|
시장보고서
상품코드
1812093
태양 폴리실리콘 잉곳 웨이퍼 셀 모듈 시장 : 세계 산업 규모, 점유율, 동향, 기회, 예측 - 기술별, 용도별, 유통 채널별, 지역별, 경쟁별(2020-2030년)Solar Polysilicon Ingot Wafer Cell Module Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Technology, By Application, By Distribution Channel, By Region & Competition, 2020-2030F |
||||||
세계의 태양 폴리실리콘 잉곳 웨이퍼 셀 모듈 시장 규모는 2024년에 347억 5,000만 달러로, 예측 기간 중 CAGR은 12.73%로, 2030년에는 719억 6,000만 달러에 달할 것으로 예측됩니다.
| 시장 개요 | |
|---|---|
| 예측 기간 | 2026-2030 |
| 시장 규모 : 2024년 | 347억 5,000만 달러 |
| 시장 규모 : 2030년 | 719억 6,000만 달러 |
| CAGR : 2025-2030년 | 12.73% |
| 급성장 부문 | 모듈 유형 |
| 최대 시장 | 아시아태평양 |
세계 태양전지 폴리실리콘-웨이퍼-셀-모듈 시장은 태양광발전(PV) 밸류체인의 핵심 시장으로, 전 세계 태양광발전 보급을 주도하고 있습니다. 이 시장은 폴리실리콘 제조를 시작으로 잉곳 주조, 웨이퍼 슬라이스, 태양전지 셀 제조, 모듈 조립 등 연속적인 생산 단계를 중심으로 구성되어 있습니다. 각 단계는 상호 연관성이 높고 고도로 통합되어 있으며, 수직적으로 통합된 대기업이 규모의 경제와 비용 경쟁력을 확보하기 위해 우위를 점하고 있습니다. 폴리실리콘은 여전히 중요한 원료로 중국, 미국, 유럽의 몇몇 기업이 생산량을 주도하고 있으며, 세계 수요의 대부분을 공급하고 있습니다. 유동층로(FBR) 방식과 지멘스 기반 공정의 에너지 효율 개선 등 생산 공정의 기술적 진보는 비용을 낮추고 공급의 신뢰성을 향상시키고 있습니다. 잉곳 및 웨이퍼 분야에서는 우수한 효율과 성능으로 단결정 기술이 다결정을 대체하고 있으며, 웨이퍼의 박형화 추세는 재료 절약과 전력 요금(LCOE) 절감을 촉진하고 있습니다.
태양전지 분야에서는 지속적인 기술 혁신으로 PERC(패시베이션화 이미터 리어셀) 등 고효율 기술이 널리 채택되고 있으며, TOPCon, HJT(이종접합), IBC(인터지게이트 백 콘택트) 셀 등 신기술이 시장 점유율을 확대하고 있습니다. 이러한 개선으로 변환 효율이 크게 향상되어 차세대 모듈 개발이 가능해졌습니다. 모듈 제조는 진코솔라, 트리나솔라, LONGi, JA솔라, 캐나디안솔라 등의 기업이 세계 출하량을 주도하고 있으며, 여전히 이 체인에서 가장 주목받고 있습니다. 양면, 하프셀, 감나무 지붕 설계로의 전환은 출력을 더욱 향상시켰고, 유리 모듈과 경량 플렉서블 모듈의 혁신은 주거용, 상업용, 유틸리티 스케일 등 다양한 분야로 용도를 확장하고 있습니다. 밸류체인 전반에 걸친 수직적 통합은 기업이 원자재 공급을 보장하고, 비용을 관리하며, 제품 차별화를 유지할 수 있게 함으로써 중요한 경쟁 전략이 되고 있습니다.
제조 비용 절감과 기술 발전
공급망 혼란
유틸리티 규모와 커뮤니티 태양광 프로젝트의 성장
The Global Solar Polysilicon Ingot Wafer Cell Module Market was valued at USD 34.75 Billion in 2024 and is expected to reach USD 71.96 Billion by 2030 with a CAGR of 12.73% during the forecast period.
| Market Overview | |
|---|---|
| Forecast Period | 2026-2030 |
| Market Size 2024 | USD 34.75 Billion |
| Market Size 2030 | USD 71.96 Billion |
| CAGR 2025-2030 | 12.73% |
| Fastest Growing Segment | Module Type |
| Largest Market | Asia Pacific |
The global Solar Polysilicon-Ingot-Wafer-Cell-Module market represents the backbone of the photovoltaic (PV) value chain, driving the growth of solar power adoption worldwide. This market is structured around sequential production stages, beginning with polysilicon manufacturing, followed by ingot casting, wafer slicing, solar cell fabrication, and finally module assembly. Each stage is interconnected and highly consolidated, with large vertically integrated players dominating to achieve economies of scale and cost competitiveness. Polysilicon remains the critical raw material, with production led by a few companies in China, the United States, and Europe, supplying the majority of global demand. Technological advancements in production processes such as the fluidized bed reactor (FBR) method and improved energy efficiency in Siemens-based processes have lowered costs and improved supply reliability. The ingot and wafer segment has seen significant consolidation, with monocrystalline technology increasingly replacing multicrystalline due to superior efficiency and performance, while wafer thickness reduction trends are driving material savings and lowering levelized costs of electricity (LCOE).
In the solar cell segment, ongoing innovation has resulted in the widespread adoption of high-efficiency technologies such as PERC (Passivated Emitter and Rear Cell), with emerging technologies including TOPCon, Heterojunction (HJT), and Interdigitated Back Contact (IBC) cells gaining market share. These improvements have significantly enhanced conversion efficiencies and enabled the development of next-generation modules. Module manufacturing remains the most visible part of the chain, with companies such as Jinko Solar, Trina Solar, LONGi, JA Solar, and Canadian Solar leading global shipments. The transition toward bifacial, half-cell, and shingled designs has further improved power output, while innovations in glass-glass modules and lightweight flexible modules are broadening applications across residential, commercial, and utility-scale sectors. Vertical integration across the value chain has become a critical competitive strategy, allowing companies to secure raw material supply, control costs, and maintain product differentiation.
Key Market Drivers
Declining Manufacturing Costs and Technological Advancements
The global solar PV industry has experienced a dramatic decline in manufacturing costs, making solar energy more accessible and competitive. Over the past decade, solar module prices have decreased by nearly 90%, largely due to improvements in production efficiency and economies of scale. Monocrystalline wafer adoption has increased, with wafer thickness reducing by up to 20% in recent years, lowering material usage and costs. PERC (Passivated Emitter and Rear Cell) technology has increased solar cell efficiency by 1-2 percentage points on average, while emerging technologies such as HJT and TOPCon are pushing efficiencies above 24% for commercial cells. Module assembly has also benefited from automation, with high-volume production lines achieving output increases of 30-40% per year. Energy consumption per kilogram of polysilicon has fallen by over 15%, while ingot and wafer yields have improved by 10-12%, further enhancing cost competitiveness. These advancements collectively reduce the Levelized Cost of Electricity (LCOE) for solar projects, driving adoption globally.
Key Market Challenges
Supply Chain Disruptions
The solar PV industry is highly dependent on a global supply chain, making it vulnerable to disruptions. Polysilicon, wafer, and cell production rely on raw materials sourced from a limited number of countries, and trade restrictions or geopolitical tensions can halt production temporarily. Transportation delays have increased lead times by 20-30% in certain regions. Additionally, shortages of specialized equipment such as wafer slicing machines or cell metallization tools can delay production schedules. Over 60% of solar-grade polysilicon production is concentrated in a few countries, creating dependency risks. Natural disasters, such as floods or earthquakes, in key manufacturing regions can disrupt supply for weeks, impacting module availability globally. These disruptions also increase costs for manufacturers, who may incur up to 15-20% higher operational expenses when sourcing alternative suppliers.
Key Market Trends
Growth of Utility-Scale and Community Solar Projects
Utility-scale solar projects and community solar farms are driving large-scale module demand. In 2024, utility projects accounted for over 60% of new installations, while community solar installations achieved record quarterly additions exceeding 1,700 MW. Corporate power purchase agreements (PPAs) are supporting large-scale deployments, with businesses seeking renewable energy commitments. Solar capacity addition in emerging economies grew by 20-25%, driven by government incentives and falling module prices. Multi-megawatt projects are increasingly adopting bifacial and high-efficiency modules, optimizing land use and energy output.
In this report, the Global Solar Polysilicon Ingot Wafer Cell Module Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Solar Polysilicon Ingot Wafer Cell Module Market.
Global Solar Polysilicon Ingot Wafer Cell Module Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: