡ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼ Á¾ÇÕÀûÀÎ ¾ÈÀü ¼Ö·ç¼ÇÀ¸·Î ±¤¹üÀ§ÇÑ º¯È¸¦ ¹Ý¿µÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ´ÙÁß ¾ÈÀü ±â´ÉÀ» ÅëÇÕ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© »ç°í ¿¹¹æ¿¡ ´ëÇÑ º¸´Ù Á¾ÇÕÀûÀ̰í È¿°úÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇϸç, ±Ã±ØÀûÀ¸·Î ž½ÂÀÚ¿Í º¸ÇàÀÚ¿¡°Ô º¸´Ù ¾ÈÀüÇÑ ÀÚµ¿Â÷ ½ÇÇö ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
¶Ç ´Ù¸¥ Å« µ¿ÇâÀº ÀÚµ¿ ±ä±Þ ºê·¹ÀÌÅ©(AEB) ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀÔ´Ï´Ù. ¼¾¼ ±â¼ú, ÀΰøÁö´É, ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î AEB ½Ã½ºÅÛÀº Á¡Á¡ ´õ Áøº¸µÇ°í ÀÖ½À´Ï´Ù.
ÃֽŠAEB ½Ã½ºÅÛ¿¡´Â ·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó, ÃÊÀ½ÆÄ ¼¾¼ µî ´Ù¾çÇÑ ¼¾¼°¡ žÀçµÇ¾î Â÷·® ÁÖÀ§¸¦ Ç×»ó °¨½ÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼¾¼´Â ´Ù¸¥ Â÷·®»Ó¸¸ ¾Æ´Ï¶ó º¸ÇàÀÚ, ÀÚÀü°Å ¹× µµ·Î Àå¾Ö¹°µµ °¨Áö ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÷´Ü ¾Ë°í¸®ÁòÀÌ ÀÌ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© ºê·¹ÀÌÅ© ÀÛµ¿À» ½ÃÀÛÇÒ ½Ã±â¸¦ Áï½Ã °áÁ¤ÇÕ´Ï´Ù. ¶ÇÇÑ, AEB ½Ã½ºÅÛÀº º¸´Ù °í¼ÓÀ¸·Î ÀÛµ¿ÇÏ¿© °í¼Óµµ·Î ÁÖÇàÀ̳ª ±³Â÷·Î µî º¹ÀâÇÑ ½Ã³ª¸®¿À¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÁøÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¸´Ù Æø³ÐÀº ÀáÀçÀûÀÎ Ãæµ¹ À§ÇèÀ» °¨ÁöÇÏ°í ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. AEB ±â¼ú °³¼±ÀÌ ÁøÇàµÊ¿¡ µû¶ó Ãßµ¹ »ç°í ¹ß»ý·üÀ» ´ëÆø ÁÙÀÌ°í »ç°í ½É°¢µµ¸¦ ÁÙÀÏ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â °íµµÀÇ ÀÚµ¿È¸¦ ÅëÇØ ±³Åë ¾ÈÀüÀ» °ÈÇÏ°í »ç°í¸¦ ¿¹¹æÇÏ´Â ¾÷°èÀÇ ¾à¼Ó°ú ÀÏÄ¡ÇÕ´Ï´Ù.
