![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1379566
ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø : ºÎǰº°, Â÷·® À¯Çüº°, ÃßÁø À¯Çüº°, ¿ëµµº°, Áö¿ªº°, °æÀï(2018-2028³â)Automotive Semiconductors Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Vehicle Type, By Propulsion Type, By Application, By Region, and By Competition, 2018-2028 |
¼¼°è ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ±¤¹üÀ§ÇÑ ¹ÝµµÃ¼ »ê¾÷¿¡¼ °¡Àå ¿ªµ¿ÀûÀ̰í Áß¿äÇÑ ºÎ¹®ÀÔ´Ï´Ù.
¹ÝµµÃ¼´Â ¿£Áø Á¦¾îºÎÅÍ ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ), ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±â´ÉÀ» ±¸µ¿Çϸç Çö´ë ÀÚµ¿Â÷¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.
ù°, ÀÚÀ²ÁÖÇà, Àü±â ÆÄ¿öÆ®·¹ÀÎ, Ä¿³ØÆ¼ºñƼ µîÀÇ ±â´ÉÀ» °®Ãá ÀÚµ¿Â÷°¡ º¹ÀâÇØÁü¿¡ µû¶ó ÀÚµ¿Â÷ ÇÑ ´ë´ç ´õ ¸¹Àº ¹ÝµµÃ¼¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶»çµéÀº ¾ÈÀü, Æí¾ÈÇÔ, ÆíÀǼº¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë¿¡ ºÎÀÀÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, ÷´Ü ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
µÑ°, ȯ°æ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á¿Í Á¤ºÎÀÇ Àå·ÁÃ¥¿¡ µû¶ó Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷·ÎÀÇ ÀüȯÀ¸·Î ÀÎÇØ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, Àü±â¸ðÅÍ ¹× Àü·ÂÀüÀÚ¿¡ ´ëÇÑ Æ¯¼ö ¹ÝµµÃ¼ ºÎǰÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
½ÃÀå ±Ô¸ð 2022³â | 471¾ï 6,000¸¸ ´Þ·¯ |
½ÃÀå ±Ô¸ð 2028³â | 864¾ï 1,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 9.75% |
±Þ¼ºÀå ºÎ¹® | ÇÁ·Î¼¼¼ |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
¶ÇÇÑ, ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, Ãæµ¹ ¹æÁö ½Ã½ºÅÛ°ú °°Àº ADAS(÷´Ü ¿îÀü º¸Á¶ ½Ã½ºÅÛ)ÀÇ ÅëÇÕÀº °¨Áö, ó¸® ¹× ÀÇ»ç °áÁ¤À» À§ÇØ ¹ÝµµÃ¼¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ±³Åë ¾ÈÀüÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
¼¼°è ÀÚµ¿Â÷ »ê¾÷Àº ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ±âÈĺ¯È¿¡ ´ëÀÀÇϱâ À§ÇØ Àü±âÀÚµ¿Â÷(EV)·ÎÀÇ ÀüȯÀ» °æÇèÇϰí ÀÖÀ¸¸ç, EV´Â ±âÁ¸ ³»¿¬±â°ü Â÷·®¿¡ ºñÇØ ´õ ¸¹Àº ¹ÝµµÃ¼¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. Àü·Â °ü¸® Ĩ, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, ¸ðÅÍ Á¦¾î ÀåÄ¡¿Í °°Àº ÁÖ¿ä ¹ÝµµÃ¼ ºÎǰÀº EVÀÇ ¼º´É°ú È¿À²¼º¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ½ÃÇàÇϰí Àü±âÂ÷ µµÀÔ¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇÔ¿¡ µû¶ó Â÷·®¿ë ¹ÝµµÃ¼ ¼ö¿ä´Â ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)°ú ÀÚÀ²ÁÖÇà ±â¼ú °³¹ß ¹× º¸±ÞÀº ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ·¹ÀÌ´õ ¼¾¼, LiDAR(Light Detection and Ranging) ¸ðµâ, Ä«¸Þ¶ó, AI ÇÁ·Î¼¼¼¿Í °°Àº ¹ÝµµÃ¼ ºÎǰ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, ÀÚµ¿ ±ä±Þ Á¦µ¿°ú °°Àº ADAS ±â´ÉÀº ÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ÆíÀǼºÀ» Çâ»ó½ÃÄÑ ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¿ÏÀüÇÑ ÀÚÀ²È¸¦ ÃßÁøÇÔ¿¡ µû¶ó Á¤±³ÇÑ ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù.
