시장보고서
상품코드
1567682

세계의 스마트 제조 시장 : 산업 규모, 점유율, 동향, 기회, 예측 - 컴포넌트별, 기술별, 최종 용도 산업별, 지역별, 경쟁(2019-2029년)

Smart Manufacturing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented by Component, By Technology, By End-Use Industry, By Region & Competition, 2019-2029F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 180 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 스마트 제조 시장 규모는 2023년에 2,576억 7,000만 달러로, 2029년까지의 예측 기간 중 CAGR로 14.82%의 성장이 예측됩니다.

시장 개요
예측 기간 2025-2029
시장 규모 : 2023년 2,576억 7,000만 달러
시장 규모 : 2029년 5,957억 4,000만 달러
CAGR : 2024-2029년 14.82%
급성장 부문 산업용 3D 프린팅
최대 시장 아시아태평양

세계의 스마트 제조 시장은 과거 10년간 다양한 산업 분야에서 채택이 확대되면서 큰 성장을 이루었습니다. 자동차, 전자, 중장비, 식품 및 음료 등의 분야에서 스마트 제조 기술은 생산 공정의 최적화와 운영 효율성 향상에 필수적인 원동력으로 인식되고 있습니다.

탄소 배출, 폐기물 발생, 에너지 소비에 대한 엄격한 환경 규제로 인해 대기업은 첨단 인더스트리 4.0 솔루션에 투자할 수밖에 없습니다. 선도적인 기술 프로바이더들은 예지보전, 품질 검사, 실시간 공정 모니터링, 최적화 등의 기능을 갖춘 혁신적인 스마트 제조 플랫폼을 발표했습니다. 이러한 솔루션을 통해 제조업체는 가동 중지 시간, 폐기율 및 운영 비용을 크게 줄일 수 있습니다.

IoT 센서, 머신러닝, 데이터 분석과 같은 기술의 통합으로 스마트 제조의 기능이 크게 변화하고 있습니다. 첨단 플랫폼은 이제 생산 성능, 자원 활용도, 공급망 관리, 자산 건전성에 대한 실용적인 인사이트을 제공합니다. 이를 통해 관리자는 주요 지표를 추적하고, 병목 현상을 식별하고, 고장을 예측하고, 기존 자산과 자재 흐름에서 더 많은 가치를 창출할 수 있습니다.

산업계 주요 기업은 기술 공급업체와 협력하여 각 기업의 지속가능성과 효율성 목표에 맞는 맞춤형 스마트 제조 솔루션을 개발하고 있습니다. 예를 들어 협동 로봇은 자동차 기업의 에너지 사용량 감소를 돕고, 블록체인 기반 추적성 솔루션은 전자제품 기업의 책임감 있는 원자재 조달을 보장합니다.

산업 디지털화, 에너지 절약, 순환형 비즈니스 모델을 지원하는 정부 정책과 정책은 스마트 제조 인프라와 재활용 기술에 대한 투자를 지속적으로 촉진할 것으로 보입니다. 산업계가 불량품 제로, 탄소 중립과 같은 인더스트리 5.0 목표를 추구함에 따라 첨단 인더스트리 4.0 솔루션에 대한 수요는 향후 수년간 크게 증가할 것으로 예상됩니다. 데이터베이스 운영을 지원하는 시장의 역량은 장기적인 성장 전망에 있으며, 매우 중요합니다.

주요 시장 성장 촉진요인

자동화와 디지털화에 대한 수요 증가

실시간 가시화와 제어의 필요성

품질 향상과 제품 혁신에 대한 주력

주요 시장이 해결해야 할 과제

통합과 상호운용성의 과제

데이터 보안과 프라이버시에 대한 우려

주요 시장 동향

산업용 IoT와 커넥티비티 솔루션의 채택

인공지능과 기계학습의 출현

데이터 분석과 첨단 분석에 대한 주력

목차

제1장 개요

제2장 조사 방법

제3장 개요

제4장 고객의 소리

제5장 세계의 스마트 제조 시장 개요

제6장 세계의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별(하드웨어, 소프트웨어, 서비스)
    • 기술별(기계학습, 산업용 3D 프린팅, 센서, 산업용 로봇, 산업용 IoT, 기계 상태 감시, 산업용 인공지능, 디지털 트윈, 자산 추적·관리)
    • 최종 용도 산업별(프로세스 산업, 디스크리트 산업)
    • 지역별
  • 기업별(2023)
  • 시장 맵

제7장 북미의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별
    • 기술별
    • 최종 용도 산업별
    • 국가별
  • 북미 : 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제8장 유럽의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별
    • 기술별
    • 최종 용도 산업별
    • 국가별
  • 유럽 : 국가별 분석
    • 독일
    • 영국
    • 이탈리아
    • 프랑스
    • 스페인

제9장 아시아태평양의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별
    • 기술별
    • 최종 용도 산업별
    • 국가별
  • 아시아태평양 : 국가별 분석
    • 중국
    • 인도
    • 일본
    • 한국
    • 호주

제10장 남미의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별
    • 기술별
    • 최종 용도 산업별
    • 국가별
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제11장 중동 및 아프리카의 스마트 제조 시장 전망

  • 시장 규모·예측
    • 금액별
  • 시장 점유율·예측
    • 컴포넌트별
    • 기술별
    • 최종 용도 산업별
    • 국가별
  • 중동 및 아프리카 : 국가별 분석
    • 남아프리카공화국
    • 사우디아라비아
    • 아랍에미리트
    • 쿠웨이트
    • 터키
    • 이집트

제12장 시장 역학

  • 촉진요인
  • 과제

제13장 시장 동향과 발전

제14장 기업 개요

  • General Electric Company
  • ABB Ltd
  • Siemens AG
  • Schneider Electric SE
  • Emerson Electric Co
  • FANUC Corporation
  • Honeywell International Inc
  • Mitsubishi Electric Corporation
  • Yokogawa Electric Corporation.
  • Stratasys Ltd

제15장 전략적 제안

제16장 조사회사 소개·면책사항

KSA 24.10.18

Global Smart Manufacturing market was valued at USD 257.67 billion in 2023 and is projected to register a compound annual growth rate of 14.82% during the forecast period through 2029.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 257.67 Billion
Market Size 2029USD 595.74 Billion
CAGR 2024-202914.82%
Fastest Growing SegmentIndustrial 3D Printing
Largest MarketAsia Pacific

The global smart manufacturing market has witnessed significant growth over the past decade, driven by increasing adoption across industries. Sectors such as automotive, electronics, heavy machinery, and food & beverage have come to recognize smart manufacturing technologies as critical enablers for optimizing production processes and improving operational efficiency.

Stringent environmental regulations regarding carbon emissions, waste generation and energy consumption have compelled large organizations to invest in advanced Industry 4.0 solutions. Leading technology providers have launched innovative smart manufacturing platforms boasting capabilities like predictive maintenance, quality inspection, real-time process monitoring and optimization. These solutions have enabled manufacturers to reduce downtime, scrap rates and operational costs substantially.

The integration of technologies like IoT sensors, machine learning and data analytics is transforming smart manufacturing capabilities. Advanced platforms now provide actionable insights into production performance, resource utilization, supply chain management and asset health. This allows managers to track key metrics, identify bottlenecks, predict failures and extract more value from existing assets and material flows.

Large industrial players have partnered with technology vendors to develop customized smart manufacturing solutions catering to their specific sustainability and efficiency goals. For example, collaborative robotics are helping automotive companies reduce energy usage while blockchain-enabled traceability solutions ensure responsible sourcing of raw materials by electronics firms.

Government policies and regulations supporting industrial digitalization, energy conservation and circular business models will continue driving investments in smart manufacturing infrastructure and recycling technologies. As industries pursue Industry 5.0 objectives like zero defects and carbon neutrality, demand for advanced Industry 4.0 solutions is expected to increase substantially over the coming years. The market's ability to support data-driven operations through AI/ML applications and analytics will be critical to its long-term growth prospects.

Key Market Drivers

Increasing Demand for Automation and Digitization

One of the key drivers for the smart manufacturing market is the increasing demand for automation and digitization across industries. As businesses strive to improve operational efficiency, reduce costs, and enhance productivity, they are turning to smart manufacturing solutions. Automation technologies such as robotics, artificial intelligence (AI), and machine learning (ML) are being deployed to streamline production processes, eliminate manual errors, and increase overall efficiency. The integration of digital technologies enables real-time data collection, analysis, and decision-making, leading to improved quality control, predictive maintenance, and optimized resource allocation. The demand for automation and digitization is expected to drive the growth of the smart manufacturing market.

Need for Real-Time Visibility and Control

Another significant driver for the smart manufacturing market is the need for real-time visibility and control over production processes. Traditional manufacturing systems often lack the ability to provide real-time insights into operations, making it challenging for businesses to identify bottlenecks, optimize workflows, and respond quickly to changing market demands. Smart manufacturing solutions address this challenge by leveraging technologies such as IoT sensors, cloud computing, and data analytics to collect and analyze real-time data from various sources. This enables manufacturers to gain a holistic view of their operations, monitor key performance indicators, and make data-driven decisions in real-time. The need for real-time visibility and control is driving the adoption of smart manufacturing solutions across industries.

Focus on Quality Improvement and Product Innovation

Quality improvement and product innovation are driving forces behind the adoption of smart manufacturing solutions. In today's competitive business landscape, organizations need to continuously improve the quality of their products and bring innovative offerings to the market to stay ahead of the competition. Smart manufacturing technologies enable businesses to implement advanced quality control measures, such as real-time monitoring, predictive analytics, and automated inspection systems. These technologies help identify defects, reduce scrap rates, and ensure consistent product quality. Additionally, smart manufacturing solutions facilitate product innovation by enabling rapid prototyping, customization, and agile production processes. The focus on quality improvement and product innovation is pushing businesses to invest in smart manufacturing solutions to enhance their competitiveness and meet evolving customer demands.

Overall, the increasing demand for automation and digitization, the need for real-time visibility and control, and the focus on quality improvement and product innovation are the key drivers propelling the growth of the smart manufacturing market. As businesses across industries recognize the benefits of smart manufacturing solutions in improving operational efficiency, optimizing resource utilization, and driving innovation, the market is expected to witness significant growth in the coming years.

Key Market Challenges

Integration and Interoperability Challenges

One of the major challenges facing the smart manufacturing market is the integration and interoperability of various systems and technologies. Smart manufacturing involves the convergence of multiple technologies, such as IoT, AI, cloud computing, and data analytics, to create a connected and intelligent manufacturing ecosystem. However, integrating these diverse technologies and ensuring seamless interoperability can be complex and challenging. Different systems may use different protocols, data formats, and communication standards, making it difficult to exchange data and information between them. This lack of integration and interoperability can hinder the smooth flow of data across the manufacturing value chain, leading to inefficiencies, data silos, and limited visibility into the entire production process. Overcoming these integration and interoperability challenges requires standardized protocols, robust data management systems, and collaboration among technology providers to develop open and interoperable solutions.

Data Security and Privacy Concerns

Another significant challenge for the smart manufacturing market is data security and privacy concerns. With the increasing connectivity and digitization of manufacturing processes, a vast amount of sensitive data is generated and transmitted across the smart manufacturing ecosystem. This includes data related to production processes, product designs, customer information, and intellectual property. Protecting this data from unauthorized access, cyber threats, and data breaches is crucial to maintaining the trust of customers, partners, and stakeholders. However, the interconnected nature of smart manufacturing systems and the use of cloud-based platforms can introduce vulnerabilities and potential entry points for cyberattacks. Additionally, compliance with data privacy regulations, such as the General Data Protection Regulation (GDPR), adds another layer of complexity to data security in smart manufacturing. Addressing these challenges requires robust cybersecurity measures, encryption techniques, access controls, and regular security audits to ensure the confidentiality, integrity, and availability of data throughout the smart manufacturing ecosystem.

Overall, the integration and interoperability challenges and data security and privacy concerns are significant hurdles that need to be addressed in the smart manufacturing market. Overcoming these challenges will require collaborative efforts from technology providers, standardization bodies, and regulatory authorities to develop open and interoperable solutions while ensuring the highest levels of data security and privacy. By addressing these challenges, the smart manufacturing market can unlock its full potential and enable businesses to achieve greater operational efficiency, productivity, and innovation.

Key Market Trends

Adoption of Industrial IoT and Connectivity Solutions

One of the prominent trends in the smart manufacturing market is the widespread adoption of Industrial Internet of Things (IIoT) and connectivity solutions. IIoT enables the integration of sensors, devices, and machines with the internet, allowing real-time data collection, analysis, and communication. This connectivity facilitates seamless communication between different components of the manufacturing ecosystem, including machines, production lines, supply chains, and enterprise systems. With IIoT, manufacturers can monitor and control their operations remotely, optimize production processes, and make data-driven decisions. The increasing availability of affordable and reliable connectivity solutions, such as 5G networks and edge computing, further accelerates the adoption of IIoT in smart manufacturing. This trend is expected to continue as businesses recognize the transformative potential of IIoT in improving operational efficiency, predictive maintenance, and overall productivity.

Emergence of Artificial Intelligence and Machine Learning

Another significant trend in the smart manufacturing market is the emergence of artificial intelligence (AI) and machine learning (ML) technologies. AI and ML algorithms enable machines and systems to learn from data, identify patterns, and make intelligent decisions without explicit programming. In the context of smart manufacturing, AI and ML algorithms can analyze vast amounts of data collected from sensors, machines, and production processes to identify anomalies, predict failures, and optimize operations. For example, AI-powered predictive maintenance systems can detect potential equipment failures before they occur, reducing downtime and maintenance costs. ML algorithms can also optimize production schedules, inventory management, and supply chain logistics based on real-time data and demand forecasts. As AI and ML technologies continue to advance, their integration into smart manufacturing systems will become more prevalent, enabling manufacturers to achieve higher levels of automation, efficiency, and agility.

Focus on Data Analytics and Advanced Analytics

Data analytics plays a crucial role in the smart manufacturing market, and there is a growing focus on leveraging advanced analytics techniques to extract actionable insights from the vast amount of data generated in manufacturing processes. Advanced analytics techniques, such as predictive analytics, prescriptive analytics, and cognitive analytics, enable manufacturers to go beyond descriptive analytics and gain deeper insights into their operations. By analyzing historical and real-time data, manufacturers can identify patterns, trends, and correlations that can help optimize production processes, improve quality control, and enhance overall efficiency. For example, predictive analytics can forecast equipment failures, allowing proactive maintenance to be performed, reducing downtime and improving asset utilization. Prescriptive analytics can optimize production schedules, considering factors such as machine availability, resource constraints, and customer demand. Cognitive analytics can analyze unstructured data, such as text and images, to extract valuable insights for decision-making. As the volume and complexity of data continue to grow, the adoption of advanced analytics techniques will become increasingly important for manufacturers to gain a competitive edge in the smart manufacturing market.

Segmental Insights

Component Insights

In 2023, the software segment dominated the Smart Manufacturing market and is expected to maintain its dominance during the forecast period. Software plays a crucial role in enabling the digital transformation of manufacturing processes by providing the necessary tools and platforms for data collection, analysis, and automation. Smart manufacturing software encompasses a wide range of applications, including manufacturing execution systems (MES), enterprise resource planning (ERP) software, product lifecycle management (PLM) software, and advanced analytics solutions. These software solutions enable manufacturers to streamline their operations, optimize production processes, and make data-driven decisions. The software segment's dominance can be attributed to several factors. The increasing adoption of Industrial Internet of Things (IIoT) and connectivity solutions has led to a massive influx of data from various sources within the manufacturing ecosystem. Smart manufacturing software allows manufacturers to harness this data and derive actionable insights to improve operational efficiency and productivity. The growing focus on advanced analytics and artificial intelligence (AI) technologies has further propelled the demand for software solutions. Manufacturers are leveraging AI-powered analytics tools to gain deeper insights into their operations, predict equipment failures, optimize production schedules, and enhance quality control. The shift towards cloud-based software solutions has also contributed to the dominance of the software segment. Cloud-based software offers scalability, flexibility, and cost-effectiveness, making it an attractive option for manufacturers of all sizes. Cloud-based software enables real-time collaboration, remote monitoring, and access to data from anywhere, further enhancing the efficiency and agility of smart manufacturing processes. Overall, the software segment's dominance in the Smart Manufacturing market is driven by its pivotal role in enabling digital transformation, data analytics, and AI-powered decision-making in the manufacturing industry.

Regional Insights

In 2023, The Asia Pacific region has established itself as the leader in the Smart Manufacturing market, a position it is projected to maintain throughout the forecast period. This dominance is driven by several critical factors, including rapid industrialization, significant technological advancements, and supportive government initiatives. Rapid industrialization in countries such as China, Japan, South Korea, and India has significantly boosted the manufacturing sectors in these nations. The growth in these sectors has been coupled with a strategic move towards adopting advanced manufacturing technologies to enhance productivity, efficiency, and competitiveness. The large manufacturing base in the Asia Pacific region provides an ideal environment for the implementation of smart manufacturing solutions, which incorporate technologies like the Internet of Things (IoT), artificial intelligence (AI), robotics, and big data analytics. Technological advancements are a key factor in solidifying the Asia Pacific region's leadership in smart manufacturing. The region is home to leading technology companies and research institutions that drive innovation in manufacturing technologies. For instance, Japan and South Korea are known for their advancements in robotics and automation, while China has made significant progress in AI and IoT applications. These technological capabilities enable manufacturers in the region to adopt and integrate smart manufacturing solutions more effectively than many other regions. Government initiatives and policies have further supported the adoption of smart manufacturing in the Asia Pacific region. Various governments have launched strategic programs and incentives to promote the modernization of manufacturing processes. China's "Made in China 2025" initiative, for example, aims to upgrade the manufacturing sector by encouraging the adoption of smart manufacturing technologies. Similarly, Japan's Society 5.0 vision emphasizes the integration of cyberspace and physical space, promoting the use of advanced technologies in manufacturing. The presence of a skilled workforce capable of operating and maintaining advanced manufacturing systems has been a significant enabler for the region. Emphasis on education and training in relevant fields ensures a steady supply of qualified professionals who can drive the implementation and continuous improvement of smart manufacturing practices. The Asia Pacific region's dominance in the smart manufacturing market is a result of rapid industrialization, technological advancements, supportive government policies, and a skilled workforce. These factors collectively position the region as a leader in smart manufacturing, with strong prospects for maintaining this leadership in the future.

Key Market Players

  • General Electric Company
  • ABB Ltd
  • Siemens AG
  • Schneider Electric SE
  • Emerson Electric Co
  • Honeywell International Inc
  • Mitsubishi Electric Corporation
  • Yokogawa Electric Corporation
  • FANUC Corporation
  • Stratasys Ltd

Report Scope:

In this report, the Global Smart Manufacturing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Smart Manufacturing Market, By Component:

  • Hardware
  • Software
  • Services

Smart Manufacturing Market, By Technology:

  • Machine Learning
  • Industrial 3D Printing
  • Sensors
  • Industrial Robotics
  • Industrial IoT
  • Machine Condition Monitoring
  • Industrial Artificial Intelligence
  • Digital Twin
  • Asset Tracking and Management

Smart Manufacturing Market, By End-Use Industry:

  • Process Industries
  • Discrete Industries

Smart Manufacturing Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey
    • Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Smart Manufacturing Market.

Available Customizations:

Global Smart Manufacturing Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Types of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Smart Manufacturing Market Overview

6. Global Smart Manufacturing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component (Hardware, Software, Services)
    • 6.2.2. By Technology (Machine Learning, Industrial 3D Printing, Sensors, Industrial Robotics, Industrial IoT, Machine Condition Monitoring, Industrial Artificial Intelligence, Digital Twin, Asset Tracking and Management)
    • 6.2.3. By End-Use Industry (Process Industries, Discrete Industries)
    • 6.2.4. By Region
  • 6.3. By Company (2023)
  • 6.4. Market Map

7. North America Smart Manufacturing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Technology
    • 7.2.3. By End-Use Industry
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Smart Manufacturing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By End-Use Industry
    • 7.3.2. Canada Smart Manufacturing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By End-Use Industry
    • 7.3.3. Mexico Smart Manufacturing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By End-Use Industry

8. Europe Smart Manufacturing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Technology
    • 8.2.3. By End-Use Industry
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Smart Manufacturing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By End-Use Industry
    • 8.3.2. United Kingdom Smart Manufacturing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By End-Use Industry
    • 8.3.3. Italy Smart Manufacturing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By End-Use Industry
    • 8.3.4. France Smart Manufacturing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By End-Use Industry
    • 8.3.5. Spain Smart Manufacturing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By End-Use Industry

9. Asia-Pacific Smart Manufacturing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Technology
    • 9.2.3. By End-Use Industry
    • 9.2.4. By Country
  • 9.3. Asia-Pacific: Country Analysis
    • 9.3.1. China Smart Manufacturing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By End-Use Industry
    • 9.3.2. India Smart Manufacturing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By End-Use Industry
    • 9.3.3. Japan Smart Manufacturing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By End-Use Industry
    • 9.3.4. South Korea Smart Manufacturing Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Technology
        • 9.3.4.2.3. By End-Use Industry
    • 9.3.5. Australia Smart Manufacturing Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Technology
        • 9.3.5.2.3. By End-Use Industry

10. South America Smart Manufacturing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By End-Use Industry
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Smart Manufacturing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By End-Use Industry
    • 10.3.2. Argentina Smart Manufacturing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By End-Use Industry
    • 10.3.3. Colombia Smart Manufacturing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By End-Use Industry

11. Middle East and Africa Smart Manufacturing Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Technology
    • 11.2.3. By End-Use Industry
    • 11.2.4. By Country
  • 11.3. MEA: Country Analysis
    • 11.3.1. South Africa Smart Manufacturing Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Technology
        • 11.3.1.2.3. By End-Use Industry
    • 11.3.2. Saudi Arabia Smart Manufacturing Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Technology
        • 11.3.2.2.3. By End-Use Industry
    • 11.3.3. UAE Smart Manufacturing Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Technology
        • 11.3.3.2.3. By End-Use Industry
    • 11.3.4. Kuwait Smart Manufacturing Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Technology
        • 11.3.4.2.3. By End-Use Industry
    • 11.3.5. Turkey Smart Manufacturing Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Component
        • 11.3.5.2.2. By Technology
        • 11.3.5.2.3. By End-Use Industry
    • 11.3.6. Egypt Smart Manufacturing Market Outlook
      • 11.3.6.1. Market Size & Forecast
        • 11.3.6.1.1. By Value
      • 11.3.6.2. Market Share & Forecast
        • 11.3.6.2.1. By Component
        • 11.3.6.2.2. By Technology
        • 11.3.6.2.3. By End-Use Industry

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

14. Company Profiles

  • 14.1. General Electric Company
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel/Key Contact Person
    • 14.1.5. Key Product/Services Offered
  • 14.2. ABB Ltd
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel/Key Contact Person
    • 14.2.5. Key Product/Services Offered
  • 14.3. Siemens AG
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel/Key Contact Person
    • 14.3.5. Key Product/Services Offered
  • 14.4. Schneider Electric SE
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel/Key Contact Person
    • 14.4.5. Key Product/Services Offered
  • 14.5. Emerson Electric Co
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel/Key Contact Person
    • 14.5.5. Key Product/Services Offered
  • 14.6. FANUC Corporation
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel/Key Contact Person
    • 14.6.5. Key Product/Services Offered
  • 14.7. Honeywell International Inc
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel/Key Contact Person
    • 14.7.5. Key Product/Services Offered
  • 14.8. Mitsubishi Electric Corporation
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel/Key Contact Person
    • 14.8.5. Key Product/Services Offered
  • 14.9. Yokogawa Electric Corporation.
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel/Key Contact Person
    • 14.9.5. Key Product/Services Offered
  • 14.10. Stratasys Ltd
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel/Key Contact Person
    • 14.10.5. Key Product/Services Offered

15. Strategic Recommendations

16. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제