½ÃÀ庸°í¼­
»óǰÄÚµå
1479088

¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå : ÇöȲ ºÐ¼® ¹× ¿¹Ãø(2023-2030³â)

Membrane Bioreactor (MBR) System Market: Current Analysis and Forecast (2023-2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: UnivDatos Market Insights Pvt Ltd | ÆäÀÌÁö Á¤º¸: ¿µ¹® 129 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀåÀº ¹° ºÎÁ·°ú ¼öÁú ¿À¿° Áõ°¡¿¡ µû¸¥ Çõ½ÅÀûÀÎ ¼öó¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¾à 8.28%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹° ºÎÁ·ÀÌ ½Ã±ÞÇÑ ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ´Â »óȲ¿¡¼­ MBRÀº Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, MBRÀÇ È¿À²ÀûÀΠó¸® °øÁ¤Àº ¹°ÀÇ Àç»ç¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ°í ´ã¼ö ÀÚ¿ø¿¡ ´ëÇÑ ºÎ´ãÀ» ÁÙ¿©ÁÝ´Ï´Ù. ¹° ºÎÁ·ÀÌ ½É°¢ÇÑ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ³²¹Ì µî ½ÅÈï±¹¿¡¼­´Â MBR¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 10¿ù ¼¼°è½Ä·®³ó¾÷±â±¸(Food and Agricultural Organization)´Â ¹° ºÎÁ·ÀÌ ¹«¼­¿î ¼Óµµ·Î Áõ°¡Çϰí ÀÖ´Ù´Â º¸°í¼­¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ±â°üÀº 2030³â±îÁö ´ã¼ö ¼ö¿ä·®ÀÌ °ø±Þ °¡´É·®ÀÇ ¾à 40%¸¦ ÃʰúÇÒ °ÍÀ¸·Î ÃßÁ¤Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢±¹ Á¤ºÎ´Â Æó¼ö ¹èÃâ¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖÀ¸¸ç, MBRÀº ¿À¿°¹°ÁúÀ» È¿°úÀûÀ¸·Î Á¦°ÅÇϰí ȯ°æ¹ý±Ô¸¦ ÁؼöÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±ÔÁ¦¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í »ê¾÷ ¼ºÀåÀ¸·Î ÀÎÇØ Æó¼ö ¹ß»ý·®ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, MBRÀº ÁöÀÚü, ¼¶À¯, ½ÄÀ½·á, ¼®À¯ ¹× °¡½º »ê¾÷ µî ´Ù¾çÇÑ ¿øÃµ¿¡¼­ ¹ß»ýÇÏ´Â ´ë·®ÀÇ Æó¼ö¸¦ ó¸®ÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù.

Á¦Ç°Àº Áß°ø»ç, Ç÷§ ½ÃÆ®, ´Ù°üÇüÀ¸·Î ºÐ·ùµË´Ï´Ù. Áß°ø»ç´Â ½ÃÀå Á¡À¯À²°ú º¸±Þ·ü ¸é¿¡¼­ ¾ÐµµÀûÀÎ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§ÀÇ ÁÖ¿ä ¿äÀÎÀº Æó¼ö¿¡¼­ ºÎÀ¯¹°Áú, º´¿ø±Õ, À¯±â¹° µî ¿À¿° ÀÔÀÚ¸¦ È¿À²ÀûÀ¸·Î Á¦°ÅÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °íǰÁú Æó¼ö´Â Àç»ç¿ë ¹× ȯ°æ ģȭÀûÀÎ Æó¼ö¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, Áß°ø»ç MBRÀº »ý¹°ÇÐÀû ó¸®¿Í °í¾× ºÐ¸®¸¦ µ¿ÀÏÇÑ ÀåÄ¡ ³»¿¡¼­ °áÇÕÇÕ´Ï´Ù. ÀÌ ÄÄÆÑÆ®ÇÑ ¼³°è´Â ±âÁ¸ Æó¼ö ó¸® ½Ã½ºÅÛ¿¡ ºñÇØ °ø°£À» Àû°Ô Â÷ÁöÇϸç, ƯÈ÷ ÅäÁö °ø°£ÀÌ Á¦ÇÑµÈ µµ½Ã Áö¿ª¿¡ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ, Áß°ø»ç MBRÀº À¯ÀÔ ¼öÁú ¹× À¯·® º¯µ¿¿¡ È¿°úÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ´Ù¾çÇÑ ¼ö¿ø¿¡ °ÉÃÄ ½Å·Ú¼ºÀÌ ³ô°í ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ ¼ö¿ä¿Í ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦°¡ °è¼ÓµÇ´Â °¡¿îµ¥ Áß°ø»ç MBRÀº ¾÷°è¿¡¼­ ¿ìÀ§¸¦ À¯ÁöÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

±¸¼º¿¡ µû¶ó ½ÃÀåÀº ¼öÁßÇü°ú Ãø¹æÇüÀ¸·Î ³ª´¹´Ï´Ù. ¼öÁßÇü ±¸¼ºÀÌ ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº ¼ö¿ä´Â ÁÖ·Î ¼öÁßÇü Ä«Å×°í¸®ÀÇ ¿î¿µ È¿À²¼º¿¡ ±âÀÎÇÕ´Ï´Ù. ¼öÁß MBRÀº ¸âºê·¹ÀÎÀ» ¹ÙÀÌ¿À¸®¾×ÅÍ ÅÊÅ©¿¡ Á÷Á¢ ´ã±×°í ÀÛµ¿ÇÕ´Ï´Ù. ÀÌ ±¸¼ºÀº ¹Ì»ý¹°°ú ¸· Ç¥¸éÀÇ È¿À²ÀûÀÎ Á¢ÃËÀ» º¸ÀåÇÏ¿© È¿°úÀûÀÎ ¿À¿°¹°Áú Á¦°Å¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, Ãø¸éÇü¿¡ ºñÇØ ¼³°è°¡ ´Ü¼øÈ­µÇ¾î ¼³Ä¡ ¸éÀûÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼öÁß MBRÀº ÀϹÝÀûÀ¸·Î Æø±â ¹× ±³¹Ý¿¡ ´õ ÀûÀº ¿¡³ÊÁö°¡ ÇÊ¿äÇÕ´Ï´Ù. ¸âºê·¹ÀÎÀ» Á÷Á¢ ´ã±×¸é ¼ö·Â ¼Õ½ÇÀÌ °¨¼ÒÇÏ°í ¿¡³ÊÁö°¡ Àý¾àµË´Ï´Ù. ¶ÇÇÑ ¼öÁßÇü MBRÀÌ ³Î¸® äÅÃµÉ ¼ö Àִ ȯ°æÀÌ Á¶¼ºµË´Ï´Ù. ¶ÇÇÑ ¼öÁß MBRÀº Áö¹æ ÀÚÄ¡ ´ÜüÀÇ Æó¼ö ó¸® ½Ã¼³¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °¡º¯ÀûÀÎ À¯ÀÔ ¼öÁú°ú À¯·®À» ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº µµ½Ã Áö¿ªÀÇ ´Ù¾çÇÑ ¿ä±¸¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ¼öÁß HBR¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ½Ã³ª¸®¿À¿¡ °á½ÇÀ» ¸Î°í ÀÖ½À´Ï´Ù.

¿ëµµ¿¡ µû¶ó ½ÃÀåÀº µµ½Ã Æó¼ö ó¸®¿Í »ê¾÷ Æó¼ö 󸮷Π³ª´¹´Ï´Ù. µµ½Ã Æó¼ö 󸮴 MBR ½ÃÀå ¼öÀÍ¿¡¼­ ¼¼°è ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Àα¸ Áõ°¡°¡ ÀÌ·¯ÇÑ ¼ö¿ä ±ÞÁõÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. MBRÀº µµ½Ã Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹ß»ýµÇ´Â Çϼö·®µµ Áõ°¡Çϴµ¥, MBRÀº µµ½Ã Æó¼ö¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÏ¿© ¾ö°ÝÇÑ È¯°æ ±âÁØÀ» ÃæÁ·½Ãŵ´Ï´Ù. ¶ÇÇÑ ±Þ¼ÓÇÑ µµ½ÃÈ­µµ MBRÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. µµ½Ã Áö¿ªÀº ´õ ³ôÀº Æó¼ö ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, MBRÀº Àα¸ ¹Ðµµ°¡ ³ôÀº Áö¿ª¿¡ ÀûÇÕÇÑ ÀÛ°í È¿À²ÀûÀΠó¸® ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÇÑÆí, ¾ö°ÝÇÑ Æó¼ö °ü¸® °ü·Ã ȯ°æ¹ýÀ» ÁؼöÇÏ´Â °Íµµ MBRÀÌ ÁöÀÚü ó¸® °øÀå¿¡ µµÀԵǴ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, MBRÀº ó¸®µÈ ¹èÃâ¹°ÀÇ Àç»ç¿ë¼ºÀ» º¸ÀåÇϱâ À§ÇØ MRB¸¦ Áö¼ÓÀûÀÎ Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ÀÏÄ¡½ÃÄÑ ÁöÀÚü ó¸® Ç÷£Æ®¿¡¼­ MBRÀ» ±¤¹üÀ§ÇÏ°Ô Ã¤ÅÃÇÏ´Â µ¥ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

MBR ½Ã½ºÅÛÀÇ ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½±â À§ÇØ ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±×¸®°í ¼¼°è °¢ Áö¿ªÀÇ Á¸À縦 ±âÁØÀ¸·Î ºÐ¼®µË´Ï´Ù. ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀåÀº °í±Þ Æó¼ö ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î Àü ¼¼°èÀûÀ¸·Î Å« ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä Áö¿ª Áß ºÏ¹Ì°¡ ½ÃÀå ¼öÀÍÀÇ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ¸ç ¼±µÎÁÖÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â Àß ¹ß´ÞµÈ »ê¾÷ ¹× ÁöÀÚü ÀÎÇÁ¶ó¸¦ ÀÚ¶ûÇÕ´Ï´Ù. ¼ö¸¹Àº È­ÇÐ, Á¦¾à, ½ÄÀ½·á, ÀÚµ¿Â÷ Á¦Á¶½Ã¼³ÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ ¼öó¸® ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, KUBOTA Membrane USA CorporationÀº 2021³â 8¿ù Á¶Áö¾ÆÁÖ Ç®ÅÏ Ä«¿îƼÀÇ ºò Å©¸¯(Big Creek) ¹° Àç»ý ½Ã¼³¿¡ ÇÏ·ç 3,200¸¸ °¶·±(MGD) ¿ë·®ÀÇ MBR ½Ã½ºÅÛÀ» ³³Ç°ÇØ ºÏ¹Ì ÃÖ´ë ±Ô¸ðÀÇ ½Ã¼³·Î ÀÚ¸®¸Å±èÇß½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì ±¹°¡µéÀº Æó¼ö ¹èÃâ¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦°¡ Àִµ¥, MBRÀº ¿À¿° ¹°ÁúÀ» Á¦°ÅÇϰí ȯ°æ ±Ô¹ü Áؼö¸¦ º¸ÀåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±âÁØÀ» È¿°úÀûÀ¸·Î ÃæÁ·½Ãŵ´Ï´Ù. ÇÑÆí, ºÏ¹Ì¿¡¼­´Â ¹° ºÎÁ·ÀÌ ½É°¢ÇØÁö°í Àִµ¥, MBRÀº È¿À²ÀûÀÎ ¹° Àç»ç¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ´ã¼ö ÀÚ¿ø¿¡ ´ëÇÑ ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹Ì¿¡¼­´Â MBR ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. 2023³âÀÇ µµÀü¿¡µµ ºÒ±¸ÇÏ°í ºÏ¹Ì °æÁ¦´Â ȸº¹µÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, °æÁ¦ÀÇ ¾ÈÁ¤¼ºÀÌ ¼öó¸® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå¿¡ ÁøÃâÇÑ ÁÖ¿ä ±â¾÷À¸·Î´Â Veolia, Xylem, United Utilities Group PLC, SUEZ, KUBOTA Corporation, Evoqua Water Technologies LLC, Mitsubishi Chemical Group, Mitsubishi Chemical Group, CITIC Envirotech Ltd. Corporation, TORAY INTERNATIONAL, INC., CITIC Envirotech Ltd., Kovalus Separation Solutions µîÀÌ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¼Ò°³

  • ½ÃÀå Á¤ÀÇ
  • ÁÖ¿ä ¸ñÇ¥
  • ÀÌÇØ°ü°èÀÚ
  • Á¦ÇÑ»çÇ×

Á¦2Àå Á¶»ç ¹æ¹ý ¶Ç´Â °¡Á¤

  • Á¶»ç °úÁ¤
  • Á¶»ç ¹æ¹ý
  • ÀÀ´äÀÚ ÇÁ·ÎÆÄÀÏ

Á¦3Àå ½ÃÀå ¿ä¾à

Á¦4Àå ÁÖ¿ä ¿ä¾à

Á¦5Àå COVID-19°¡ ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ

Á¦6Àå ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå ¸ÅÃâ, 2020-2030³â

Á¦7Àå Á¦Ç°º° ½ÃÀå ºÐ¼®

  • Áß°ø ¼¶À¯
  • Ç÷§ ½ÃÆ®
  • ¸ÖƼ Æ©ºí·¯

Á¦8Àå ±¸¼ºº° ½ÃÀå ºÐ¼®

  • ¼öÁßÇü
  • Ãø¹æÇü

Á¦9Àå ¿ëµµº° ½ÃÀå ºÐ¼®

  • µµ½Ã Çϼöó¸®
  • »ê¾÷ Æó¼öó¸®

Á¦10Àå Áö¿ªº° ½ÃÀå ºÐ¼®

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ±âŸ ºÏ¹Ì
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°è ±âŸ Áö¿ª

Á¦11Àå ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå °úÁ¦
  • ¿µÇ⠺м®

Á¦12Àå ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå ±âȸ

Á¦13Àå ¸·ºÐ¸® Ȱ¼º½½·¯Áö¹ý(MBR) ½Ã½ºÅÛ ½ÃÀå µ¿Çâ

Á¦14Àå ¼ö¿ä¿Í °ø±Þ ºÐ¼®

  • ¼ö¿äÃø ºÐ¼®
  • °ø±ÞÃø ºÐ¼®

Á¦15Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦16Àå °æÀï ½Ã³ª¸®¿À

  • °æÀï »óȲ
    • Porter's Five Forces ºÐ¼®

Á¦17Àå ±â¾÷ °³¿ä

  • Veolia
  • Xylem
  • United Utilities Group PLC
  • SUEZ
  • KUBOTA Corporation.
  • Evoqua Water Technologies LLC
  • Mitsubishi Chemical Group Corporation.
  • TORAY INTERNATIONAL, INC.
  • CITIC Envirotech Ltd
  • Kovalus Separation Solutions

Á¦18Àå ¸éÃ¥»çÇ×

ksm 24.05.27

A Membrane Bioreactor (MBR) is a cutting-edge wastewater treatment technology that marries two essential components: biological treatment and membrane filtration. In the MBR system, microorganisms (such as bacteria) play a crucial role. They break down organic matter present in the wastewater. This biological degradation process occurs in a specialized chamber. After the biological treatment, the treated water undergoes an additional step. It passes through a membrane filter. This membrane acts as a selective barrier, allowing only clean water molecules to pass through while retaining any remaining suspended solids and microorganisms.

The Membrane Bioreactor (MBR) System Market is expected to grow at a strong CAGR of around 8.28% owing to the increasing demand for innovative water treatment systems with the rising water scarcity and water pollution. As water scarcity is becoming a pressing concern, MBRs play a crucial role. Their efficient treatment process allows for water reuse reducing the strain on freshwater resources. In emerging countries like Asia Pacific and South America, where water scarcity is acute, the demand for MBRs has surged. For instance, in October 2023, the Food and Agricultural Organization published a report suggesting that water scarcity is rising at an unnerving rate. Furthermore, the organization has estimated that, by 2030, the need for freshwater will surpass approximately 40% of the available supply. Furthermore, governments worldwide are imposing stricter regulations regarding wastewater discharge. MBRs meet these stringent regulations by effectively removing pollutants and ensuring compliance with environmental laws. Moreover, rapid urbanization and industrial growth lead to increased wastewater generation. MBRs are well suited for handling large volumes of wastewater from diverse sources, including municipal, textile, food and beverages, and oil & gas industries.

Based on the product, the market is categorized into hollow fiber, flat sheet, and multi-tubular. The hollow fiber stands out as a dominant player in terms of market share and widespread adoption. The primary factor driving this dominance includes its capability to efficiently remove contaminant particles such as suspended solids, pathogens, and organic matter from wastewater. This high-quality effluent output makes these discharges suitable for reuse or environmentally friendly discharge. Furthermore, Hollow fiber MBRs combine biological treatment and solid-liquid separation within the same unit. This compact design requires less space compared to conventional wastewater treatment systems, particularly advantageous for urban areas with limited land space. Additionally, Hollow fiber MBRs can handle variations in influent quality and flow rates effectively. Thus making them reliable across various water sources, and making them adaptable to diverse applications. Moreover, as the demand for clean water and stringent environmental regulations persist, hollow fiber MBRs will likely maintain their dominance in the industry.

Based on the configuration, the market is bifurcated into submerged and side streams. The submerged configuration holds the major portion of the market in terms of market share. This high demand is primarily due to the efficiency with which the submerged category operates. Submerged MBRs operate with membranes immersed directly in the bioreactor tank. This configuration ensures efficient contact between microorganisms and the membrane surface, leading to effective contaminant removal. Furthermore, it simplifies the design and reduces the footprint compared to side-stream systems. Moreover, submerged MBRs typically require less energy for aeration and mixing. The direct immersion of membranes reduces hydraulic losses, resulting in energy savings. Further creating a conducive environment for the widespread adoption of submerged MBRs. Additionally, Submerged MBRs are widely used in municipal wastewater treatment plants. Their ability to handle variable influent quality and flow rates suits the diverse needs of urban areas. These developments are culminating in a scenario, where a surge in demand for submerged HBRs is being anticipated.

Based on application, the market is categorized into municipal and industrial wastewater treatment. Municipal wastewater treatment accounts for the largest share of MBR market revenue globally. Population growth is the primary factor leading to this surge in demand. As urban populations grow, so does the volume of sewage generated. MBRs efficiently treat municipal wastewater, meeting stringent environmental standards. Furthermore, rapid urbanization is also accelerating the adoption of MBRs. Urban areas face higher wastewater challenges. MBRs offer compact, efficient treatment solutions suitable for densely populated regions. Meanwhile, compliance with strict environmental laws, regarding wastewater management is also one of the major factors driving the adoption of MBRs in municipal treatment plants. Additionally, as MBRs ensure reusability of the treated discharge, align MRBs with the ongoing sustainability goals, creating a favorable environment for the widespread adoption of MBRs in municipal treatment plants.

For a better understanding of the market adoption of the MBR system, the market is analyzed based on its worldwide presence in countries such as North America (The U.S., Canada, and the Rest of North America), Europe (Germany, The U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. The Membrane Bioreactor (MBR) system market has witnessed significant growth globally, driven by the increasing demand for advanced wastewater treatment solutions. Among the major regions, North America stands out as the leader, accounting for the largest share of market revenue. North America boasts a well-established industrial and municipal infrastructure. The presence of numerous chemical, pharmaceutical, food & beverage, and automotive manufacturing facilities drives the demand for water treatment services. For instance, in August 2021, KUBOTA Membrane USA Corporation provided a 32 million gallon per day (MGD) MBR system to Fulton County's Big Creek Water Reclamation Facility in Georgia, making it one of the largest facilities in North America. Furthermore, North American countries have stringent regulations regarding wastewater discharge. MBRs effectively meet these standards by removing pollutants and ensuring compliance with environmental norms. Meanwhile, Water scarcity is a growing concern in North America. MBRs allow for efficient water reuse, reducing strain on freshwater resources. Additionally, North America is witnessing continuous technological advancements in MBR systems. Companies invest in research and development, enhancing membrane materials and designs. Despite challenges in 2023, North America's economy is projected to rebound, and economic stability supports investments in water treatment infrastructure.

Some of the major players operating in the market include Veolia; Xylem; United Utilities Group PLC; SUEZ; KUBOTA Corporation.; Evoqua Water Technologies LLC; Mitsubishi Chemical Group Corporation.; TORAY INTERNATIONAL, INC.; CITIC Envirotech Ltd; and Kovalus Separation Solutions

TABLE OF CONTENTS

1MARKET INTRODUCTION

  • 1.1.Market Definitions
  • 1.2.Main Objective
  • 1.3.Stakeholders
  • 1.4.Limitation

2RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1.Research Process of the Membrane Bioreactor (MBR) System Market
  • 2.2.Research Methodology of the Membrane Bioreactor (MBR) System Market
  • 2.3.Respondent Profile

3MARKET SYNOPSIS

4EXECUTIVE SUMMARY

5IMPACT OF COVID-19 ON THE MEMBRANE BIOREACTOR (MBR) SYSTEM MARKET

6MEMBRANE BIOREACTOR (MBR) SYSTEM MARKET REVENUE (USD BN), 2020-2030F.

7MARKET INSIGHTS BY PRODUCT

  • 7.1.Hollow Fiber
  • 7.2.Flat Sheet
  • 7.3.Multi-Tubular

8MARKET INSIGHTS BY CONFIGURATION

  • 8.1.Submerged
  • 8.2.Side Stream

9MARKET INSIGHTS BY APPLICATION

  • 9.1.Municipal Wastewater Treatment
  • 9.2.Industrial Wastewater Treatment

10MARKET INSIGHTS BY REGION

  • 10.1.North America
    • 10.1.1.The U.S.
    • 10.1.2.Canada
    • 10.1.3.Rest of North America
  • 10.2.Europe
    • 10.2.1.Germany
    • 10.2.2.The U.K.
    • 10.2.3.France
    • 10.2.4.Italy
    • 10.2.5.Rest of Europe
  • 10.3.Asia-Pacific
    • 10.3.1.China
    • 10.3.2.India
    • 10.3.3.Japan
    • 10.3.4.South Korea
    • 10.3.5.Rest of Asia-Pacific
  • 10.4.Rest of the World

11MEMBRANE BIOREACTOR (MBR) SYSTEM MARKET DYNAMICS

  • 11.1.Market Drivers
  • 11.2.Market Challenges
  • 11.3.Impact Analysis

12MEMBRANE BIOREACTOR (MBR) SYSTEM MARKET OPPORTUNITIES

13MEMBRANE BIOREACTOR (MBR) SYSTEM MARKET TRENDS

14DEMAND AND SUPPLY-SIDE ANALYSIS

  • 14.1.Demand Side Analysis
  • 14.2.Supply Side Analysis

15VALUE CHAIN ANALYSIS

16COMPETITIVE SCENARIO

  • 16.1.Competitive Landscape
    • 16.1.1.Porters Fiver Forces Analysis

17COMPANY PROFILED

  • 17.1.Veolia
  • 17.2.Xylem
  • 17.3.United Utilities Group PLC
  • 17.4.SUEZ
  • 17.5.KUBOTA Corporation.
  • 17.6.Evoqua Water Technologies LLC
  • 17.7.Mitsubishi Chemical Group Corporation.
  • 17.8.TORAY INTERNATIONAL, INC.
  • 17.9.CITIC Envirotech Ltd
  • 17.10.Kovalus Separation Solutions

18DISCLAIMER

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