Â÷·®¿ë ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ÅÚ·¹¸Åƽ½º, ÷´Ü ³»ºñ°ÔÀ̼ÇÀÌ Ç¥ÁØÀ¸·Î ÀåÂøµÇ¸é¼ Çö´ëÀÇ ÀÚµ¿Â÷´Â Á¡Á¡ ´õ ¿¬°á¼ºÀÌ °ÈµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ²÷±è ¾ø´Â ¿¬°á¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë¿¡ µû¶ó ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó Åë½Å ¸ðµâ, 5G/Wi-Fi Ĩ, GPS ¼ö½Å±â, ¿£ÅÍÅ×ÀÎ¸ÕÆ® ½Ã½ºÅÛ µî Â÷·®¿ë ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®ÆùÀÇ Ä¿³ØÆ¼ºñƼ¿Í ÷´Ü ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¼ºñ½ºÀÇ ÅëÇÕÀº ÀÚµ¿Â÷ ºÐ¾ßÀÇ ¹ÝµµÃ¼ äÅÿ¡ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀüÅëÀûÀÎ ¿ÍÀ̾ ÇϴϽº¿¡¼ ÀÌ´õ³Ý ±â¹Ý ³×Æ®¿öÅ©·ÎÀÇ Àüȯ µî º¸´Ù Á¤±³ÇÑ Áß¾ÓÁýÁßÇü Â÷·® ¾ÆÅ°ÅØÃ³·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í±Þ ¾ÆÅ°ÅØÃ³´Â Â÷·®¿ë ÀÌ´õ³Ý ÄÁÆ®·Ñ·¯, °ÔÀÌÆ®¿þÀÌ, Åë½Å Ĩ µî ´õ ¸¹Àº ¹ÝµµÃ¼ ºÎǰÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â Â÷·® ¼º´É Çâ»ó, °æ·®È, Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²¼º Çâ»óÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¹ßÀüÀ» Áö¿øÇÏ´Â ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ¿¬ºñ °³¼±ÀÇ Çʿ伺¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶»çµéÀº °æ·® ¼ÒÀç¿Í È¿À²ÀûÀÎ ÆÄ¿öÆ®·¹ÀÎ µî Çõ½ÅÀûÀÎ ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼´Â ¿£Áø ¼º´ÉÀ» ÃÖÀûÈÇÏ°í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿£Áø Á¦¾î ÀåÄ¡(ECU), ¼¾¼, Àü¿ø °ü¸® Ĩ°ú °°Àº ºÎǰÀ» ÅëÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¿¬ºñ¿Í Â÷·® ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼ ¹è±â°¡½º ¹èÃâ·® ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯ°æ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ »ê¾÷Àº ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ¹«¾îÀÇ ¹ýÄ¢Àº ÁýÀûȸ·ÎÀÇ Æ®·£Áö½ºÅÍ ¹Ðµµ°¡ ¾à 2³â¸¶´Ù µÎ ¹è·Î Áõ°¡ÇÑ´Ù´Â °ÍÀ» ÀǹÌÇϸç, ¹ÝµµÃ¼ Á¦Á¶ÀÇ ±â¼ú Çõ½ÅÀ» Áö¼ÓÀûÀ¸·Î ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷ü°¡ ´õ ÀÛ°í Àü·Â È¿À²ÀÌ ³ôÀº ĨÀ» °³¹ßÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â °í¼º´É, ÀúÀü·Â, ¼ÒÇü ÆûÆÑÅÍÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ´õ ¸¹Àº ±â´É°ú ¼º´ÉÀ» ÀÚµ¿Â÷¿¡ ÅëÇÕÇÒ ¼ö ÀÖ°Ô ÇØ ¹ÝµµÃ¼ äÅÃÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ »ê¾÷Àº °ø±Þ¸ÁÀÇ È¥¶õ¿¡ ½Ã´Þ¸®°í ÀÖÀ¸¸ç, ±× Áß °¡Àå µÎµå·¯Áø °ÍÀº ¼¼°è ¹ÝµµÃ¼ °ø±Þ ºÎÁ·ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °ø±Þ ºÎÁ·Àº COVID-19 ÆÒµ¥¹Í, ÀÌ»ó±âÈÄ, ÁöÁ¤ÇÐÀû ±äÀå°ú °°Àº ¿äÀÎÀ¸·Î ÀÎÇØ ´õ¿í ¾Çȵǰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ºÎ¹®ÀÌ °¡Àå Å« ¿µÇâÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õ¿¡ ´ëóÇϱâ À§Çؼ´Â °ø±Þ¿ø ´Ùº¯È, ÇÙ½É ºÎǰ ºñÃà, ±¹³» ¹ÝµµÃ¼ Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ µî Á¾ÇÕÀûÀÎ Àü·«ÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷Àº ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿Í ±âÁØÀ» Àû¿ë¹Þ°í ÀÖÀ¸¸ç, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿Í ÀÚÀ²ÁÖÇà ±â¼ú °³¹ß¿¡´Â º¹ÀâÇÑ ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϰí, ISO 26262¿Í °°Àº ÁøÈÇÏ´Â ¾ÈÀü Ç¥ÁØÀ» ÃæÁ·Çϱâ À§Çؼ´Â ±¤¹üÀ§ÇÑ Å×½ºÆ®¿Í °ËÁõÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ºñ¿ë°ú °³¹ß ±â°£À» Áõ°¡½Ãŵ´Ï´Ù. ±â°£À» Áõ°¡½Ãŵ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â °·ÂÇÑ ¾ÈÀü ±â´É¿¡ ÅõÀÚÇϰí ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±ä¹ÐÇÏ°Ô Çù·ÂÇÏ¿© ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷Àº Àü±âÀÚµ¿Â÷(EV)·ÎÀÇ Àüȯ, Ä¿³ØÆ¼ºñƼ, ÀÚÀ² ÁÖÇà µî ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼´Â ÀÌ·¯ÇÑ ±â¼úÀ» ±¸ÇöÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÁö¸¸, ²÷ÀÓ¾ø´Â ±â¼ú Çõ½Å¿¡ ´ëÀÀÇÏ´Â °ÍÀº Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â °í¼º´É, ÀúÀü·Â, ¼ÒÇü ĨÀ» »ý»êÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ Áö¼ÓÀûÀ¸·Î ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ ½ÃÀåÀÇ ÁøÈÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ »õ·Î¿î Àç·á¿Í °øÁ¤ ±â¼ú¿¡ ÀûÀÀÇØ¾ß ÇÕ´Ï´Ù.