¼¼°èÀÇ ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå¿¡¼´Â Ç¥ÁØÈ¿Í ±ÔÁ¦ÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ ÁøÇàµÊ¿¡ µû¶ó, ±ÔÁ¦±â°ü°ú ¾÷°è ´Üü´Â Ç¥ÁØÈµÈ ½ÃÇè ÀýÂ÷¿Í ¾ÈÀü ¿ä°ÇÀ» ¼ö¸³Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Ç¥ÁØÈ ³ë·ÂÀº ¼·Î ´Ù¸¥ Â÷Á¾°ú ºê·£µå °£¿¡ ÀϰüµÈ ¾ÈÀü ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ´Ù¾çÇÑ Áö¿ªÀÇ ¾ÈÀü ±ÔÁ¤¿¡ È¿À²ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. Á¤ºÎ ±ÔÁ¦ ¿Ü¿¡µµ Ç¥ÁØÈµÈ ¾ÈÀü Àåºñ¸¦ ¿ä±¸ÇÏ´Â ¼ÒºñÀÚ ¼ö¿äµµ ÀÌ µ¿ÇâÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº Á¾Á¾ ¾ÈÀü ±â°ü¿¡ ÀÇÇØ Å×½ºÆ®µÇ°í Æò°¡µÈ Â÷·®À» ¿ä±¸Çϰí, AEB¿Í °°Àº Ç¥ÁØÈµÈ ¾ÈÀü ±â´ÉÀº ÀÌ·¯ÇÑ Æò°¡¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Ç¥ÁØÈ¿Í ±ÔÁ¦°¡ º¸±ÞµÊ¿¡ µû¶ó ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ÁøÈ¿Í °³¼±À» °è¼ÓÇÏ¿© °á°úÀûÀ¸·Î ´õ ¾ÈÀüÇÑ ÀÚµ¿Â÷°¡ µµ·Î¸¦ ´Þ¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀå µ¿ÇâÀ¸·Î º¸ÇàÀÚ¿Í ÀÚÀü°ÅÀÇ °¨Áö ±â´É¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀ¸·Î ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀº ´Ù¸¥ Â÷·®°úÀÇ Ãæµ¹ ȸÇǸ¦ ÁÖ¿ä ´ë»óÀ¸·Î »ï¾ÒÁö¸¸, ¾÷°è´Â ÇöÀç ±³Åë ¾àÀÚ¿¡ ´ëÇÑ °ü½ÉÀ¸·Î À̵¿Çϰí ÀÖ½À´Ï´Ù.
º¸ÇàÀÚ ¹× ÀÚÀü°Å »ç¿ëÀÚ °¨Áö ½Ã½ºÅÛÀº °í±Þ ¼¾¼¿Í ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© Â÷·®ÀÇ Áø·Î ¶Ç´Â °¡±îÀÌ¿¡ ÀÖ´Â »ç¶÷À» ½Äº°Çϰí ÃßÀûÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº º¸ÇàÀÚ¿Í ÀÚÀü°Å »ç¿ëÀÚ Æ¯À¯ÀÇ ¿îµ¿ ÆÐÅϰú Ư¼ºÀ» ÀνÄÇϵµ·Ï ¼³°èµÇ¾úÀ¸¸ç Â÷·®Àº Ãæµ¹ °¡´É¼º¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀº ƯÈ÷ µµ½Ã ȯ°æ¿¡¼ º¸ÇàÀÚ¿Í ÀÚÀü°ÅÀÇ ¾ÈÀü¼º¿¡ ´ëÇÑ º¸´Ù ±¤¹üÀ§ÇÑ »çȸÀû °ü½É°ú ÀÏÄ¡ÇÕ´Ï´Ù. µµº¸ ¹× ÀÚÀü°Å¿Í °°Àº ´ëü ±³Åë ¼ö´ÜÀ» ¼±ÅÃÇÏ´Â »ç¶÷ÀÌ ´Ã¾î³²¿¡ µû¶ó ÀÌ·¯ÇÑ ±³Åë ¾àÀÚ¸¦ º¸È£ÇÏ´Â °í±Þ ¾ÈÀü ±â´ÉÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü °¢»ç´Â ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ Ç¥ÁØ ±â´ÉÀ¸·Î¼ º¸ÇàÀÚ³ª ÀÚÀü°Å ÀÌ¿ëÀÚÀÇ Å½Áö ±â´ÉÀ» žÀçÇÏ´Â °æÇâÀ» °ÈÇϰí ÀÖ¾î, ÀÌ·¯ÇÑ º¸ÇàÀÚ³ª ÀÚÀü°Å ÀÌ¿ëÀÚ°¡ °ü°èÇÏ´Â »ç°íÀÇ °¨¼Ò¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â ±³Åë ¾ÈÀüÀ» °ÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÁøÈÇÏ´Â µµ½Ã ¸ðºô¸®Æ¼ÀÇ °úÁ¦¸¦ ÇØ°áÇÏ´Â ¾÷°èÀÇ ÀÚ¼¼¸¦ ¹Ý¿µÇÕ´Ï´Ù.
±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÌ ºÒÇÊ¿äÇÏ°Ô ÀÛµ¿ÇÒ ¶§ ¹ß»ýÇÏ´Â ¿ÀŽÁö´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¼ÒºñÀÚ ¸ðµÎ¿¡°Ô ¿ì·Á »çÇ×À̾ú½À´Ï´Ù. À̸¦ ÀνÄÇÏ°í ¼¼°è ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀÇ ÁÖ¸ñÇÒ¸¸ÇÑ µ¿ÇâÀº ¿ÀŽÁö °¨¼ÒÀÇ Áö¼ÓÀûÀÎ °³¼±ÀÔ´Ï´Ù. ¿ÀŽÀº ÀÓ¹ÚÇÑ À§ÇùÀÌ ¾ø´Âµ¥ °©Àڱ⠺극ÀÌÅ©¸¦ °É¾î ¿îÀüÀÚ¿Í µ¿½ÂÀÚ¿¡°Ô Æó¸¦ ³¢Ä¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ¿ÏÈÇϱâ À§ÇØ Á¦Á¶¾÷ü´Â À§Çù °¨ÁöÀÇ Á¤È®¼ºÀ» ³ôÀÌ´Â ¾Ë°í¸®Áò°ú ¼¾¼ ±â¼úÀ» °³¼±Çß½À´Ï´Ù.
ÀÌ·¯ÇÑ °³¼±¿¡´Â ½ÇÁ¦ Ãæµ¹ À§Çè°ú ¾ç¼º ¹°Ã¼¿Í »óȲÀ» ±¸º°ÇÏ´Â ½Ã½ºÅÛÀÇ ´É·ÂÀ» ¹Ì¼¼ Á¶Á¤ÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÷´Ü ¸Ó½Å·¯´× ±â¼úÀº ¼¾¼ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í ±ä±Þ ºê·¹ÀÌÅ©¸¦ ½ÃÀÛÇÒ ½Ã±â¸¦ º¸´Ù Á¤È®ÇÏ°Ô ÆÇ´ÜÇϱâ À§ÇØ Ã¤ÅõǾú½À´Ï´Ù. ¸ñÇ¥´Â »ç°í¸¦ ¿¹¹æÇÏ°í ¿ÀŽÁö¸¦ ÃÖ¼ÒÈÇÏ´Â ±ÕÇüÀ» ÀÌ·ç´Â °ÍÀÔ´Ï´Ù. ¾÷°è°¡ ¿ÀŽÁö¸¦ ÁÙÀ̱â À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÔÀ¸·Î½á ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀÌ ³ô¾ÆÁö°í ¼ÒºñÀڷκÎÅÍÀÇ ½Å·Úµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
½Â¿ëÂ÷¿ë ÀÚµ¿ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ¾÷°è¿¡¼ ·¹ÀÌ´õ ¼¾¼´Â ¼¼°è ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. ·¹ÀÌ´õ ¼¾¼´Â AEBS ±â¼ú¿¡¼ Ãæµ¹ °¨Áö ¹× ȸÇǸ¦ À§ÇÑ ÀϹÝÀûÀÎ ¿É¼ÇÀ̸ç, ÀÌ ±âÈ£¿¡´Â ¸î °¡Áö ¿øÀÎÀÌ ÀÖ½À´Ï´Ù. ·¹ÀÌ´õ ¼¾¼´Â ºñ, ¾È°³, ÀúÁ¶µµ¿Í °°Àº ´Ù¾çÇÑ ±â»ó Á¶°Ç¿¡¼ ¹°Ã¼¿Í Àå¾Ö¹°À» Á¤È®ÇÏ°Ô °¨ÁöÇÏ´Â µ¥ Ź¿ùÇÕ´Ï´Ù. ±Ùó¿¡ ÀÖ´Â ¹°Ã¼ÀÇ °Å¸®, ¼Óµµ, »ó´ëÀûÀÎ ¿òÁ÷ÀÓÀ» ÃøÁ¤ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Ãæµ¹ ȸÇÇ ¿ëµµ¿¡ ÃÖÀûÀÔ´Ï´Ù. ·¹ÀÌ´õ ¼¾¼´Â Àα٠¹°Ã¼¿¡ ¹Ý»çµÇ´Â ÀüÆÄ¸¦ ¹ß½ÅÇϹǷΠ½Ã½ºÅÛÀº Â÷·® ÁÖº¯ÀÇ »ó¼¼ÇÑ ¸ÊÀ» ±¸ÃàÇÏ¿© ¿òÁ÷ÀÌ´Â ¹°Ã¼¿Í Á¤ÁöµÈ ¹°Ã¼¸¦ Á¤È®ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ·¹ÀÌ´õ ¼¾¼´Â ´Ù¸¥ ¼¾¼ À¯Çü¿¡ ºñÇØ ´õ ¸Õ °ÍÀ» ÀνÄÇÏ´Â ´É·ÂÀÌ ¿ì¼öÇÕ´Ï´Ù. AEBS ½Ã½ºÅÛÀº ÀÌ °Å¸®¸¦ È®´ëÇÏ¿© ¹ÝÀÀ ½Ã°£À» ´ÜÃàÇϰí ÀáÀçÀûÀÎ »ç°íÀÇ À§ÇèÀ» ¿¹ÃøÇϰí Á¶±â¿¡ ºê·¹ÀÌÅ© ÀÛµ¿À» ½ÃÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÈÀü¼ºÀ» ³ôÀ̰í Ãæµ¹ÀÇ ½É°¢¼ºÀ» ÁÙÀ̱â À§ÇØÀÌ Á¶±â °¨ÁöÀÇ Á߿伺Àº ¾Æ¹«¸® °Á¶Çصµ ³Ê¹« ¸¹Áö´Â ¾Ê½À´Ï´Ù.
2022³â ½Â¿ëÂ÷¿ë ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ½ÃÀåÀº ºÏ¹Ì°¡ ´ëºÎºÐÀ» Â÷ÁöÇß½À´Ï´Ù. ÃÖ±Ù ºÏ¹Ì ½ÃÀå¿¡¼ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ µ¿ÇâÀº ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºÏ¹Ì¿¡¼´Â ±³Åë ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ƯÈ÷ »ç°íÀÇ ºóµµ¿Í ½É°¢µµ¸¦ ³·Ãß´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. °í±Þ ºê·¹ÀÌÅ© ½Ã½ºÅÛ°ú °°Àº Áß¿äÇÑ ¾ÈÀü ¿ä¼Ò´Â Ãæµ¹À» ¿ÏÈÇϰųª ȸÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ ¼ö¿ä´Â ±³Åë ¾ÈÀü¿¡ ´ëÇÑ ÀÏ¹Ý ½Ã¹ÎÀÇ ÀÇ½Ä Áõ°¡¿Í °ü½É Áõ°¡¿¡ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì ¼ÒºñÀÚµéÀº ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ ÀåÁ¡À» ÀνÄÇÏ°Ô µÇ¾ú½À´Ï´Ù.
±ä±ÞÁ¦µ¿ ½Ã½ºÅÛ°ú °°Àº ÃÖ÷´Ü ¾ÈÀü ±â´ÉÀ» °®Ãá ÀÚµ¿Â÷´Â Ãß°¡ ¹æ¾î ·¹À̾ Á¦°øÇϱ⠶§¹®¿¡ ¾ÈÀüÀ» Áß½ÃÇÏ´Â ¼ÒºñÀÚ¿¡°Ô ¿ì¼±ÇÕ´Ï´Ù. Á¦Ç° ¼ö¿ä´Â ¼ÒºñÀÚÀÇ ÃÖ÷´Ü ºê·¹ÀÌÅ© ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼±È£µµ Áõ°¡¿¡ ¿µÇâÀ» ¹Þ½À´Ï´Ù. ºÏ¹Ì¿¡¼´Â ÀÚµ¿Â÷ ¼ö¿äÀÇ Áö¼ÓÀûÀÎ Áõ°¡¿Í ¾ÈÀü ±â´É¿¡ ´ëÇÑ ÀÇ½Ä Áõ°¡°¡ ÀÚµ¿ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀÇ »ó½ÂÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ ¾Æ½Ã¾Æ ÅÂÆò¾ç ½ÃÀå¿¡¼´Â °³·®Çü ºê·¹ÀÌÅ© ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾Æ ÅÂÆò¾ç¿¡¼´Â »ó´ë¹æ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü(OEM)°¡ ´Ù¾çÇÑ Â÷Á¾¿¡ ±ä±ÞÁ¦µ¿ ½Ã½ºÅÛÀ» žÀçÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. OEM Á¦Á¶¾÷ü´Â ÃÖ÷´Ü ¾ÈÀü Á¶Ä¡°¡ ÇÊ¿äÇÔÀ» ÀνÄÇϰí ÀÖÀ¸¸ç, ±ä±Þ ºê·¹ÀÌÅ©¸¦ Ç¥ÁØ Àåºñ ¶Ç´Â ¿É¼ÇÀ¸·Î Á¦°øÇÔÀ¸·Î½á °æÀï»ç¿Í Â÷º°È¸¦ µµ¸ðÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ºê·¹ÀÌÅ© ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÌ Áö¿ª ¼ö¿ä´Â OEM ½ÃÀå °æÀï·Â¿¡ ÀÇÇØ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
Global Automotive Passenger Car Emergency Braking System Market has valued at USD 19 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 10.5% through 2028. The Global Automotive Passenger Car Emergency Braking System Market has experienced remarkable growth and transformation in recent years, driven by a convergence of technological innovation, increased awareness of vehicle safety, and stringent government regulations. This market is characterized by the widespread adoption of advanced driver assistance systems (ADAS), with emergency braking systems emerging as a cornerstone feature in modern passenger cars. These systems, often referred to as Autonomous Emergency Braking (AEB) or Collision Avoidance Systems, utilize an array of sensors, including radar, LiDAR, cameras, and ultrasonic sensors, to monitor the vehicle's surroundings continuously. Advanced algorithms process this data in real-time, enabling the system to detect potential collision risks with other vehicles, pedestrians, cyclists, and obstacles on the road. The integration of emergency braking systems with ADAS has become a dominant trend in the market, offering consumers comprehensive safety packages that encompass a range of accident prevention features. As technology continues to advance, these systems are becoming increasingly sophisticated, operating at higher speeds and handling complex scenarios, such as highway driving and intersections. Moreover, there is a growing emphasis on pedestrian and cyclist detection, reflecting a societal concern for the safety of vulnerable road users.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 19 Billion |
Market Size 2028F | USD 34.32 Billion |
CAGR 2023-2028 | 10.50% |
Fastest Growing Segment | Radar |
Largest Market | North America |
The first and foremost market driver for the Global Automotive Passenger Car Emergency Braking System Market is the growing emphasis on vehicle safety. In recent years, there has been a notable shift in the automotive industry towards prioritizing safety features. This shift has been catalyzed by various factors, including rising public awareness of road safety, stricter government regulations, and a desire to reduce the staggering number of road accidents and associated fatalities.
Governments and regulatory bodies worldwide have been actively pushing for safer vehicles by imposing stringent safety standards and regulations. As part of these regulations, many countries have mandated the inclusion of advanced safety technologies, including emergency braking systems, in passenger cars. Automakers are thus compelled to integrate these systems into their vehicles to meet compliance requirements. Consumers, too, are increasingly conscious of vehicle safety. High-profile accidents and public awareness campaigns have contributed to this awareness. As a result, many car buyers are prioritizing safety features when making their purchasing decisions. Emergency braking systems, which are designed to prevent or mitigate collisions, have gained popularity due to their potential to save lives and reduce the severity of accidents.
This growing emphasis on vehicle safety is a powerful driver for the Emergency Braking System Market, as it creates a robust demand for advanced safety technologies. As consumers become more educated about the benefits of these systems, and as governments continue to raise safety standards, the market for emergency braking systems is expected to expand further.
Technological advancements play a pivotal role in driving the growth of the Global Automotive Passenger Car Emergency Braking System Market. These systems have evolved significantly over the years, primarily due to innovations in sensor technologies, artificial intelligence, and machine learning.
Modern emergency braking systems are equipped with an array of sensors, including radar, LiDAR, cameras, and ultrasonic sensors. These sensors work in tandem to constantly monitor the vehicle's surroundings, detecting potential collision risks. Advanced algorithms process this data to make split-second decisions about when to initiate braking maneuvers. The integration of these cutting-edge technologies has resulted in highly accurate and reliable emergency braking systems. The ability of these systems to react faster and more accurately than human drivers is a compelling selling point. As consumers and automakers alike recognize the potential to prevent rear-end collisions and reduce the severity of accidents, the demand for these advanced systems continues to rise.
Moreover, the integration of emergency braking systems into the broader ecosystem of vehicle safety is a key trend. These systems are often part of larger safety packages that include features such as adaptive cruise control, lane-keeping assistance, and blind-spot monitoring. The seamless integration of these technologies enhances the overall safety of passenger cars and offers consumers a comprehensive safety solution.
Consumer awareness and demand are vital drivers for the Global Automotive Passenger Car Emergency Braking System Market. While safety has always been a concern for consumers, recent efforts by automakers and safety organizations have significantly raised awareness about the benefits of emergency braking systems.
High-profile marketing campaigns by leading automakers showcase the capabilities of these systems, often using dramatic real-life scenarios to demonstrate their effectiveness. These campaigns not only educate consumers about the advantages of emergency braking but also create a sense of trust in the technology.
Consumer demand for these systems has grown in tandem with awareness. When purchasing a new car, many consumers now prioritize safety features, including emergency braking systems, as non-negotiable requirements. They understand that these systems can potentially save lives, reduce insurance premiums, and prevent costly accidents.
As these systems become more affordable and widely available across various vehicle segments, consumer demand is expected to remain a significant driver for the Emergency Braking System Market. Consumers are increasingly willing to invest in their safety, making these systems a valuable selling point for automakers.
Government regulations and safety standards are pivotal market drivers for the Global Automotive Passenger Car Emergency Braking System Market. Governments worldwide have recognized the urgent need to address road safety and have implemented stringent regulations to ensure that vehicles meet certain safety criteria.
One of the most influential regulations driving the adoption of emergency braking systems is the European New Car Assessment Programme (Euro NCAP) and its counterparts in other regions. Euro NCAP, for instance, assesses the safety of new vehicles and awards star ratings based on various safety criteria. Vehicles equipped with advanced safety features, including emergency braking systems, receive higher ratings. In addition to voluntary safety assessment programs, governments have imposed mandatory regulations that require automakers to include specific safety technologies in their vehicles. For example, the European Union's General Safety Regulation (GSR) mandates the inclusion of advanced safety features, including emergency braking systems, in all new passenger cars.
Insurance incentives and cost savings are significant drivers for the Global Automotive Passenger Car Emergency Braking System Market. Insurers recognize the potential of these systems to reduce the frequency and severity of accidents, leading to lower claims and payouts.
As a result, many insurance companies offer discounts and incentives to policyholders who own vehicles equipped with advanced safety features, including emergency braking systems. These incentives act as a powerful motivator for consumers to opt for vehicles with these technologies. The cost savings associated with emergency braking systems extend beyond insurance premiums. These systems can prevent costly rear-end collisions and reduce repair expenses. In some cases, they may even prevent accidents altogether, saving lives and reducing the financial burden on individuals and society.
Furthermore, as the production and integration of these systems become more standardized, economies of scale are achieved. This leads to a decrease in the overall cost of manufacturing and subsequently lowers the purchase price of vehicles equipped with these systems. This cost reduction makes emergency braking systems more accessible to a broader range of consumers, further boosting their adoption.
One of the primary challenges faced by the Global Automotive Passenger Car Emergency Braking System Market is the cost constraints associated with developing, manufacturing, and integrating these systems into vehicles. While emergency braking systems offer significant safety benefits, the advanced technologies required to implement them can be expensive. The cost of the necessary sensors, such as radar and LiDAR, along with the computational power required for real-time analysis and decision-making, contributes significantly to the overall cost of the system. For automakers, balancing the integration of these advanced safety features with the need to keep vehicle prices competitive can be a daunting task.
Consumers are price-sensitive, and not all are willing to pay a premium for safety features, even if they understand their potential benefits. This cost constraint can limit the market penetration of emergency braking systems, particularly in price-sensitive segments of the passenger car market. Furthermore, the cost of maintenance and repair of these systems can also be a concern for consumers. In the event of a system malfunction or damage, repair costs can be high, which may deter some buyers from opting for vehicles equipped with emergency braking systems.
Consumer education and awareness represent a significant challenge for the Global Automotive Passenger Car Emergency Braking System Market. While awareness of these systems has been growing, there is still a considerable gap in consumer knowledge regarding how these systems work, their benefits, and their limitations. Many consumers may not fully understand the capabilities of emergency braking systems or may confuse them with other advanced driver assistance systems (ADAS). Clear communication and education are essential to ensure that consumers have realistic expectations of what these systems can achieve. Additionally, misconceptions and distrust can arise due to a lack of transparency about how these systems function. Some consumers may be hesitant to trust autonomous emergency braking systems to make split-second decisions, fearing false activations or errors. This lack of trust can be a barrier to adoption.
The integration of emergency braking systems into passenger cars can pose significant challenges for automakers. These systems require seamless integration with other vehicle components, such as the braking system, steering, and electronic control units (ECUs). Ensuring that these systems work harmoniously and do not interfere with other vehicle functions is a complex engineering task. Moreover, emergency braking systems must be able to communicate with other ADAS features, such as adaptive cruise control and lane-keeping assistance, to provide a comprehensive safety package. This integration requires standardized communication protocols and careful coordination among different components and software systems.
Furthermore, the diversity of vehicle models and brands in the market adds to the complexity of integration. Each automaker may have its proprietary systems and specifications, making it challenging to create universal solutions that can be applied across different makes and models. Interoperability and compatibility issues can hinder the widespread adoption of emergency braking systems. Consumers may face difficulties in choosing aftermarket solutions or retrofitting their vehicles with these systems due to compatibility constraints.
Liability and legal concerns are significant challenges facing the Global Automotive Passenger Car Emergency Braking System Market. As these systems operate autonomously to detect and respond to potential collisions, questions arise about who is responsible in the event of system malfunction or failure. Determining liability can be complex. Is it the automaker, the supplier of the emergency braking system, the software developer, or the vehicle owner who is liable in the event of an accident caused by system failure? The legal framework surrounding autonomous safety systems is still evolving, and clear regulations are needed to address liability issues comprehensively.
Moreover, concerns regarding data privacy and cybersecurity are becoming increasingly important. Emergency braking systems rely on sensors and data processing, which can be vulnerable to cyberattacks or unauthorized access. Protecting sensitive data and ensuring the security of these systems is a critical challenge that must be addressed to gain consumer trust.
Standardization and regulation represent both a challenge and an opportunity for the Global Automotive Passenger Car Emergency Braking System Market. While regulations are necessary to ensure the safety and effectiveness of these systems, varying standards and requirements across different regions can complicate market dynamics. Different countries and regions have their own safety regulations and testing procedures. For example, Europe, the United States, and Asia may have slightly different standards for evaluating the performance of emergency braking systems. This can result in additional costs for automakers who must adapt their systems to meet multiple sets of standards.
Furthermore, regulations are continually evolving to keep pace with technological advancements. Staying compliant with these evolving standards can be resource-intensive for automakers and suppliers. However, standardization can also be an opportunity. It can streamline the development and testing processes, making it easier for automakers to design and manufacture vehicles that comply with global safety standards. Standardized testing procedures can help build consumer confidence in the reliability and effectiveness of emergency braking systems.
One of the notable trends in the Global Automotive Passenger Car Emergency Braking System Market is the seamless integration of emergency braking systems with other ADAS features. Automakers are increasingly offering comprehensive safety packages that include features like adaptive cruise control, lane-keeping assistance, blind-spot monitoring, and emergency braking systems.
This integration enhances the overall safety of vehicles by allowing these systems to work together cohesively. For example, emergency braking systems can communicate with adaptive cruise control to adjust the vehicle's speed based on the traffic ahead, leading to smoother and more efficient traffic flow. Similarly, the coordination between emergency braking and lane-keeping assistance can help prevent accidents caused by lane departure. This trend reflects a broader shift towards holistic safety solutions in the automotive industry. By integrating multiple safety features into a unified system, automakers aim to provide a more comprehensive and effective approach to accident prevention, ultimately making vehicles safer for passengers and pedestrians alike.
Another significant trend is the continuous advancement of Autonomous Emergency Braking (AEB) technology. AEB systems are becoming increasingly sophisticated, thanks to advancements in sensor technologies, artificial intelligence, and machine learning.
Modern AEB systems are equipped with a variety of sensors, including radar, LiDAR, cameras, and ultrasonic sensors, which continuously monitor the vehicle's surroundings. These sensors can detect not only other vehicles but also pedestrians, cyclists, and obstacles in the road. Advanced algorithms analyze this data in real-time to make split-second decisions about when to initiate braking maneuvers. Furthermore, AEB systems are evolving to operate at higher speeds and handle complex scenarios, such as highway driving and intersections. They are also becoming capable of detecting and responding to a wider range of potential collision risks. As AEB technology continues to improve, it offers the promise of significantly reducing the incidence of rear-end collisions and mitigating the severity of accidents. This trend aligns with the industry's commitment to enhancing road safety and preventing accidents through advanced automation.
Standardization and regulation are becoming increasingly important in the Global Automotive Passenger Car Emergency Braking System Market. With the growing adoption of emergency braking systems, regulatory bodies and industry organizations are working to establish standardized testing procedures and safety requirements. Standardization efforts aim to ensure consistent safety performance across different vehicle models and brands. They also help automakers comply with various regional safety regulations more efficiently. In addition to government regulations, consumer demand for standardized safety features is driving this trend. Consumers often look for vehicles that have been tested and rated by safety organizations and standardized safety features like AEB play a significant role in these assessments. As standardization and regulation become more widespread, it is expected that emergency braking systems will continue to evolve and improve, resulting in safer vehicles on the road.
A growing trend in the Automotive Passenger Car Emergency Braking System Market is the increased focus on pedestrian and cyclist detection capabilities. Traditionally, emergency braking systems primarily targeted collision avoidance with other vehicles, but the industry is now shifting its attention towards vulnerable road users.
Pedestrian and cyclist detection systems use advanced sensors and algorithms to identify and track individuals in or near the vehicle's path. These systems are designed to recognize the unique movement patterns and characteristics of pedestrians and cyclists, allowing the vehicle to respond quickly to potential collisions. This trend aligns with a broader societal concern for pedestrian and cyclist safety, particularly in urban environments. As more people choose alternative modes of transportation such as walking or cycling, the need for advanced safety features that protect these vulnerable road users has grown. Automakers are increasingly incorporating pedestrian and cyclist detection as a standard feature in their emergency braking systems, contributing to the reduction of accidents involving these groups. This trend not only enhances road safety but also reflects the industry's commitment to addressing evolving urban mobility challenges.
False positives, which occur when emergency braking systems activate unnecessarily, have been a concern for both automakers and consumers. Recognizing this, a notable trend in the Global Automotive Passenger Car Emergency Braking System Market is the continuous improvement in false positive reduction. False positives can lead to abrupt braking events when there is no imminent threat, potentially causing inconvenience to drivers and passengers. To mitigate this issue, manufacturers are refining their algorithms and sensor technologies to enhance the accuracy of threat detection.
These improvements involve fine-tuning the system's ability to distinguish between actual collision risks and benign objects or situations. Advanced machine learning techniques are employed to analyze sensor data and make more precise decisions about when to initiate emergency braking. The goal is to strike a balance between preventing accidents and minimizing false positives. As industry invests in research and development to reduce false positives, emergency braking systems are becoming more reliable and trusted by consumers.
In the Automatic Passenger cars Emergency Braking System industry, radar sensors hold the largest global market share. Radar sensors are a common option for collision detection and avoidance in AEBS technology, and this preference can be linked to a number of causes. Radar sensors excel in precisely detecting objects and obstacles in a variety of weather circumstances, such as rain, fog, and low light. They are ideal for collision avoidance applications due to their capacity to measure the distance, speed, and relative motion of nearby objects. Radar sensors send out radio waves that reflect off nearby objects, enabling the system to build up a thorough map of the area around the vehicle and provide accurate detection of both moving and stationary objects. In addition, radar sensors are superior to other sensor types in their ability to recognize things at greater distances. This increased range gives AEBS systems a faster reaction time, allowing them to anticipate potential accident hazards and begin brake operations earlier. The importance of this early detection in enhancing safety and reducing crash severity cannot be overstated.
In 2022, the Autonomous Passenger Cars Emergency Braking market was largely dominated by North America. In recent years, there has been a large increase in demand in the North American market, and this trend is predicted to continue. Road safety in North America is a developing concern, with a particular emphasis on lowering accident frequency and severity. Critical safety elements like advanced braking systems can lessen or avoid collisions. The demand for autonomous emergency braking systems is influenced by the public's growing awareness of and concern for traffic safety. Furthermore, North American consumers are becoming more aware of the advantages of emergency braking systems.
Vehicles with cutting-edge safety features, such as emergency braking systems, are prioritized by consumers who are concerned about their safety since they provide an additional layer of defense. The demand for the product is influenced by consumers' increased preference for cutting-edge braking systems. The continually increasing demand for vehicles and greater awareness regarding safety features are fueling the rise of Autonomous Emergency Braking systems in North America.
Furthermore, it is projected that the Asia Pacific market would see an increase in demand for improved braking systems. In the Asia Pacific region, Original Equipment Manufacturers (OEMs) are increasingly including emergency braking systems into various car models. They are aware of the need for cutting-edge safety measures and attempt to set themselves apart from the competition by providing emergency braking as a standard or optional feature. The region's demand for sophisticated braking systems is further driven by OEM market competitiveness.
In this report, the Global Automotive Passenger Car Emergency Braking System Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: