시장보고서
상품코드
1622662

분로 리액터 시장 : 유형별, 전압 유형별, 용도별, 최종 사용자별, 지역별(2024-2031년)

Shunt Reactor Market By Type (Dry Type, Liquid Type), Voltage Type (Above 400 Kv, 200-400 Kv, Upto 200 Kv), Application (Fixed Reactor, Variable Reactor), End-User (Fixed Reactor, Variable Reactor), & Region for 2024-2031

발행일: | 리서치사: Verified Market Research | 페이지 정보: 영문 202 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

분로 리액터 시장 평가(2024-2031년)

분로 리액터 수요가 증가하고 있는 것은 송전 시스템의 효율과 신뢰성을 향상시키는데 중요하기 때문입니다. 분로 리액터는 일반적으로 고압 송전선의 용량성 무효 전력을 조정하는 데 사용됩니다. 전기는 장거리, 특히 고압 송전선로로 수송되기 때문에 용량성 리액턴스에 의해 전압 레벨이 급상승할 수 있습니다. 전압 불안정성으로 알려진 이 현상은 기기에 피해를 주고 전력 공급 정지를 일으킬 수 있으며 시장은 2024년 30억 5,000만 달러의 수익을 넘어 2031년까지 약 43억 9,000만 달러의 평가액에 이를 수 있습니다.

풍력발전이나 태양광발전 등의 신재생 에너지 수요가 높아짐에 따라 송전망의 관리는 어려워지고 있습니다. 이러한 전원은 간헐적으로, 또 원격지에서 발전하는 경우가 많기 때문에, 도시지역이나 공업지대에 전력을 공급하기 위한 대규모 트랜스미션 인프라가 필요합니다. 분로 리액터는 신재생 에너지원의 출력 변동에 따른 전압 변동을 저감함으로써 송전망의 안정성을 유지하는 데 도움이 되며 2024년부터 2031년까지 CAGR 4.68%로 시장이 성장하는 것을 가능하게 합니다.

분로 리액터 시장 정의 및 개요

분로 리액터는 전압 레벨을 조정하는 전력 계통의 장치입니다. 철 등의 자성 코어에 와이어를 꼬인 코일로 형성되어 있습니다. 전력선에 전기가 흐르면 거리와 부하 수요에 따라 전압 레벨이 변동됩니다. 분로 리액터는 변속기 송전선에 병렬로 접속되어(션트 접속) 조정 가능한 전기 부하로 기능합니다.

분로 리액터는 전압 레벨을 안정시키고 송전망의 효율을 향상시키는 송전 장치입니다. 긴 송전선에 의해 생기는 잉여 무효 전력을 흡수함으로써 특히 전력 유량이 적은 저수요기에 작동합니다. 이 무효 전력은 적절하게 관리되지 않으면 전압 불안정이나 비효율적인 에너지 트랜스미션의 원인이 됩니다. 과도한 무효 전력을 흡수함으로써 분로 리액터는 송전망 전체에서 안정적인 전압 레벨을 유지하는 데 도움이 되며 기기 손상이나 서비스 중단을 초래하지 않고 전력을 효율적으로 수송할 수 있습니다.

또한, 분로 리액터는 송전 효율의 향상에도 크게 기여합니다. 전압 레벨을 제어함으로써 트랜스미션 중에 낭비되는 에너지량을 제한합니다. 이는 수도관 시스템의 누수를 최소화하는 것과 비슷합니다. 이 효율 향상은 비용 절감과 소비자에 대한 안정적인 전력 공급으로 이어집니다.

발전 용량 증가는 분로 리액터 시장을 견인하는가?

발전 용량 증가는 분로 리액터 시장의 주요 촉진요인입니다. 세계의 에너지 수요가 증가함에 따라 세계 각국의 정부는 그것을 충족시키기 위해 발전 인프라를 확장하고 있습니다. 이 성장에는 변속기 시스템에서 전압변동이나 무효전력 장애를 일으킬 수 있는 신재생 에너지원 도입도 자주 포함되어 있습니다. 분로 리액터는 전압 안정성을 촉진하고 전력 품질을 개선함으로써 이러한 문제에 대처하는 데 중요한 역할을 합니다.

국제 에너지 기관(IEA)은 세계 전력 수요가 2022년부터 2024년까지 연률 2.1% 증가할 것으로 예측하고 있으며, 송배전 인프라에 다액의 투자가 필요합니다. 미국 에너지정보국(EIA)의 보고에 따르면 미국에서만 2021년 전력회사 규모의 발전용량이 약 14.5기가와트(GW) 증가했습니다.

높은 초기 도입 비용은 분로 리액터 시장의 방해가 될까?

설치에 걸리는 초기 비용이 높기 때문에 특히 재원이 한정되어 있는 지역이나 장기적인 메리트가 곧 분명하지 않은 지역에서는 분로 리액터 사업의 성장이 정체할 가능성이 있습니다. 분로 리액터는 전력망의 전력 품질과 시스템 안정성을 유지하기 위해 중요하지만 상당한 초기 투자가 필요합니다. 이는 리액터 비용뿐만 아니라 부지 준비, 설치, 기존 인프라와의 연결에 드는 비용도 포함됩니다. 이러한 비용은 소규모 전력회사나 신흥국에 있어서는 터무니없이 비싸질 가능성이 있으며, 따라서 업계의 진보가 제한됩니다. 게다가 상황에 따라서는 투자 대비 효과가 나타나기까지 수년이 걸릴 수도 있어 의사결정자가 비용을 정당화하기는 어렵습니다.

높은 설치 비용의 영향은 다양한 요인에 의해 최소화될 수 있다는 점에 주의하는 것이 중요합니다. 첫째, 전 세계 전력계통이 확대되고 보다 많은 신재생 에너지원이 편입됨에 따라 무효전력 조정의 필요성이 높아집니다. 이러한 수요 증가는 제조 기술 혁신과 규모의 경제를 촉진하여 궁극적으로 장기적인 비용 절감을 초래할 수 있습니다. 둘째, 계통 안정성 향상, 전력 손실 저감, 전압 제어 개선 등 분로 리액터의 장기적인 장점은 운용 비용의 대폭적인 절감과 신뢰성 향상으로 이어집니다. 많은 유틸리티 기업이나 계통 운용자들은 이러한 점을 고려하면 초기 투자가 낭비된다는 것을 깨달을지도 모릅니다. 더욱이 계통 안정성의 필요성에 대한 인식이 높아짐에 따라 이러한 기술에 대한 투자에 대한 정부의 지원과 인센티브도 높아질 수 있습니다.

목차

제1장 세계의 분로 리액터 시장 : 서문

  • 시장 개요
  • 조사 범위
  • 전제조건

제2장 주요 요약

제3장 검증된 시장 조사의 조사 방법

  • 데이터 마이닝
  • 밸리데이션
  • 1차 인터뷰
  • 데이터 소스 일람

제4장 세계의 분로 리액터 시장 전망

  • 개요
  • 시장 역학
    • 성장 촉진요인
    • 억제요인
    • 기회
  • Porter's Five Forces 모델
  • 밸류체인 분석

제5장 세계의 분로 리액터 시장 : 유형별

  • 개요
  • 건식
  • 액체 유형

제6장 세계의 분로 리액터 시장 : 전압 유형별

  • 개요
  • 400Kv 이상
  • 200-400 Kv
  • 200Kv 미만

제7장 세계의 분로 리액터 시장 : 용도별

  • 개요
  • 가변 반응기
  • 고정 리액터

제8장 세계의 분로 리액터 시장 : 최종 사용자별

  • 개요
  • 전기사업
  • 신재생 에너지
  • 기타

제9장 세계의 분로 리액터 시장 : 지역별

  • 개요
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 독일
    • 영국
    • 프랑스
    • 기타 유럽
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 기타 아시아태평양
  • 라틴아메리카
    • 브라질
    • 아르헨티나
    • 기타 라틴아메리카
  • 중동 및 아프리카
    • 사우디아라비아
    • 아랍에미리트(UAE)
    • 남아프리카
    • 기타 중동 및 아프리카

제10장 세계의 분로 리액터 시장 : 경쟁 구도

  • 개요
  • 각사 시장 랭킹
  • 주요 개발 전략
  • 기업의 산업 발자국
  • 기업의 지역별 실적
  • 에이스 매트릭스

제11장 기업 프로파일

  • Hitachi group
  • ABB
  • Siemens AG
  • General Electric
  • Zaporozhtransformator
  • Fuji Electric Co., Ltd.
  • Toshiba Energy Systems & Solutions Corporation
  • Mitsubishi Corporation
  • Nissin Electric Co., Ltd.
  • CG Power & Industrial Solutions Ltd.
  • GBE UK Ltd
  • HYOSUNG TNC
  • Shrihans Electricals Pvt. Ltd.

제12장 부록

  • 관련 보고서
AJY 25.01.14

Shunt Reactor Market Valuation - 2024-2031

The growing demand for shunt reactors arises from their importance in improving the efficiency and reliability of electrical power transmission systems. Shunt reactors are typically used to adjust for capacitive reactive power in high-voltage power transmission lines. As electricity is transported over long distances, particularly in high-voltage lines, capacitive reactance can cause voltage levels to skyrocket. This phenomenon, known as voltage instability can harm equipment and cause power supply outages by enabling the market to surpass a revenue of USD 3.05 Billion valued in 2024 and reach a valuation of around USD 4.39 Billion by 2031.

Power grid management is becoming more difficult as the demand for renewable energy sources such as wind and solar power grows. These sources frequently generate power intermittently and in remote regions necessitating large transmission infrastructure to provide electricity to urban areas and industrial centers. Shunt reactors help to preserve grid stability by reducing voltage variations caused by renewable energy sources fluctuating output by enabling the market to grow at aCAGR of 4.68% from 2024 to 2031.

Shunt Reactor Market: Definition/ Overview

A shunt reactor is a device in electrical power systems that regulates voltage levels. It is formed out of a coil of wire twisted around a magnetic core such as iron. When electricity flows over power lines, voltage levels can vary depending on distance and load demand. A shunt reactor is linked in parallel (shunt connection) to the transmission lines and functions as an adjustable electrical load.

A shunt reactor is an electrical power transmission device that stabilizes voltage levels and improves grid efficiency. It operates by absorbing surplus reactive power created by long transmission lines, particularly during low-demand periods when power flow is low. This reactive power, if not managed appropriately, can cause voltage instability and inefficient energy transmission. By absorbing excess reactive power, shunt reactors help to maintain a steady voltage level throughout the grid allowing electricity to be transported effectively without causing equipment damage or service disruption.

Shunt reactors also contribute significantly to increased power transmission efficiency. By controlling voltage levels, they limit the amount of energy wasted during transmission which is analogous to minimizing leaks in a water pipe system. This efficiency gain results in cost savings and a more stable power supply for consumers.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Will the Increasing Power Generation Capacity Drive the Shunt Reactor Market?

The rising power generation capacity is a major driver of the shunt reactor market. As global energy demand grows, governments around the world are expanding their power-producing infrastructure to satisfy it. This growth frequently includes the incorporation of renewable energy sources which can cause voltage swings and reactive power difficulties in transmission systems. Shunt reactors play an important role in addressing these issues by promoting voltage stability and improving power quality.

The International Energy Agency (IEA) predicts that global electricity demand will increase by 2.1% per year from 2022 to 2024 necessitating significant investments in power transmission and distribution infrastructure. The U.S. Energy Information Administration (EIA) reports that utility-scale electricity generation capacity in the United States alone increased by approximately 14.5 gigawatts (GW) in 2021.

Will the High Initial Cost of Installation Hamper the Shunt Reactor Market?

The high initial cost of installation may standstill the growth of the shunt reactor business especially in regions with limited financial resources or where the long-term benefits are not immediately obvious. Shunt reactors while critical for preserving power quality and system stability in electrical grids can demand a considerable initial investment. This covers not just the reactor's cost but also expenses for site preparation, installation, and connection with existing infrastructure. These expenses can be prohibitively high for smaller utilities and developing countries, thus limiting industry progress. Furthermore, in certain circumstances, the return on investment may take several years to manifest making it difficult for decision-makers to justify the expense, especially when faced with competing priorities and restricted budgets.

It is crucial to note that the impact of high installation costs can be minimized by a variety of factors. First, as power systems throughout the world expand and incorporate more renewable energy sources, the requirement for reactive power adjustment grows. This increased demand may encourage innovation and economies of scale in manufacturing ultimately resulting in cost savings over time. Second, the long-term benefits of shunt reactors such as improved grid stability, lower power losses, and better voltage control can result in significant operational cost savings and increased reliability. Many utilities and grid operators may find that these considerations negate their initial investment. Furthermore, as awareness of the need for grid stability rises, there may be increased government support and incentives for investing in such technology.

Category-Wise Acumens

Will Higher Efficiency and Better Cooling Capabilities Drive Growth in the Type Segment?

Liquid-type shunt reactors are more prevalent due to their improved efficiency and superior cooling capabilities. They can withstand higher voltage levels and power capacity making them appropriate for large-scale power networks and heavy industrial applications. The liquid coolant effectively dissipates heat keeping the reactor's performance steady over time.

They effectively reduce power losses ensuring that the given electricity is used efficiently. This efficiency is critical for power networks which are being pushed to their limits by increased electrical demands from residential, commercial, and industrial sectors. Liquid-type shunt reactors contribute to lower operational costs and improved power grid performance by eliminating energy waste. Furthermore, the great efficiency of these reactors is consistent with worldwide trends toward energy saving and sustainability making them a popular choice in the market.

The increasing efficiency and cooling capacities of liquid-type shunt reactors are key elements driving their expansion in the type category. Their capacity to improve energy efficiency, lower operational costs, and ensure consistent performance makes them an appealing option for utility companies and enterprises around the world. As demand for stable and efficient power systems grows, the liquid-type shunt reactor market is predicted to rise rapidly owing to these important features.

Will the Widespread Use in Stabilizing Voltage Levels in Electrical Grids Drive the Application Segment?

Fixed reactors are widely employed in power systems for voltage regulation and stability making them an essential component of electrical grid management. These reactors are permanently connected to the grid and serve an important role in ensuring a constant voltage level minimizing fluctuations that could harm equipment or cause inefficiency. Their capacity to provide continuous voltage control without the need for regular modifications makes them extremely dependable and critical for guaranteeing the smooth running of power networks. This dependability and stability are crucial in areas with changing power demands making fixed reactors the favored choice for many utilities and grid operators.

Fixed reactors' dominance stems from their simplicity and robustness. They have fewer moving components and require less maintenance than variable reactors which results in cheaper long-term operational expenses. This cost-effectiveness is particularly advantageous for large-scale power transmission and distribution networks that demand steady performance with low downtime. Fixed reactor's lengthy service life and low maintenance requirements make them an appealing choice for grid operators wishing to invest in dependable infrastructure. Furthermore, their simple form facilitates integration into current systems reinforcing their commercial position.

Country/Region-wise Acumens

Will Rapid Industrialization Drive the Market in the Asia Pacific Region?

The Asia Pacific region is expected to be a major driver of growth in the shunt reactor market owing to fast industrialization and rising energy demand. According to the International Energy Agency (IEA), energy demand in Southeast Asia is expected to increase by an average of 4% per year until 2030 more than doubling the global average. This increase in demand is driven mostly by industrial expansion, urbanization, and growing living standards throughout the region. China and India, in particular, are likely to drive a significant share of this development.

Several reasons contribute to Asia Pacific's dominant position in the shunt reactor market. To begin, large expenditures in power infrastructure to support industrial expansion are driving increasing demand for power-quality equipment such as shunt reactors. The Asian Development Bank (ADB) forecasts that the area will need to invest $14.7 trillion in electrical infrastructure between 2016 and 2030 to sustain its current development rate. Second, the growing integration of renewable energy sources into the grid particularly wind and solar necessitates the employment of shunt reactors to control voltage swings. According to the International Renewable Energy Agency (IRENA), Asia accounted for 64% of global new renewable energy capacity additions in 2020.

Will the Increasing Electricity Consumption Across Residential Sectors Drive the Market in the North American Region?

The increasing consumption of power in the residential sector is expected to drive the shunt reactor market in North America. According to the United States Energy Information Administration (EIA), home electricity usage in the United States is expected to increase gradually in the future years. In 2020, the residential sector accounted for approximately 39% of total US electricity consumption, and this figure is likely to climb even more. According to the US Department of Energy, the average annual electricity use for a residential utility customer in 2020 was 10,715 kilowatt-hours (kWh). This figure has gradually risen over time owing to reasons such as population expansion, increased usage of electronic gadgets, and the introduction of electric vehicles.

Variable shunt reactors are expected to be the fastest-growing section of the North American shunt reactor market. This is primarily due to the increased integration of renewable energy sources into the power grid as well as the demand for more flexible and efficient power transmission systems. According to the International Energy Agency (IEA), renewable energy capacity in North America is predicted to increase by more than 440 GW between 2023 and 2027 accounting for about 75% of the region's capacity growth. Variable shunt reactors provide substantial advantages over fixed shunt reactors for controlling voltage changes induced by intermittent renewable energy sources.

Competitive Landscape

The shunt reactor market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.

Some of the prominent players operating in the shunt reactor market include:

Mitsubishi Corporation

Fuji Electric

Hd Hyundai Heavy Industries Co., Ltd.

Tbea

Hilkar

Toshiba Corporation

Siemens Ag

Ge Grid Solution

Latest Developments

In September 2022, ABB agreed to divest its 19.9% ownership in Hitachi ABB Power Grids, a joint venture created in 2020.

In March 2022, Siemens Energy sold its 35% investment in the joint venture Voith Hydro (previously Voith Siemens Hydro Power Generation). This purchase gives Voith Group complete ownership of the Voith Hydro Group Division.

TABLE OF CONTENTS

1 INTRODUCTION OF THE GLOBAL SHUNT REACTOR MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL SHUNT REACTOR MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL SHUNT REACTOR MARKET, BY TYPE

  • 5.1 Overview
  • 5.2 Dry Type
  • 5.3 Liquid Type

6 GLOBAL SHUNT REACTOR MARKET, BY VOLTAGE TYPE

  • 6.1 Overview
  • 6.2 Above 400 Kv
  • 6.3 200 - 400 Kv
  • 6.4 Upto 200 Kv

7 GLOBAL SHUNT REACTOR MARKET, BY APPLICATION

  • 7.1 Overview
  • 7.2 Variable Reactors
  • 7.3 Fixed Reactor

8 GLOBAL SHUNT REACTOR MARKET, BY END-USER

  • 8.1 Overview
  • 8.2 Electric Utilities
  • 8.3 Renewable Energy
  • 8.4 Others

9 GLOBAL SHUNT REACTOR MARKET, BY GEOGRAPHY

  • 9.1 Overview
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 U.K.
    • 9.3.3 France
    • 9.3.4 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 Japan
    • 9.4.3 India
    • 9.4.4 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Argentina
    • 9.5.3 Rest of Latin America
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 South Africa
    • 9.6.4 Rest of Middle East and Africa

10 GLOBAL SHUNT REACTOR MARKET COMPETITIVE LANDSCAPE

  • 10.1 Overview
  • 10.2 Company Market Ranking
  • 10.3 Key Development Strategies
  • 10.4 Company Industry Footprint
  • 10.5 Company Regional Footprint
  • 10.6 Ace Matrix

11 COMPANY PROFILES

  • 11.1 Hitachi group
    • 11.1.1 Overview
    • 11.1.2 Financial Performance
    • 11.1.3 Product Outlook
    • 11.1.4 Key Developments
  • 11.2 ABB
    • 11.2.1 Overview
    • 11.2.2 Financial Performance
    • 11.2.3 Product Outlook
    • 11.2.4 Key Developments
  • 11.3 Siemens AG
    • 11.3.1 Overview
    • 11.3.2 Financial Performance
    • 11.3.3 Product Outlook
    • 11.3.4 Key Developments
  • 11.4 General Electric
    • 11.4.1 Overview
    • 11.4.2 Financial Performance
    • 11.4.3 Product Outlook
    • 11.4.4 Key Developments
  • 11.5 Zaporozhtransformator
    • 11.5.1 Overview
    • 11.5.2 Financial Performance
    • 11.5.3 Product Outlook
    • 11.5.4 Key Developments
  • 11.6 Fuji Electric Co., Ltd.
    • 11.6.1 Overview
    • 11.6.2 Financial Performance
    • 11.6.3 Product Outlook
    • 11.6.4 Key Developments
  • 11.7 Toshiba Energy Systems & Solutions Corporation
    • 11.7.1 Overview
    • 11.7.2 Financial Performance
    • 11.7.3 Product Outlook
    • 11.7.4 Key Developments
  • 11.8 Mitsubishi Corporation
    • 11.8.1 Overview
    • 11.8.2 Financial Performance
    • 11.8.3 Product Outlook
    • 11.8.4 Key Developments
  • 11.9 Nissin Electric Co., Ltd.
    • 11.9.1 Overview
    • 11.9.2 Financial Performance
    • 11.9.3 Product Outlook
    • 11.9.4 Key Developments
  • 11.10 CG Power & Industrial Solutions Ltd.
    • 11.10.1 Overview
    • 11.10.2 Financial Performance
    • 11.10.3 Product Outlook
    • 11.10.4 Key Developments
  • 11.11 GBE UK Ltd
    • 11.11.1 Overview
    • 11.11.2 Financial Performance
    • 11.11.3 Product Outlook
    • 11.11.4 Key Developments
  • 11.12 HYOSUNG TNC
    • 11.12.1 Overview
    • 11.12.2 Financial Performance
    • 11.12.3 Product Outlook
    • 11.12.4 Key Developments
  • 11.13 Shrihans Electricals Pvt. Ltd.
    • 11.13.1 Overview
    • 11.13.2 Financial Performance
    • 11.13.3 Product Outlook
    • 11.13.4 Key Developments

12 Appendix

    • 12.1.1 Related Reports
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제