ÁöÀûÀç»ê±Ç(IP)°ú ƯÇã ºÐÀïÀº ¹ÝµµÃ¼ ¾÷°è¿¡¼ ÈçÈ÷ º¼ ¼ö ÀÖ´Â ¹®Á¦ÀÔ´Ï´Ù. Â÷·®¿ë ¹ÝµµÃ¼°¡ Á¡Á¡ ´õ Àü¹®ÈµÇ°í °íÀ¯ÇÑ ±â´ÉÀ» žÀçÇÏ°Ô µÇ¸é ƯÇã ºÐÀïÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐÀïÀº ¼Ò¼Û, ¶óÀ̼±½º ºñ¿ë, ½ÃÀå ºÒÈ®½Ç¼ºÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¾÷µéÀº °·ÂÇÑ ÁöÀûÀç»ê±Ç Àü·«À» ¼ö¸³Çϰí, ±âÁ¸ ƯÇ㸦 Á¸ÁßÇϸç, °ø±Þ¸Á°ú Á¦Ç° °³¹ß¿¡ ÁöÀåÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â °ªºñ½Ñ ¹ýÀû ºÐÀïÀ» ÇÇÇϱâ À§ÇØ ¹ýÀû º¹À⼺À» ±Øº¹ÇØ¾ß ÇÕ´Ï´Ù.
ÀÚµ¿Â÷ÀÇ ¿¬°á¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó »çÀ̹ö º¸¾ÈÀÌ °¡Àå Áß¿äÇÑ °úÁ¦·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. Â÷·®¿ë ¹ÝµµÃ¼´Â »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÏ¿© ¾ÈÀü°ú °³ÀÎ Á¤º¸ º¸È£¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãë¾àÁ¡À» ÇØ°áÇϱâ À§Çؼ´Â º¸¾È ºÎÆÃ ÇÁ·Î¼¼½º, ¾ÏÈ£È, ¹ÝµµÃ¼ ¼³°è¿¡ ÅëÇÕµÈ Ä§ÀÔ Å½Áö ½Ã½ºÅÛ µî »çÀ̹ö º¸¾È ´ëÃ¥¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, Á¦Á¶¾÷ü´Â Â÷·® ½Ã½ºÅÛ°ú µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇØ »õ·Î¿î »çÀ̹ö À§ÇùÀ» °¨½ÃÇÏ°í ´ëÀÀÇϱâ À§ÇØ °æ°è¸¦ ´ÊÃßÁö ¾Ê¾Æ¾ß ÇÕ´Ï´Ù.
ȯ°æ ±ÔÁ¦·Î ÀÎÇØ ÀÚµ¿Â÷ Á¦Á¶»çµéÀº ź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¬·á È¿À²À» °³¼±ÇØ¾ß ÇÕ´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)´Â ±× ÇØ°áÃ¥ÀÇ ÀϺÎÀÌÁö¸¸, EV¿ë ¹ÝµµÃ¼ Á¦Á¶¿¡´Â ȯ°æ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÈñÅä·ù ¿ø¼Ò¿Í ±¤¹°ÀÌ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, RoHS(ƯÁ¤À¯Çع°Áú »ç¿ëÁ¦ÇÑ), REACH(ÈÇÐÁ¦Ç°ÀÇ µî·Ï, Æò°¡, Çã°¡, Á¦ÇÑ)¿Í °°Àº ȯ°æ ±âÁØ Áؼö´Â ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿¡°Ô ±ÔÁ¦ Áؼö¶ó´Â °úÁ¦¸¦ ¾È°ÜÁÖ°í ÀÖ½À´Ï´Ù. ȯ°æÀÇ Áö¼Ó°¡´É¼º°ú ¹ÝµµÃ¼ »ý»êÀÇ ¾ç¸³Àº ÇöÀçÁøÇàÇü °úÁ¦ÀÔ´Ï´Ù.
ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå¿¡¼ °¡Àå µÎµå·¯Áø Æ®·»µå Áß Çϳª´Â Àü±âÀÚµ¿Â÷(EV)¿Í ÀÚÀ² ÁÖÇàÀ¸·ÎÀÇ ºü¸¥ ÀüȯÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷´Â °íµµÀÇ Àü·Â °ü¸® ¹× ¹èÅ͸® °ü¸® ½Ã½ºÅÛÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¹ÝµµÃ¼¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚÀ²ÁÖÇàÂ÷¿¡´Â ÷´Ü ¼¾¼, AI ÇÁ·Î¼¼¼, Ä¿³ØÆ¼ºñƼ ĨÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¹ÝµµÃ¼ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
Â÷·®¿ë ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ÅÚ·¹¸Åƽ½º, OTA(Over-the-Air) ¾÷µ¥ÀÌÆ®°¡ Ç¥ÁØ ±â´ÉÀ¸·Î ÀÚ¸® ÀâÀ¸¸é¼ Çö´ë ÀÚµ¿Â÷´Â Á¡Á¡ ´õ ¿¬°á¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Åë½Å ¸ðµâ, Wi-Fi/5G Ĩ, Â÷·®°ú Ŭ¶ó¿ìµå °£ÀÇ ¾ÈÀüÇÑ µ¥ÀÌÅÍ ±³È¯À» º¸ÀåÇÏ´Â º¸¾È ºÎǰ µî °ß°íÇÑ ¹ÝµµÃ¼ ³×Æ®¿öÅ©¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù.
ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, ÀÚµ¿ ±ä±Þ Á¦µ¿°ú °°Àº ADAS ±â¼úÀº ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ°í »ç°í¸¦ ÁÙÀÏ ¼ö Àֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ·¹ÀÌ´õ ¼¾¼, Ä«¸Þ¶ó, LiDAR ½Ã½ºÅÛ°ú °°Àº ¹ÝµµÃ¼ ºÎǰ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ½ÃÀå ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ´õ ÀÛ°í Àü·Â È¿À²ÀÌ ³ôÀº ĨÀ» »ý»êÇϱâ À§ÇØ 7nm ¹× 5nm ³ëµå¿Í °°Àº ´õ Áøº¸µÈ °øÁ¤ ±â¼ú·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº Â÷·®¿ë ¾ÖÇø®ÄÉÀ̼ǿ¡¼ Áß¿äÇÑ ¿ä¼ÒÀÎ Àü·Â ¼Òºñ¸¦ ÁÙÀÌ¸é¼ ´õ ³ôÀº ¼º´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀº COVID-19 »çÅÂ¿Í ¹ÝµµÃ¼ ºÎÁ·À¸·Î ÀÎÇØ °ø±Þ¸Á¿¡ Å« È¥¶õÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õÀº ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó °ø±Þ¸Á ´Ùº¯È¿Í °ø±Þ¸Á °È Àü·«À» äÅÃÇÏ´Â °ÍÀÌ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.
ÃÖ±Ù ÀÚµ¿Â÷ÀÇ ¿¬°á¼º°ú µ¥ÀÌÅÍ ±³È¯ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾ÈÀÌ °¡Àå Áß¿äÇÑ À̽´·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼´Â ÀÌÁ¦ »çÀ̹ö À§ÇùÀ¸·ÎºÎÅÍ ÀÚµ¿Â÷¸¦ º¸È£Çϱâ À§ÇØ °·ÂÇÑ º¸¾È ±â´ÉÀ» ³»ÀåÇØ¾ß ÇÕ´Ï´Ù. ¿©±â¿¡´Â º¸¾È ºÎÆÃ ÇÁ·Î¼¼½º, ¾ÏÈ£È, ¹ÝµµÃ¼ ¼³°è¿¡ ³»ÀåµÈ ħÀÔ Å½Áö ½Ã½ºÅÛ µîÀÌ Æ÷ÇԵ˴ϴÙ.
¼¼°èÀûÀΠȯ°æ ±ÔÁ¦·Î ÀÎÇØ ÀÚµ¿Â÷ Á¦Á¶»çµéÀº ź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¬ºñ¸¦ °³¼±ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Àü±âÂ÷¿Í ÇÏÀ̺긮µå ÀÚµ¿Â÷ÀÇ º¸±ÞÀ» ÃËÁøÇÏ¿© Àü·Â °ü¸® ¹ÝµµÃ¼, °íÀü¾Ð Ĩ, Àü±â ±¸µ¿°è ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÚµ¿Â÷ÀÇ °íÀ¯ÇÑ ¿ä±¸»çÇ×À» ÃæÁ·½Ã۱â À§ÇØ º¸´Ù ¸ÂÃãÈµÈ ¿ëµµº° ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº EV ÆÄ¿öÆ®·¹ÀÎ, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ µî ƯÁ¤ ÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇϰíÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
AI¿Í ¸Ó½Å·¯´×Àº ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ)¿¡¼ºÎÅÍ Â÷·® ³» À½¼ºÀÎ½Ä ÀΰøÁö´É(AI)°ú ÀÚ¿¬¾î 󸮱îÁö ÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼ǿ¡¼ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¾÷µéÀº ÀÌ·¯ÇÑ AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇϱâ À§ÇØ AI Àü¿ë Ĩ°ú ´º·² ÇÁ·Î¼¼½Ì À¯´Ö(NPU)À» °³¹ßÇϰí ÀÖ½À´Ï´Ù.
ÃÖ±ÙÀÇ °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¹ÝµµÃ¼ °ø±Þ¾÷ü¸¦ ´Ù¾çÈÇÏ¿© ´ÜÀÏ °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó ¹ÝµµÃ¼ ¾÷üµéÀº ÀÚµ¿Â÷ ¾÷°èÀÇ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê ´É·Â°ú ¿ë·®À» È®ÀåÇϰí ÀÖ½À´Ï´Ù.
2022³â ¼¼°è Â÷·®¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ÇÁ·Î¼¼¼ ºÎ¹®ÀÌ ÁÖµµÇß½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯¿Í ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼¸¦ Æ÷ÇÔÇÑ ÇÁ·Î¼¼¼ ºÎ¹®Àº ¼¼°è Â÷·®¿ë ¹ÝµµÃ¼ ½ÃÀå¿¡¼ Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î¼¼¼´Â ÀÚµ¿Â÷ ÀüÀÚ ½Ã½ºÅÛÀÇ 'µÎ³ú' ¿ªÇÒÀ» Çϸç, ¿£Áø Á¦¾î¿¡¼ ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±â´ÉÀ» °ü¸®ÇÕ´Ï´Ù. ÇÁ·Î¼¼¼ ºÎ¹®ÀÌ ¿ìÀ§¸¦ Á¡ÇÏ´Â ÁÖ¿ä ÀÌÀ¯´Â ´ÙÀ½°ú °°½À´Ï´Ù.
ÀÚµ¿Â÷°¡ °íµµÈµÊ¿¡ µû¶ó ADAS, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, Ä¿³ØÆ¼µå ¼ºñ½º µî ÷´Ü ±â´ÉÀ» žÀçÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉµéÀº µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» ³»¸®±â À§ÇØ °·ÂÇÑ ÇÁ·Î¼¼¼¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà°ú Ä¿³ØÆ¼µåÄ«ÀÇ µîÀåÀ¸·Î °í¼º´É ÇÁ·Î¼¼¼¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.
Çö´ë ÀÚµ¿Â÷´Â ¿£Áø Á¦¾î ¹× º¯¼Ó±â °ü¸®¿¡¼ ³»ºñ°ÔÀÌ¼Ç ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±â´É°ú ½Ã½ºÅÛÀ» ÅëÇÕÇϵµ·Ï ¼³°èµÆ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» À§Çؼ´Â ¿©·¯ ÀÛ¾÷À» µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ´Â ÇÁ·Î¼¼¼°¡ ÇÊ¿äÇÕ´Ï´Ù. ¸ÖƼÄÚ¾î ÇÁ·Î¼¼¼´Â ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ÀÌ ºÐ¾ßÀÇ ¹ÝµµÃ¼ ¼Ö·ç¼Ç ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
Àü±â ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷(EV ¹× HEV)´Â ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á¿Í Á¤ºÎÀÇ Àμ¾Æ¼ºê·Î ÀÎÇØ Å« ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, Àü±â ¸ðÅÍ ¹× ȸ»ý Á¦µ¿ »çÀÌÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ëÀ» °ü¸®ÇÏ´Â ÇÁ·Î¼¼¼¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Àüµ¿È·Î ÀüȯÇÔ¿¡ µû¶ó ÇÁ·Î¼¼¼¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
2022³â ¼¼°è ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå¿¡¼ ½Â¿ëÂ÷ ºÎ¹®ÀÌ ¿ìÀ§¸¦ Â÷ÁöÇß½À´Ï´Ù. ½Â¿ëÂ÷´Â Àü ¼¼°è¿¡¼ »ý»êµÇ´Â ÀÚµ¿Â÷ Áß °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, LCV³ª HCV¿¡ ºñÇØ ½Â¿ëÂ÷ ¿îÇà ´ë¼ö°¡ ¸¹±â ¶§¹®¿¡ Â÷·®¿ë ¹ÝµµÃ¼ ¼ö¿ä¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ½Â¿ëÂ÷ ºÎ¹®ÀÇ ¿ìÀ§´Â ±¤¹üÀ§ÇÑ ¼ÒºñÀÚÃþ°ú ´Ù¾çÇÑ Â÷Á¾¿¡ ±âÀÎÇÕ´Ï´Ù.
ÃֽŠ½Â¿ëÂ÷¿¡´Â ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ³»ºñ°ÔÀ̼Ç, ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ), Ä¿³ØÆ¼µå ¼ºñ½º µî ´Ù¾çÇÑ Ã·´Ü ±â´ÉÀÌ Å¾ÀçµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉµéÀÌ È¿À²ÀûÀ¸·Î ÀÛµ¿Çϱâ À§Çؼ´Â ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, ¼¾¼, ÇÁ·Î¼¼¼ µî ¼ö¸¹Àº ¹ÝµµÃ¼°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼ÒºñÀÚµéÀÇ ÆíÀǼº Çâ»ó¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼ ½Â¿ëÂ÷ ³» ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¾ÈÀü ±ÔÁ¦¿Í ¼ÒºñÀÚ ±â´ëÄ¡°¡ ½Â¿ëÂ÷¿¡ ¾ÈÀü ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â µ¥ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, Ãæµ¹ ¹æÁö ½Ã½ºÅÛ°ú °°Àº ADAS ±â´ÉÀº Á¤È®ÇÑ °¨Áö ¹× ÀÇ»ç°áÁ¤À» À§ÇØ ¹ÝµµÃ¼¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¾ÈÀü°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ Á߿伺Àº ½Â¿ëÂ÷¿¡ Â÷·®¿ë ¹ÝµµÃ¼¸¦ äÅÃÇÏ´Â µ¥ ´õ¿í ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
½Â¿ëÂ÷ ºÐ¾ß´Â Àüµ¿È ¹× ÇÏÀ̺긮µåÈÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿Í ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV)´Â º¹ÀâÇÑ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ°ú Àü±â ÆÄ¿öÆ®·¹ÀÎÀ» žÀçÇϰí ÀÖÀ¸¸ç, È¿À²ÀûÀÎ ¿î¿µÀ» À§ÇØ Ã·´Ü ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, EV¿Í HEV·ÎÀÇ ÀüȯÀº ÀÌ ºÎ¹®ÀÇ ¹ÝµµÃ¼ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
2022³â, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¼¼°è ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀ» Àå¾ÇÇß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹Àº ¼¼°è ÀÚµ¿Â÷ »ý»êÀÇ Áß½ÉÁö´Ù. ºñ¿ë È¿À²¼º, ¼÷·ÃµÈ ³ëµ¿·Â, ÁÖ¿ä ½ÃÀå°úÀÇ ±ÙÁ¢¼º ¶§¹®¿¡ ¸¹Àº ¼¼°è ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ÀÌ Áö¿ª¿¡ »ý»ê ±âÁö¸¦ ¼³¸³Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷ »ý»êÀÇ ÁýÁßÀº Â÷·®¿ë ¹ÝµµÃ¼ÀÇ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ÀÌ Áö¿ª ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ÀÌ Áö¿ª¿¡ »ý»ê ½Ã¼³À» ¼³¸³Çß½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¹æ´ëÇÏ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ÀÚµ¿Â÷ ¼ÒºñÀÚ ±â¹ÝÀ» ÀÚ¶ûÇÕ´Ï´Ù. ¼Òµæ Áõ°¡, µµ½ÃÈ, ½Å¿ë¿¡ ´ëÇÑ Á¢±Ù¼º Áõ°¡´Â Áß±¹, Àεµ µî ±¹°¡¿¡¼ ÀÚµ¿Â÷ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ º¸´Ù ±â¼úÀûÀ¸·Î Áøº¸µÈ Ä¿³ØÆ¼µåÄ«¸¦ Ãß±¸ÇÔ¿¡ µû¶ó Â÷·®¿ë ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿äµµ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÌ °è¼Ó È®´ëµÊ¿¡ µû¶ó ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾ç °¢±¹ Á¤ºÎ´Â ȯ°æ¿À¿°À» ¸·°í ȼ®¿¬·á ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ Àü±âÀÚµ¿Â÷(EV) º¸±Þ¿¡ Àû±ØÀûÀ¸·Î ³ª¼°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó EV ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, EV´Â ±âÁ¸ ÀÚµ¿Â÷¿¡ ºñÇØ ´õ ¸¹Àº ¹ÝµµÃ¼¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ ÀÌ Áö¿ªÀÇ Â÷·®¿ë ¹ÝµµÃ¼ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾ç¿¡´Â ´ë¸¸ÀÇ TSMC, Çѱ¹ÀÇ »ï¼ºÀüÀÚ µî ¼¼°è ÃÖ°íÀÇ ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀÌ ÀÖ½À´Ï´Ù. À̵éÀº ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ¼¼ ¼¼°è ÀÚµ¿Â÷ Á¦Á¶»çµé°ú °·ÂÇÑ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇØ ¿Ô½À´Ï´Ù. À̸¦ ÅëÇØ ÀÚÀ²ÁÖÇà, ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ) µî¿¡ »ç¿ëµÇ´Â ÷´Ü ÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ÀÇ ÁÖ¿ä °ø±Þ¾÷ü·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
The global Automotive Semiconductors market is a dynamic and critical sector within the broader semiconductor industry. Semiconductors play a pivotal role in modern vehicles, powering a wide range of functions from engine control to advanced driver assistance systems (ADAS) and infotainment. This market's growth is driven by several key factors.
Firstly, the increasing complexity of vehicles, with features like autonomous driving, electric powertrains, and connectivity, demands a higher number of semiconductors per vehicle. As automakers strive to meet consumer expectations for safety, comfort, and convenience, the demand for advanced semiconductor solutions continues to surge.
Secondly, the transition to electric and hybrid vehicles, prompted by environmental concerns and government incentives, necessitates specialized semiconductor components for battery management systems, electric motors, and power electronics.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 47.16 Billion |
Market Size 2028 | USD 86.41 Billion |
CAGR 2023-2028 | 9.75% |
Fastest Growing Segment | Processor |
Largest Market | Asia-Pacific |
Furthermore, the integration of advanced driver assistance systems (ADAS) like adaptive cruise control, lane-keeping assist, and collision avoidance systems relies heavily on semiconductors for sensing, processing, and decision-making, enhancing road safety.
Connectivity and infotainment systems are also key growth drivers, with consumers seeking seamless integration of smartphones, navigation, and entertainment in their vehicles. This trend has led to increased demand for high-performance processors and connectivity chips.
However, the market faces challenges such as semiconductor supply chain disruptions, global economic uncertainties, and supply-demand imbalances. Moreover, the automotive industry's shift towards electric and autonomous vehicles poses a long-term challenge for traditional automotive semiconductor suppliers.
The global automotive industry is experiencing a significant shift toward electric vehicles (EVs) to reduce carbon emissions and combat climate change. EVs require a higher number of semiconductors compared to traditional internal combustion engine vehicles. Key semiconductor components, such as power management chips, battery management systems, and motor control units, are essential for EVs' performance and efficiency. As governments worldwide implement stricter emission standards and offer incentives for EV adoption, the demand for automotive semiconductors is expected to surge.
The development and deployment of Advanced Driver Assistance Systems (ADAS) and autonomous driving technologies are major drivers of the automotive semiconductor market. These systems rely heavily on semiconductor components, including radar sensors, LiDAR (Light Detection and Ranging) modules, cameras, and AI processors. ADAS features such as adaptive cruise control, lane-keeping assist, and automatic emergency braking enhance vehicle safety and convenience, driving consumer demand. As automakers progress toward full autonomy, the need for sophisticated semiconductor solutions will continue to grow.
Modern vehicles are becoming increasingly connected, with in-car infotainment systems, telematics, and advanced navigation features becoming standard. This trend has been accelerated by consumer expectations for seamless connectivity. As a result, automotive semiconductors are in high demand for components like communication modules, 5G/Wi-Fi chips, GPS receivers, and entertainment systems. The integration of smartphone connectivity and advanced infotainment services is a significant driver of semiconductor adoption in the automotive sector.
Automakers are transitioning to more sophisticated and centralized vehicle architectures, such as the shift from traditional wiring harnesses to Ethernet-based networks. These advanced architectures require a higher number of semiconductor components, including automotive Ethernet controllers, gateways, and communication chips. These changes aim to improve vehicle performance, reduce weight, and enhance overall energy efficiency, driving the demand for semiconductor solutions that support these advancements.
Stringent environmental regulations and the need for improved fuel efficiency are driving automakers to adopt innovative technologies, including lightweight materials and efficient powertrains. Automotive semiconductors play a crucial role in optimizing engine performance and reducing emissions. Components like engine control units (ECUs), sensors, and power management chips enable automakers to meet emissions targets while delivering enhanced fuel efficiency and vehicle performance. As environmental concerns continue to grow, the demand for energy-efficient semiconductor solutions will remain strong.
The semiconductor industry is characterized by rapid technological advancements. Moore's Law, which describes the doubling of transistor density on integrated circuits approximately every two years, continues to drive innovation in semiconductor manufacturing. As semiconductor manufacturers develop smaller, more power-efficient chips, automakers can benefit from higher performance, reduced power consumption, and smaller form factors. This advancement enables the integration of more features and capabilities within vehicles, driving semiconductor adoption.
The automotive semiconductor industry has been grappling with supply chain disruptions, with one of the most notable being the global semiconductor shortage. This shortage has been exacerbated by factors such as the COVID-19 pandemic, extreme weather events, and geopolitical tensions. The automotive sector has been particularly affected, leading to production delays and increased costs for automakers. Addressing these disruptions requires a comprehensive strategy that includes diversifying supply sources, stockpiling critical components, and investing in domestic semiconductor manufacturing.
The automotive industry is subject to stringent safety regulations and standards. The development of advanced driver assistance systems (ADAS) and autonomous driving technologies necessitates complex semiconductor solutions. Meeting these evolving safety standards, such as ISO 26262, requires extensive testing and validation, driving up costs and development timelines. Semiconductor manufacturers must invest in robust safety features and collaborate closely with automakers to ensure compliance with these standards.
The automotive industry is characterized by rapid technological advancements, including the shift to electric vehicles (EVs), connectivity, and autonomous driving. Semiconductors play a pivotal role in enabling these technologies, but keeping pace with constant innovation is a significant challenge. Semiconductor manufacturers must continually invest in research and development to produce chips with higher performance, lower power consumption, and smaller form factors. Additionally, they must adapt to new materials and process technologies to meet the evolving demands of the automotive market.
Intellectual property (IP) and patent disputes are common challenges in the semiconductor industry. As automotive semiconductors become more specialized and incorporate unique features, patent disputes can arise. These disputes can result in litigation, licensing fees, and market uncertainties. Semiconductor companies need to establish robust IP strategies, respect existing patents, and navigate legal complexities to avoid costly legal battles that could disrupt supply chains and product development.
With the increasing connectivity of vehicles, cybersecurity has become a paramount concern. Automotive semiconductors are vulnerable to cyberattacks, which can have serious safety and privacy implications. Addressing these vulnerabilities requires significant investments in cybersecurity measures, including secure boot processes, encryption, and intrusion detection systems integrated into semiconductor designs. Manufacturers must also stay vigilant in monitoring and responding to emerging cyber threats to safeguard vehicle systems and data.
Environmental regulations are pushing automakers to reduce carbon emissions and improve fuel efficiency. While electric vehicles (EVs) are part of the solution, the production of semiconductors for EVs involves rare earth elements and minerals that have environmental implications. Additionally, compliance with environmental standards, such as RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals), imposes regulatory compliance challenges for semiconductor manufacturers. Balancing environmental sustainability with semiconductor production is an ongoing challenge.
One of the most prominent trends in the automotive semiconductor market is the rapid shift toward electric vehicles (EVs) and autonomous driving. Electric vehicles require advanced power management and battery management systems, which heavily rely on semiconductors. Additionally, autonomous vehicles demand sophisticated sensors, AI processors, and connectivity chips, driving the demand for semiconductors further.
Modern vehicles are becoming increasingly connected, with in-car infotainment systems, telematics, and over-the-air (OTA) updates becoming standard features. This trend necessitates a robust network of semiconductors, including communication modules, Wi-Fi/5G chips, and security components to ensure safe and secure data exchange between vehicles and the cloud.
ADAS technologies, such as adaptive cruise control, lane-keeping assist, and autonomous emergency braking, are gaining traction due to their potential to improve safety and reduce accidents. These systems rely heavily on semiconductor components like radar sensors, cameras, and LiDAR systems, driving demand in the market.
Semiconductor manufacturers are increasingly transitioning to more advanced process technologies, such as 7nm and 5nm nodes, to produce smaller, more power-efficient chips. These advancements enable higher performance while reducing power consumption, a critical factor in automotive applications.
The automotive semiconductor market has faced significant supply chain disruptions, primarily due to the COVID-19 pandemic and semiconductor shortages. These disruptions have led to production delays and increased costs for automakers. As a result, there's a growing emphasis on diversifying the supply chain and adopting supply chain resilience strategies.
With the increased connectivity and data exchange in modern vehicles, cybersecurity has become a paramount concern. Automotive semiconductors now need to incorporate robust security features to protect vehicles from cyber threats. This includes secure boot processes, encryption, and intrusion detection systems embedded in semiconductor designs.
Global environmental regulations are pushing automakers to reduce carbon emissions and improve fuel efficiency. This trend is driving the adoption of electric and hybrid vehicles, creating additional demand for power management semiconductors, high-voltage chips, and electric drivetrain components.
Automakers are seeking more customized and application-specific semiconductor solutions to meet the unique requirements of their vehicles. This trend is encouraging semiconductor manufacturers to offer tailored solutions for specific automotive applications, such as EV powertrains or infotainment systems.
AI and machine learning are playing an increasingly vital role in automotive applications, from advanced driver assistance systems to natural language processing for in-car voice assistants. Semiconductor companies are developing AI-specific chips and neural processing units (NPUs) to support these AI-driven applications.
In light of recent supply chain disruptions, automakers are diversifying their semiconductor suppliers to reduce reliance on a single source. This trend is encouraging semiconductor manufacturers to expand their production capacity and capabilities to meet the growing demand from the automotive industry.
Processor segment dominates in the global automotive semiconductors market in 2022. The processor segment, which includes microcontrollers and microprocessors, holds a prominent position within the global Automotive Semiconductors market. These processors act as the "brain" of a vehicle's electronic systems, managing a wide array of functions, from engine control to infotainment and advanced driver assistance systems (ADAS). Here are the key reasons why the processor segment dominates:
As vehicles become increasingly sophisticated, they incorporate a growing number of advanced features, such as ADAS, infotainment systems, and connected services. These features rely heavily on powerful processors to process data and make real-time decisions. With the rise of autonomous driving and connected cars, the demand for high-performance processors has surged.
Modern vehicles are designed to integrate various functions and systems, from engine control and transmission management to navigation and entertainment. This integration necessitates processors capable of handling multiple tasks simultaneously. Multicore processors have become essential to meet these requirements, driving the demand for semiconductor solutions in this segment.
Electric and hybrid vehicles (EVs and HEVs) have gained significant traction due to environmental concerns and government incentives. These vehicles rely heavily on processors to manage the complex interactions between battery management systems, electric motors, and regenerative braking. As the automotive industry transitions toward electrification, processor demand continues to rise.
Passenger Car segment dominates in the global automotive semiconductors market in 2022. Passenger cars represent the largest volume of vehicles produced globally. The sheer number of passenger cars on the road, compared to LCVs and HCVs, significantly influences the demand for automotive semiconductors. This segment's dominance is attributed to the extensive consumer base and diverse vehicle models it encompasses.
Modern passenger cars are equipped with an array of advanced features, such as infotainment systems, navigation, advanced driver assistance systems (ADAS), and connected services. These features require a substantial number of semiconductors, including microcontrollers, sensors, and processors, to function efficiently. As consumers seek enhanced comfort and convenience, the demand for semiconductor solutions in passenger cars continues to rise.
Safety regulations and consumer expectations have driven the integration of safety systems in passenger cars. ADAS features, including adaptive cruise control, lane-keeping assist, and collision avoidance systems, rely heavily on semiconductors for accurate sensing and decision-making. The emphasis on safety and regulatory compliance further fuels the adoption of automotive semiconductors in passenger cars.
The passenger car segment has been at the forefront of the electrification and hybridization movement. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are equipped with complex battery management systems and electric powertrains, which require advanced semiconductor solutions for efficient operation. The transition toward EVs and HEVs has amplified semiconductor demand within this segment.
Asia Pacific dominates the Global Automotive Semiconductors Market in 2022. Asia Pacific, and particularly China, is the world's manufacturing hub for automobiles. Many global automakers have established production facilities in the region due to cost-efficiency, skilled labor, and proximity to key markets. This concentration of automotive production has driven the demand for automotive semiconductors. As a result, semiconductor manufacturers have set up production facilities in the region to cater to the local automotive industry's needs.
The Asia Pacific region boasts a vast and rapidly growing consumer base for automobiles. Rising incomes, urbanization, and increasing access to credit have fueled the demand for vehicles in countries like China and India. As consumers seek more technologically advanced and connected vehicles, the demand for automotive semiconductors has surged. This trend is expected to continue as Asia Pacific markets continue to expand.
Governments across Asia Pacific have been proactive in promoting electric vehicles (EVs) to combat pollution and reduce reliance on fossil fuels. This has resulted in significant investments in EV infrastructure and incentives for EV adoption. As EVs require a higher number of semiconductors compared to traditional vehicles, this has further boosted the demand for automotive semiconductors in the region.
Asia Pacific is home to some of the world's leading semiconductor manufacturers, including Taiwan's TSMC and South Korea's Samsung Electronics. These companies have been at the forefront of technological innovation and have established strong partnerships with global automakers. This has positioned them as key suppliers of advanced automotive semiconductors, including those used in autonomous driving and advanced driver assistance systems (ADAS).
In this report, the Global Automotive Semiconductors Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: