½ÃÀ庸°í¼­
»óǰÄÚµå
1618445

¼¼°èÀÇ ÇÁ·Îºê Ä«µå ½ÃÀå ±Ô¸ð : ±â¼úº°, ¿ëµµº°, Á¦Ç°º°, Áö¿ªº°, ¹üÀ§ ¹× ¿¹Ãø

Global Probe Card Market Size By Technology, By Application, By Product, By Geographic Scope And Forecast

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Verified Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 202 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÇÁ·Îºê Ä«µå ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø

ÇÁ·Îºê Ä«µå ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 28¾ï 5,085¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024-2030³â CAGR 10.70%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 64¾ï 2,917¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼°èÀÇ ÇÁ·Îºê Ä«µå ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ÇÁ·Îºê Ä«µå ½ÃÀå ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ´Ù¾çÇÑ ¿äÀÎÀÇ ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¹ÝµµÃ¼ ºÎ¹®ÀÇ ¼ºÀå ÇÁ·Îºê Ä«µå´Â ¹ÝµµÃ¼ ¿þÀÌÆÛ Á¦Á¶ °øÁ¤¿¡¼­ °Ë»ç¿¡ ÇÊ¿äÇÑ ÀåºñÀ̱⠶§¹®¿¡ ÇÁ·Îºê Ä«µå ½ÃÀåÀº ¹ÝµµÃ¼ ºÎ¹®¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇÁ·Îºê Ä«µå ½ÃÀåÀº °¡Àü, ÀÚµ¿Â÷, »ç¹°ÀÎÅͳÝÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¿ëµµ¿¡ ÀÇÇØ ÁÖµµµÇ´Â ¹ÝµµÃ¼ µð¹ÙÀ̽º¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¿¡ µû¶ó ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ ±â¼ú °³¹ß :

¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼ÒÇüÈ­, º¹ÀâÈ­ µî ¹ÝµµÃ¼ »ê¾÷ÀÇ ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ º¹ÀâÇÑ ±¸Á¶¸¦ °Ë»çÇÒ ¼ö ÀÖ´Â °í¼º´É ÇÁ·Îºê Ä«µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ´ëÀÀÇϱâ À§ÇØ ÇÁ·Îºê Ä«µå Á¦Á¶¾÷ü´Â ²÷ÀÓ¾øÀÌ Ã¢ÀǼºÀ» ¹ßÈÖÇÏ¿© ½ÃÀå È®´ë¸¦ ÃßÁøÇØ¾ß ÇÕ´Ï´Ù.

°í¼Ó ¹× °í¼º´É ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡:

µ¥ÀÌÅͼ¾ÅÍ, ÀΰøÁö´É, Åë½Å µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ °í¼Ó ¹× °í¼º´É ÀüÀÚÁ¦Ç°ÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Ã·´Ü ºÎǰÀ» Å×½ºÆ®ÇÒ ¼ö ÀÖ´Â ÇÁ·Îºê Ä«µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °íÁÖÆÄ ¹× °í¼Ó Àåºñ Å×½ºÆ®¿ëÀ¸·Î ¼³°èµÈ Ư¼ö ÇÁ·Îºê Ä«µåÀÇ Åº»ýÀº ÀÌ·¯ÇÑ ¿ä±¸¿¡ ÈûÀÔ¾î ź»ýÇß½À´Ï´Ù.

¹ÝµµÃ¼ ¼ÒÀÚÀÇ º¹À⼺ Áõ°¡:

¹ÝµµÃ¼ µð¹ÙÀ̽º°¡ º¹ÀâÇØÁú¼ö·Ï ±â´É¼º°ú ½Å·Ú¼ºÀ» Å×½ºÆ®ÇϱⰡ ´õ ¾î·Á¿öÁö¸ç, 3Â÷¿ø ÀûÃþ IC, ÃÖ÷´Ü Æ÷Àå ±â¼ú µî º¹ÀâÇÑ ¹ÝµµÃ¼ ¾ÆÅ°ÅØÃ³¸¦ Å×½ºÆ®Çϱâ À§Çؼ­´Â ÇÁ·Îºê Ä«µåÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ´Â ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀÔ´Ï´Ù.

MEMS¿Í ¼¾¼­ÀÇ ¿ëµµ È®´ë:

ÀÚµ¿Â÷, ÇコÄɾî, »ê¾÷ ¿ëµµ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ¸¶ÀÌÅ©·Î ÀüÀÚ±â°è ½Ã½ºÅÛ(MEMS)°ú ¼¾¼­ÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Æ¯¼öÇÑ Àåºñ¸¦ Å×½ºÆ®ÇÒ ¼ö ÀÖ´Â ÇÁ·Îºê Ä«µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÁ·Îºê Ä«µå Á¦Á¶¾÷üµéÀº MEMS ¹× ¼¾¼­ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ƯÁ¤ Å×½ºÆ® ¿ä±¸¿¡ ÀûÇÕÇÑ Æ¯¼ö ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå È®´ë:

ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ), Àü±âÀÚµ¿Â÷ ±â¼ú µî ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ÀüÀÚ ½Ã½ºÅÛ ¹× ºÎǰÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó Â÷·®¿ë ¹ÝµµÃ¼ Å×½ºÆ®¿¡ »ç¿ëµÇ´Â ÇÁ·Îºê Ä«µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¿ëµµ Àü¿ëÀ¸·Î ¼³°èµÈ ÇÁ·Îºê Ä«µå ½ÃÀåÀº ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º »ê¾÷°ú ÇÔ²² ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ °³¹ßÀÇ Áö¿ªÀû ¹ßÀü:

ÀÌ·¯ÇÑ ½ÅÈï ±¹°¡ ¹ÝµµÃ¼ ½ÃÀå¿¡¼­ÀÇ ÇÁ·Îºê Ä«µå ¼ö¿ä´Â ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç µî ¹ÝµµÃ¼ Á¦Á¶ ½Ã¼³ÀÇ Áö¿ªÀû È®Àå¿¡ ÈûÀÔ¾î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÁ·Îºê Ä«µå Á¦Á¶¾÷üµéÀº »õ·Î¿î Áö¿ª¿¡ ¹ÝµµÃ¼ Á¦Á¶ °øÀåÀÌ ´Ã¾î³²¿¡ µû¶ó ÇöÁö ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ½ÃÀå È®´ë¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ °Ë»ç ¼­ºñ½º ¾Æ¿ô¼Ò½Ì È®´ë :

¸¹Àº ¹ÝµµÃ¼ ±â¾÷ÀÌ ºñ¿ë Àý°¨°ú È¿À²¼º Çâ»óÀ» À§ÇØ Å×½ºÆ® ÇÁ·Î¼¼½º¸¦ ¿ÜºÎ Å×½ºÆ® ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿Í °è¾àÇÏ´Â °ÍÀ» ¼±ÅÃÇϰí ÀÖ½À´Ï´Ù. Àüü ÇÁ·Îºê Ä«µå ½ÃÀåÀº ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó Å×½ºÆ® ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ°¡ »ç¿ëÇÏ´Â ÇÁ·Îºê Ä«µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ÇÁ·Îºê Ä«µå ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

ÇÁ·Îºê Ä«µå ½ÃÀå¿¡´Â ¸î °¡Áö ¿äÀÎÀÌ ¾ïÁ¦¿äÀÎ ¹× °úÁ¦·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ÙÀ½°ú °°Àº ¿äÀεéÀÌ ÀÖ½À´Ï´Ù.

Ãʱâ ÅõÀÚ ¹× À¯Áöº¸¼ö ºñ¿ëÀÌ ³ôÀ½

ÇÁ·ÎºêÄ«µå ½Ã½ºÅÛÀº ƯÈ÷ º¹ÀâÇÑ ¹ÝµµÃ¼ ¼ÒÀÚ¸¦ Å×½ºÆ®Çϱâ À§ÇÑ °í¼º´É ¸ðµ¨ÀÇ °æ¿ì, Ãʱâ ÅõÀÚºñ¿ë°ú Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ³ôÀº ¼ÒÀ¯ ºñ¿ëÀ¸·Î ÀÎÇØ º¹ÀâÇÑ ÇÁ·Îºê Ä«µå ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ´Â ¹ÝµµÃ¼ Á¦Á¶¾÷ü(ƯÈ÷ Áß¼ÒÇü Á¦Á¶¾÷ü)´Â ¸¹Áö ¾ÊÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ º¹À⼺°ú ¿¬±¸°³¹ßÀÇ °úÁ¦:

´õ º¹ÀâÇÑ ¹ÝµµÃ¼ ¼ÒÀÚ¸¦ Å×½ºÆ®ÇÒ ¼ö Àִ ÷´Ü ÇÁ·Îºê Ä«µå ±â¼úÀ» °³¹ßÇϱâ À§Çؼ­´Â ¸¹Àº ¿¬±¸°³¹ß ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ÇÁ·Îºê Ä«µå Á¦Á¶¾÷ü´Â º¯È­ÇÏ´Â Å×½ºÆ® Ç¥ÁØ¿¡ ´ëÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î °³¹ßÇØ¾ß ÇϹǷΠ¹ÝµµÃ¼ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ´ëÀÀÇÏ±â ¾î·Æ½À´Ï´Ù. »õ·Î¿î ÇÁ·ÎºêÄ«µå ¼Ö·ç¼ÇÀÇ Ãâ½Ã¿Í ½ÃÀå ¼ºÀåÀº ¿¬±¸°³¹ßÀÇ Á¦¾à°ú ±â¼úÀÇ º¹À⼺À¸·Î ÀÎÇØ ¹æÇذ¡ µÉ ¼ö ÀÖ½À´Ï´Ù.

½ÅÁø ¹ÝµµÃ¼ ±â¼ú°úÀÇ Á¦ÇÑÀûÀÎ »óÈ£ ¿î¿ë¼º:

½Ç¸®ÄÜ Æ÷Åä´Ð½º, ¾çÀÚ ÄÄÇ»ÆÃ, ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ µî »õ·Î¿î ¹ÝµµÃ¼ ±â¼úÀÌ ÃÊ·¡ÇÏ´Â »õ·Î¿î °Ë»ç ¹®Á¦´Â ÇöÀçÀÇ ÇÁ·ÎºêÄ«µå ¼Ö·ç¼ÇÀ¸·Î´Â ¿ÏÀüÈ÷ ´ëÀÀÇÒ ¼ö ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú¿¡ ´ëÀÀÇÏ´Â ÇÁ·Îºê Ä«µå¸¦ Á¦ÀÛÇϱâ À§Çؼ­´Â Àü¹® Áö½Ä°ú ÀÚ±ÝÀÌ ÇÊ¿äÇϸç, ÀÌ·¯ÇÑ ÀÚ¿øÀÌ ¹Ýµå½Ã ¼ÒºñÀÚÀÇ ±â´ë¿¡ ºÎÇÕÇÏ´Â °ÍÀº ¾Æ´Õ´Ï´Ù. µû¶ó¼­ ÇÁ·Îºê Ä«µå°¡ ÃÖ÷´Ü ¹ÝµµÃ¼ ±â¼ú¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ°¡ ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

½Å·Ú¼º°ú ǰÁú¿¡ ´ëÇÑ µÎ °¡Áö Ãø¸éÀÇ °ü½É»ç:

ÇÁ·Îºê Ä«µå´Â Á¦Á¶ °øÁ¤¿¡¼­ öÀúÇÑ Å×½ºÆ®¸¦ ÅëÇØ ¹ÝµµÃ¼ ¼ÒÀÚÀÇ Ç°Áú°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇÁ·Îºê Ä«µåÀÇ Á¤È®¼º, ½Å·Ú¼º ¹× ³»±¸¼º ¹®Á¦´Â ¹ÝµµÃ¼ ¼öÀ²°ú Àüü Á¦Ç° ǰÁú¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÇÁ·Îºê Ä«µåÀÇ ¸¶¸ð, ¼Õ»ó, ºÎÁ¤È®ÇÑ ±³Á¤ µîÀÇ ¹®Á¦´Â ÇÁ·Îºê Ä«µåÀÇ Ç°Áú ¹× ½Å·Ú¼º ¹®Á¦°¡ ¼ÒºñÀÚÀÇ ½Å·Ú¿Í ½ÃÀå ¼ö¿ë¿¡ ¾î¶»°Ô ¿µÇâÀ» ¹ÌÄ¡´ÂÁö º¸¿©ÁÖ´Â ÇÑ °¡Áö ¿¹¿¡ ºÒ°úÇÕ´Ï´Ù.

¼¼°è °æÁ¦ÀÇ ºÒÈ®½Ç¼º ¿µÇâ:

¼¼°è °æÁ¦ »óȲÀÇ º¯È­´Â ¹ÝµµÃ¼ »ê¾÷ Àüü»Ó¸¸ ¾Æ´Ï¶ó ÇÁ·Îºê Ä«µå ½ÃÀå¿¡µµ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. °æ±â ħü, ¹«¿ª ¸¶Âû, ÁöÁ¤ÇÐÀû ºÒÈ®½Ç¼º µîÀ¸·Î ÀÎÇÑ ¹ÝµµÃ¼ ½ÃÀåÀÇ È¥¶õÀ¸·Î ÀÎÇØ ÇÁ·Îºê Ä«µå¿Í °°Àº Á¦Á¶ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ°¡ °¨¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °ø±Þ¸Á Áߴܰú ºÎǰ ºÎÁ·À¸·Î ÀÎÇØ ½ÃÀåÀÇ ¾î·Á¿òÀÌ ½ÉÈ­µÇ¾î ÇÁ·ÎºêÄ«µå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Á¢±Ù¼º°ú ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ×:

ÇÁ·Îºê Ä«µå Á¦Á¶¾÷ü´Â »ê¾÷ »ç¾ç ¹× ±ÔÁ¦ Ç¥ÁØÀ» ÁؼöÇϱâ À§ÇØ Ãß°¡ ºñ¿ëÀ» ºÎ´ãÇϰí Ãß°¡ ¿ä±¸ »çÇ×À» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀÇ ¿¹·Î ¹ÝµµÃ¼ Á¦Á¶ Àåºñ¿¡ ´ëÇÑ SEMI Ç¥ÁØÀ» µé ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ÁøÃâ±â¾÷Àº ¼º´É°ú ½Å·Ú¼º¿¡ ´ëÇÑ °í°´ÀÇ ¿ä±¸¸¦ ÃæÁ·½ÃŰ¸é¼­ ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇÏ´Â °ÍÀº ƯÈ÷ °æ¿µ ÀÚ¿øÀÌ ºÎÁ·ÇÑ Áß¼Ò±â¾÷¿¡°Ô´Â ¾î·Á¿î ÀÏÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀåÀÇ Á¤ÀÇ
  • ½ÃÀå ¼¼ºÐÈ­
  • Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

  • ÁÖ¿ä Á¶»ç °á°ú
  • ½ÃÀå °³¿ä
  • ½ÃÀå ÇÏÀ̶óÀÌÆ®

Á¦3Àå ½ÃÀå °³¿ä

  • ½ÃÀå ±Ô¸ð¿Í ¼ºÀåÀÇ °¡´É¼º
  • ½ÃÀå µ¿Çâ
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • Porter's Five Forces ºÐ¼®

Á¦4Àå ÇÁ·Îºê Ä«µå ½ÃÀå : ±â¼úº°

  • MEMS ±â¹Ý ÇÁ·Îºê Ä«µå
  • CMOS ±â¹Ý ÇÁ·Îºê Ä«µå
  • Á¾Çü ÇÁ·Îºê Ä«µå

Á¦5Àå ÇÁ·Îºê Ä«µå ½ÃÀå : ¿ëµµº°

  • ¿þÀÌÆÛ Å×½ºÆ®
  • ÆÐŰÁö Å×½ºÆ®
  • µð¹ÙÀ̽º Å×½ºÆ®

Á¦6Àå ÇÁ·Îºê Ä«µå ½ÃÀå : Á¦Ç°º°

  • ½ºÅÄ´Ùµå ÇÁ·Îºê Ä«µå
  • ÷´Ü ÇÁ·Îºê Ä«µå
  • Ä¿½ºÅ͸¶ÀÌÁî ÇÁ·Îºê Ä«µå

Á¦7Àå Áö¿ª ºÐ¼®

  • ºÏ¹Ì
  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • À¯·´
  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ÀÌÅ»¸®¾Æ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áß±¹
  • ÀϺ»
  • Àεµ
  • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª
  • Ä¥·¹
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®

Á¦8Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ

Á¦9Àå °æÀï ±¸µµ

  • ÁÖ¿ä ±â¾÷
  • ½ÃÀå Á¡À¯À² ºÐ¼®

Á¦10Àå ±â¾÷ °³¿ä

  • FormFactor Ltd.
  • Feinmetall GmbH
  • SV Probe
  • Microfriend Inc.
  • Japan Electronic Materials Corporation
  • RIKA DENSHI CO., LTD.
  • Precision Test Tech.Co., Ltd.
  • MPI Corporation
  • MICRONICS JAPAN CO., LTD.

Á¦11Àå ½ÃÀå Àü¸Á°ú ±âȸ

  • ½Å±Ô ±â¼ú
  • ÇâÈÄ ½ÃÀå µ¿Çâ
  • ÅõÀÚ ±âȸ

Á¦12Àå ºÎ·Ï

  • ¾à¾î ¸®½ºÆ®
  • Àü½Ã¿Í Âü°í ¹®Çå
KSA 25.01.03

Probe Card Market Size And Forecast

Probe Card Market size was valued at USD 2850.85 Million in 2023 and is projected to reach USD 6429.17 Million by 2030, growing at a CAGR of 10.70% from 2024 to 2030. Global Probe Card Market Drivers The market drivers for the Probe Card Market can be influenced by various factors. These may include: Growth of the Semiconductor sector: Since probe cards are necessary instruments for inspecting semiconductor wafers during the production process, the probe card market is highly dependent on the semiconductor sector. The probe card market is expanding in accordance with the ongoing demand for semiconductor devices, which is being driven by a variety of applications including consumer electronics, automotive, and the Internet of Things.

Developments in Semiconductor Technology:

The need for sophisticated probe cards that can test these complex structures is driven by the semiconductor industry's technological innovations, which include the creation of smaller and more complicated semiconductor devices. In order to keep up with the rapid advancements in semiconductor technology, probe card producers need to stay creative and drive market expansion.

Growing Need for High-Speed and High-Performance Electronics:

As high-speed and high-performance electronics proliferate across a range of industries, including data centers, artificial intelligence, and telecommunications, there is an increasing demand for probe cards that can test these cutting-edge components. The creation of specific probe cards designed for high-frequency and high-speed device testing is fueled by this need.

Growing Complexity of Semiconductor devices:

It gets harder to test semiconductor devices for functionality and reliability as they get more complicated. In order to test complex semiconductor architectures, such as 3D stacked ICs and cutting-edge packaging technologies, probe cards must develop. This will spur market expansion.

Expanding Use of MEMS and Sensors:

The need for probe cards that can test these specialized devices is fueled by the increasing use of micro-electromechanical systems (MEMS) and sensors in a variety of industries, including the automotive, healthcare, and industrial applications. Manufacturers of probe cards provide specialized solutions suited to their particular testing needs as MEMS and sensor technologies progress.

Market Expansion for Automotive Electronics:

The need for probe cards, which are used to test automotive semiconductors, is driven by the automotive industry's growing integration of electronic systems and components, such as infotainment systems, advanced driver-assistance systems (ADAS), and electric vehicle technologies. The market for probe cards designed specifically for automotive applications is growing together with the automotive electronics industry.

Geographical development of Semiconductor Manufacturing:

The need for probe cards in these developing semiconductor markets is boosted by the geographic development of semiconductor manufacturing facilities, especially in areas like Asia-Pacific. Manufacturers of probe cards aim to expand their reach in order to meet local demand as semiconductor fabs multiply in new areas, hence fostering market expansion.

Growing Outsourcing of Semiconductor Testing Services:

In an effort to cut expenses and improve efficiency, a lot of semiconductor businesses choose to contract with outside testing service providers for their testing procedures. The market for probe cards as a whole is driven by this trend, which increases the need for the cards used by testing service providers.

Global Probe Card Market Restraints

Several factors can act as restraints or challenges for the Probe Card Market. These may include:

High Initial Investment and Maintenance expenses:

Probe card systems can have a significant initial investment and continuing maintenance expenses, especially for the more sophisticated models intended to test intricate semiconductor devices. Due to the high cost of ownership, fewer semiconductor manufacturers-particularly smaller ones-may choose to invest in complex probe card solutions, which could restrict market expansion.

Technological Complexity and R&D Challenges:

Significant research and development (R&D) efforts are needed to create sophisticated probe card technologies that can test more complicated semiconductor devices. Additionally, makers of probe cards face difficulties in keeping up with the quick advances in semiconductor technology because they have to constantly develop in order to meet changing testing criteria. The launch of new probe card solutions and market growth may be impeded by the accompanying R&D constraints and technological complexity.

Limited Interoperability with Up-and-Coming Semiconducting Technology:

Novel testing problems are brought about by emerging semiconductor technologies including silicon photonics, quantum computing, and neuromorphic computing, which could not be entirely satisfied by current probe card solutions. It takes specialized knowledge and financial resources to create probe cards for these cutting-edge technologies, and these resources might not always match consumer expectations. Therefore, the ability of probe cards to work with cutting-edge semiconductor technologies may limit the growth of the market.

Both dependability and quality Concerns:

By carrying out thorough testing during the manufacturing process, probe cards serve a vital role in guaranteeing the quality and dependability of semiconductor devices. Probe card accuracy, dependability, and durability problems can have a big impact on semiconductor yield and overall product quality. Problems with probe wear, damage, and inaccurate calibration are just a few examples of how problems with probe cards' quality and dependability can affect consumer confidence and market acceptance.

Impact of Global Economic Uncertainty:

Changes in the state of the world economy can have an impact on the probe card market as well as the semiconductor industry as a whole. Reduced investments in manufacturing equipment, such as probe cards, might result from disruptions in the market for semiconductors caused by economic downturns, trade conflicts, and geopolitical uncertainty. Furthermore, market difficulties may be made worse by supply chain interruptions and component shortages, which may affect the accessibility and cost of probe card solutions.

Regulatory and Compliance Requirements:

Probe card makers must incur additional costs and meet additional requirements in order to comply with industry specifications and regulatory standards. Examples of these standards are SEMI standards for semiconductor production equipment. It can be difficult for market participants to ensure adherence to these standards while satisfying customer needs for performance and dependability, especially for smaller businesses with limited resources.

Global Probe Card Market Segmentation Analysis

Global Probe Card Market is segmented based on Technology, Application, Product And Geography.

Probe Card Market, By Technology

  • MEMS-based Probe Cards
  • : These probe cards incorporate micro-electromechanical systems (MEMS) technology for improved precision and performance in testing semiconductor devices.
  • CMOS-based Probe Cards
  • : Complementary metal-oxide-semiconductor (CMOS) technology is utilized in these probe cards to enhance functionality and integration.
  • Vertical Probe Cards
  • : Vertical probe cards feature vertically oriented probe needles for testing semiconductor wafers, offering advantages such as reduced contact resistance and improved signal integrity.

Probe Card Market, By Application

  • Wafer Test
  • : Probe cards used for testing semiconductor wafers during the manufacturing process to ensure functionality and reliability.
  • Package Test
  • : Probe cards employed for testing semiconductor packages, including advanced packaging technologies such as flip-chip and system-in-package (SiP).
  • Device Test
  • : Probe cards utilized for testing individual semiconductor devices, including discrete components and integrated circuits (ICs).

Probe Card Market, By Product

  • Standard Probe Cards
  • : Conventional probe cards designed for general-purpose testing applications across various semiconductor devices and technologies.
  • Advanced Probe Cards
  • : High-performance probe cards equipped with advanced features and capabilities for testing complex semiconductor structures and emerging technologies.
  • Customized Probe Cards
  • : Tailor-made probe cards developed to meet specific customer requirements, including specialized testing applications and unique semiconductor designs.

Probe Card Market, By Geography

  • North America:
  • Market conditions and demand in the United States, Canada, and Mexico.
  • Europe:
  • Analysis of the Probe Card Market in European countries.
  • Asia-Pacific:
  • Focusing on countries like China, India, Japan, South Korea, and others.
  • Middle East and Africa:
  • Examining market dynamics in the Middle East and African regions.
  • Latin America:
  • Covering market trends and developments in countries across Latin America.

Key Players

  • The major players in the Probe Card Market are:
  • FormFactor Ltd.
  • Feinmetall GmbH
  • SV Probe
  • Microfriend Inc.
  • Japan Electronic Materials Corporation
  • RIKA DENSHI CO. LTD
  • Precision Test Tech.Co. Ltd
  • MPI Corporation
  • MICRONICS JAPAN CO. LTD

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Probe Card Market, By Technology

  • MEMS-based Probe Cards
  • CMOS-based Probe Cards
  • Vertical Probe Cards

5. Probe Card Market, By Application

  • Wafer Test
  • Package Test
  • Device Test

6. Probe Card Market, By Product

  • Standard Probe Cards
  • Advanced Probe Cards
  • Customized Probe Cards

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • FormFactor Ltd.
  • Feinmetall GmbH
  • SV Probe
  • Microfriend Inc.
  • Japan Electronic Materials Corporation
  • RIKA DENSHI CO., LTD.
  • Precision Test Tech.Co., Ltd.
  • MPI Corporation
  • MICRONICS JAPAN CO., LTD.

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