시장보고서
상품코드
1794014

세계의 6G 통신 인프라 및 클라이언트 디바이스용 열 재료 : 사업 기회, 시장, 기술(2026-2046년)

6G Communications Thermal Materials for Infrastructure and Client Devices: Opportunities, Markets, Technology 2026-2046

발행일: | 리서치사: Zhar Research | 페이지 정보: 영문 533 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

요약

차세대 무선 통신이 나타날 때마다 증가하는 열 관리 문제에 대해 어떻게 해결해야 할까요? 열을 발생시키는 인프라가 점점 늘어나고 클라이언트 장치가 더욱 컴팩트 해지고 열 관리를 위한 공간이 점점 작아지고 있습니다.

6G 이후에도 상세한 분석이 필요하며 최신 연구가 우선

Zhar Research의 CEO 인 Peter Harrop 박사는 엄청난 수의 소형 클라이언트 장치("사물이 협조하는 시스템"등)의 열 과제에 대응하기 위해서는 현재의 통신 분야를 훨씬 넘은 모범 사례를 벤치마크해야한다고 지적합니다. 실제로 기지국은 다목적 고층 빌딩과 성층권 태양광 무인 항공기에 통합될 수 있으며, 클라이언트 장치는 웨어러블이나 임플란트 등으로 모습을 바꾸고 있습니다. 그렇게 되면 6G 특유의 열관리라는 사고방식은 점차 일반적이 아니게 됩니다. 이 보고서는 이러한 상황에서 새로운 열 재료 및 열 관리 원리에 큰 사업 기회가 있다고 결론 내렸습니다.

본 보고서에서는 6G 통신 시대의 인프라 및 클라이언트 디바이스용 열재료 시장을 상세하게 조사하고, 11장의 구성, 11의 SWOT 분석, 2026-2046년을 대상으로 한 32항목의 예측 라인, 33개의 새로운 인포그램으로 새로운 사업 기회, 기술 및 시장 전망을 정리했습니다.

목차

제1장 주요 요약 및 총론

  • 본 보고서의 목적과 전제조건
  • 본 분석의 방법
  • 6G 통신 열재료의 기회에 관한 SWOT 평가
  • 냉각 수요가 높아지고 있는 몇 가지 이유
  • 냉각 툴킷 : 다기능화의 조류와 최상의 고체 냉각 툴
  • 고체 냉각의 성질과 그것이 6G나 일반적으로 우선되는 이유
  • 주요 결론 : 6G의 열 요건
  • 주요 결론 : 6G 인프라와 클라이언트 장치에서 냉각을 위한 재료
  • 주요 결론 : 전도와 대류별 열 제거 재료
  • 6G의 재료와 하드웨어 및 개별 냉각의 로드맵
  • 32항목 시장 예측 : 2026-2046년
    • 6G 인프라 및 클라이언트 디바이스용 열 관리 재료 구조 시장 규모
    • 6G용 유전체 및 열재료 시장 규모(지역별 점유율)
    • 5G vs 6G 열 인터페이스 재료 시장
  • 배경이 되는 시장 예측 : 2025-2046년
    • 냉각 모듈 세계 시장(7개의 기술별)
    • 상업 제품의 지상 방사 냉각 성능
    • 5G vs 6G 기지국 시장(연간 출하수)
    • 6G 기지국 시장 규모(성공한 경우 시장 규모)
    • 6G RIS 시장 규모(활성 및 세 개의 반 패시브 카테고리)
    • 6G 풀 패시브 투명 메타물질 반사 어레이 시장
    • 스마트폰의 세계 판매량(6G 성공 시)
    • 에어컨 시장 규모
    • HVAC, 냉장고, 냉동고 및 기타 냉각 장비 세계 시장
    • 냉장고 및 냉동고 시장 규모
    • 고정형 배터리 시장 규모 및 냉각 수요

제2장 소개

  • 개요
  • 6G의 주요 열 관리 기회 장소
  • 6G용 냉각, 열 배리어, 첨단 열 서포트 기술
    • 엄격한 새로운 마이크로칩 냉각 요건의 도래
    • 6G 전자부품 및 스마트폰 냉각
    • 에너지 수확 및 축전을 포함한 6G 기지국의 냉각
    • 6G 인프라용 태양전지 패널 및 광기전력 외장재의 냉각
    • 6G 인프라에서 대형 배터리의 열 관리
    • 2024-2025년의 진전예
  • 12유형의 솔리드 스테이트 냉각의 동작 원리를 10개의 기능별로 비교
  • 냉각 및 열 제어 기술의 주목도와 성숙도 3개의 곡선 : 2026년, 2036년, 2046년
  • 기존 냉동기술과 신흥 냉동기술의 비교
  • 널리 사용되고 제안된 원치 않는 재료

제3장 패시브 주간 방사 냉각(PDRC)

  • 개요
  • PDRC의 기초
  • 구조와 배합별 방사 냉각 재료의 연구 분석
  • 잠재적인 이점과 응용
  • 2025년 이전의 기타 중요한 진보
  • PDRC를 상업화하는 기업
    • 3M USA
    • BASF Germany
    • i2Cool USA
    • LifeLabs USA
    • Plasmonics USA
    • Radicool Japan, Malaysia etc.
    • SkyCool Systems USA
    • SolCold Israel
    • University of Massachusetts Amherst USA에서 스핀오프
    • SRI USA
  • PDRC SWOT 보고서

제4장 자기 적응형, 전환 가능, 조정 가능, 야누스형, 반스토크스형의 고체 냉각

  • SWOT 분석을 포함한 대국적인 개요
  • 방사 냉각 기술의 성숙도 곡선
  • 자기 적응형 및 전환 가능한 방사 냉각
  • 양면을 이용한 조정형 방사 냉각 : 야누스 이미터(JET)의 진전과 SWOT 분석
  • 반스토크스 형광 냉각과 그 SWOT 평가

제5장 상변화 냉각과 열냉각

  • 구조적 및 강유전적 상 변화 냉각 모드 및 재료
  • 고체상 변화 냉각 : 특정 용도로 다른 방식과 경쟁할 가능성
  • 칼로릭 냉각과 관련된 물리 원리
  • 칼로릭 냉각의 동작 원리
  • 열전 냉각과의 비교, 유망한 칼로릭 기술의 특정
  • 칼로릭 냉각의 활용을 진전시키기 위한 몇가지 제안
  • 전기 칼로릭 냉각(일렉트로 칼로릭 냉각)
  • 자기 칼로릭 냉각과 SWOT 평가 첨부
  • 메카노칼로릭 냉각
  • 2025년 멀티 칼로릭 냉각의 진전

제6장 실현 기술 : 메타물질 및 기타 첨단 포토닉 냉각 : 신소재와 신 디바이스

  • 메타물질
  • 첨단 포토닉 냉각 및 가열 방지

제7장 미래의 열전 냉각과 열전 발전 : 다른 고체 냉각의 사용자 및 전력 공급자로서

  • 기초
  • 열전 재료
  • 광역 및 유연한 열전 냉각 : 시장에 남겨진 갭
  • 건물의 방사 냉각 : 열전 수확과 다기능화
  • TEC(열전 냉각 소자)와 TEG(열전 발전 소자)의 배열 문제 : 진화하는 솔루션
  • 냉각을 수반하는 열전 냉각 및 하베스팅에 관한 20가지 진전과 리뷰
  • 지금까지의 진전
  • 펠티에 열전 모듈 및 제품의 제조업체 82사

제8장 미래의 증발 냉각, 용융 냉각, 유동 냉각 : 히트 파이프, 6G 스마트폰용 열 하이드로겔, 기타 6G 클라이언트 디바이스, 6G 인프라용

  • 개요 : 6G 스마트폰의 증기 냉각과 6G용 하이드로겔 냉각
  • 상 변화 냉각의 배경
  • 히트 파이프와 베이퍼 챔버
  • 6G 통신용 하이드로겔

제9장 열전도성 계면재료(TIM)와 6G전도냉각의 과제에 대응하는 기타 신흥재료

  • 개요 : 6G용 열전도성 접착제부터 열전도성 콘크리트까지
  • 전도 재료로 열 과제를 해결할 때의 중요한 고려점
  • 열전도성 계면 재료(TIM)
  • 폴리머 옵션 : 실리콘 또는 탄소 기반
  • 열전도성 폴리머의 진전 : 2025년 및 그 이전

제10장 6G용 첨단 차열 단열재 및 이오노겔

  • 개요
  • 6G용 무기계, 유기계 및 복합 단열재
  • 차열 필름 및 다용도의 단열창
  • 히트 스프레더 및 기타 수동 냉각용 단열재
  • 전도성 단열재를 포함한 6G 용도용 이오노겔

제11장 열 메타물질 : 전체상

  • 이 장의 목적
  • 열 메타물질
  • 주요 결론 : 시장 포지셔닝
  • 주요 결론 : 주요 배합, 기능성, 제조 기술
  • 최신의 열 메타물질 연구 132건에서 배합마다의 인기도
  • 메타물질을 이용한 정적에서 동적으로의 열전달
  • 방사 냉각 재료에 있어서의 정적 이용 : 메타물질은 선택사항의 하나
  • 열 메타물질 및 냉각 로드맵(시장 및 기술별)
  • 메타 디바이스 시장(열 관련) : 용도별
  • 메타 디바이스 시장(전자 관련)
  • 메타 디바이스 시장(전자 관련) : 용도별
  • 메타 디바이스 시장 : 전자 vs 열
JHS 25.08.28

Summary

How can we deal with the increasing problems of thermal management with every new generation of wireless communications? We get ever more infrastructure generating more heat and more compact client devices offering less space for thermal management. The new 533-page, commercially-oriented Zhar Research report, "6G Communications Thermal Materials for Infrastructure and Client Devices: Opportunities, Markets, Technology 2026-2046" has the answers and forecasts the large market, mainly for new cooling materials, that will emerge.

Incremental then disruptive

Dr. Peter Harrop, CEO of Zhar Research, puts it this way. "Initially, 6G will be an incremental improvement mainly using, and limited by, 5G frequencies and largely served by improved 5G thermal solutions. Ubiquity is a top priority for 6G. No more patchy coverage in cities from London to Tokyo and dead in the countryside and ocean. Much more self-powering, thermally managed, will avoid the considerable cost of running power to expanding terrestrial infrastructure and the impossibility of running power to burgeoning aerospace infrastructure for 6G. However, 6G Phase Two, around 2035, must be a whole new ball game to achieve real financial success with startlingly better performance and reach. That means disruptive new thermal solutions for everything from active, transparent, 360-degree reconfigurable intelligent surfaces to reinvented, "must have" personal electronics."

Detailed analysis required beyond 6G, with latest research prioritised

He points out that, to meet the thermal challenges, including in more compact client devices in huge numbers, such as things-collaborating-with-things, we must benchmark best practice far beyond telecommunications today. Indeed, as base stations sometimes vanish into multipurpose high-rise buildings and stratospheric solar drones and as client devices vanish into wearables, implants and more, thermal management uniquely for 6G will become less common. The report finds great opportunities for new thermal materials and principles in all this. Necessarily, the report is very detailed, involving 11 chapters, 11 SWOT appraisals, 32 forecast lines 2026-2046 and 33 new infograms. Vitally, it analyses the flood of new research advances through 2025 because out-of-date reports can be very misleading in this rapidly evolving subject. Indeed, the report is continuously updated so you only get the latest.

Quick read

The 48-page Executive Summary and Conclusions is sufficient for those with limited time. See the emerging needs, 19 primary conclusions, detailed 20-year roadmaps in 6 lines and those 32 forecasts with explanation, for example. The radically new cooling technologies such as Passive Daylight Radiative Cooling PDRC, five forms of caloric cooling and wide-area thermoelectrics are introduced together with combinations. See why solid-state cooling comes to the fore. A pie chart prioritises solid-state-cooling materials in number of latest research advances, revealing some issues with toxigens, for this report is unbiassed. Parameter comparisons and forecasts of their improvement are presented.

Tougher and more varied thermal needs arriving

Chapter 2. Introduction (40 pages) explains the changing view of what 6G seeks to achieve and when and the trend to smart thermal materials to assist. From graphics, quickly absorb the severe new microchip cooling requirements arriving, cooling 6G electronic components, smartphones and 6G base stations including cooling solar panels and cladding for 6G infrastructure, and thermal management of large batteries for 6G infrastructure. There are hype curves for the thermal materials by year ahead, and a table where twelve solid-state cooling operating principles are compared by 10 capabilities. See examples of advances in 2024-5. Indeed, every chapter examines latest advances.

New approaches to cooling arriving and eagerly sought

Cooling that does not need power will be as important as self-powered infrastructure in avoiding prohibitive costs for vast 6G infrastructure everywhere. Therefore Chapter 2 covers Passive Daytime Radiative Cooling (PDRC) ejecting heat from Earth through the near-infrared window. Understand 40 important advances in 2024-5 and how ten companies are commercialising PDRC. 103 pages are needed due to the wide relevance to 6G, from enhancing its thermoelectric energy harvesting to cooling base stations and buildings. Three SWOT appraisals respectively address passive radiative cooling in general, Janus effect for thermal management and anti-Stokes thermal management.

Ferroic cooling will become important

Chapter 5. Phase Change and Particularly Caloric Cooling shows how the conventional phase changes between gas, liquid and solid have limited relevance to 6G but ferroic phase change called caloric cooling could be very valuable. Learn which forms are most promising and what research achieved through 2025. The 77 pages present pie charts, SWOT appraisals and tables pulling it all together.

Thermoelectrics reinvented

Chapter 7, in 53 pages, covers future thermoelectric cooling such as wide area versions. Thermoelectric harvesting for 6G "Zero emission devices ZED" also appears. Its cold side is becoming a user of new forms of solid-state cooling and it can power active forms of solid-state cooling, all applicable to 6G Communications. There is even analysis of new research on multifunctional cooling and multi-mode cooling, both including thermoelectrics as a part because 6G thermal management must become much more sophisticated, such are the challenges it must address.

Evaporative, melting and flow cooling

Chapter 8. takes 38 pages to cover future evaporative, melting and flow cooling including heat pipes, new thermal hydrogels for 6G client devices and infrastructure. Infograms, commentary and comparisons make sense of it all. Chapter 9 then takes 57 pages to analyse Thermal Interface Materials TIM and other emerging materials for 6G conductive cooling challenges. Then Chapter 10 (30 pages) covers advanced heat shielding, thermal insulation and new ionogels for 6G and Chapter 11 (26 pages) gives the big picture of thermal metamaterials for benchmarking into 6G. All these chapters include much 2025 research.

Unique, essential reference

This Zhar Research report, "6G Communications Thermal Materials for Infrastructure and Client Devices: Opportunities, Markets, Technology 2026-2046" is your essential up-to-date and in-depth source as you participate in the lucrative new 6G thermal materials market that is emerging. Product and system integrators and operators will also value the report.

CAPTION: Dielectric and thermal materials for 6G value market % by location 2029-2046. Source Zhar Research report, "6G Communications Thermal Materials for Infrastructure and Client Devices: Opportunities, Markets, Technology 2026-2046".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report and assumptions
  • 1.2. Methodology of this analysis
  • 1.3. SWOT appraisal of 6G Communications thermal material opportunities
  • 1.4. Some reasons for the escalating need for cooling
  • 1.5. Cooling toolkit, trend to multifunctionality with best solid-state cooling tools shown red
  • 1.6. The nature of solid-state cooling and why it is now a priority for 6G and generally
  • 1.7. Primary conclusions: 6G thermal requirements
  • 1.8. Primary conclusions: Materials for making cold in 6G infrastructure and client devices
    • 1.8.1. General situation
    • 1.8.2. Leading candidate materials and structures compared
    • 1.8.3. Leading materials in number of latest research advances on solid state cooling
    • 1.8.4. Research pipeline of solid-state cooling by topic vs technology readiness level
    • 1.8.5. Typical best reported temperature drop achieved by technology 2000-2046 extrapolated
    • 1.8.6. SWOT appraisal of Passive Daytime Radiative Cooling PDRC and pie chart of leading materials
    • 1.8.7. SWOT appraisal of electrocaloric cooling and pie chart of leading materials
    • 1.8.8. SWOT appraisal of elastocaloric cooling and leading materials
    • 1.8.9. SWOT appraisal of thermoelectric cooling and pie chart of leading materials
  • 1.9. Primary conclusions: Materials for removing heat by conduction and convection
  • 1.10. Roadmaps of 6G materials and hardware and separately cooling 2026-2046
  • 1.11. Market forecasts in 32 lines 2026-2046
    • 1.11.1. Thermal management material and structure for 6G infrastructure and client devices $ billion 2026-2046
    • 1.11.2. Dielectric and thermal materials for 6G value market % by location 2029-2046
    • 1.11.3. 5G vs 6G thermal interface material market $ billion 2025-2046
  • 1.12. Background forecasts 2025-2046
    • 1.12.1. Cooling module global market by seven technologies $ billion 2025-2046
    • 1.12.2. Terrestrial radiative cooling performance in commercial products W/sq. m 2025-2046
    • 1.12.3. Market for 6G vs 5G base stations units millions yearly 2025-2046
    • 1.12.4. Market for 6G base stations market value $bn if successful 2025-2046
    • 1.12.5. 6G RIS value market $ billion: active and three semi-passive categories 2029-2046
    • 1.12.6. 6G fully passive transparent metamaterial reflect-array market $ billion 2029-2046
    • 1.12.7. Smartphone billion units sold globally 2023-2046 if 6G is successful
    • 1.12.8. Air conditioner value market $ billion 2025-2046
    • 1.12.9. Global market for HVAC, refrigerators, freezers, other cooling $ billion 2025-2046
    • 1.12.10. Refrigerator and freezer value market $ billion 2025-2046
    • 1.12.11. Stationary battery market $ billion and cooling needs 2025-2046

2. Introduction

  • 2.1. Overview
    • 2.1.1. Why 6G brings a much bigger opportunity for thermal management and it is mainly cooling
    • 2.1.2. 6G cooling challenge in context of evolution of other cooling increasingly becoming laminar and solid state
    • 2.1.3. Need for cooling in general becomes much larger and often different in nature: the 6G smartphone example
    • 2.1.4. Some of the reasons for much greater need for thermal materials in 6G
    • 2.1.5. How cooling technology will trend to smart materials 2025-2046
  • 2.2. Location of the primary 6G thermal management opportunities
    • 2.2.1. Situation with primary 6G infrastructure and client devices
    • 2.2.2. Example RIS for massive MIMO base station: Tsinghua University, Emerson
  • 2.3. Cooling, heat barrier and advanced thermally supportive technologies for 6G covered in this report
  • 2.4. Examples
    • 2.4.1. Severe new microchip cooling requirements arriving
    • 2.4.2. Cooling 6G electronic components and smartphones
    • 2.4.3. Cooling 6G base stations including their energy harvesting and storage
    • 2.4.4. Cooling solar panels and photovoltaic cladding for 6G infrastructure
    • 2.4.5. Large battery thermal management for 6G infrastructure
    • 2.4.6. Examples of advances in 2024-5
  • 2.5. Twelve solid-state cooling operating principles compared by 10 capabilities
  • 2.6. Attention vs maturity of cooling and thermal control technologies 3 curves 2026, 2036, 2046
  • 2.7. Comparison of traditional and emerging refrigeration technologies
  • 2.8. Undesirable materials widely used and proposed: this is an opportunity for you

3. Passive daytime radiative cooling (PDRC)

  • 3.1. Overview
  • 3.2. PDRC basics
  • 3.3. Radiative cooling materials by structure and formulation with research analysis
  • 3.4. Potential benefits and applications
    • 3.4.1. Overall opportunity and progress
    • 3.4.2. Transparent PDRC for facades, solar panels and windows including 8 advances in 2024
    • 3.4.3. Wearable PDRC, textile and fabric with 15 advances in 2024-5 and SWOT
    • 3.4.4. PDRC cold side boosting power of thermoelectric generators
    • 3.4.5. Color without compromise
    • 3.4.6. Aerogel and porous material approaches
    • 3.4.7. Environmental and inexpensive PDRC materials development
  • 3.5. Other important advances in 2025 and earlier
    • 3.5.1. 40 important advances in 2024-5
    • 3.5.2. Advances in 2023
  • 3.6. Companies commercialising PDRC
    • 3.6.1. 3M USA
    • 3.6.2. BASF Germany
    • 3.6.3. i2Cool USA
    • 3.6.4. LifeLabs USA
    • 3.6.5. Plasmonics USA
    • 3.6.6. Radicool Japan, Malaysia etc.
    • 3.6.7. SkyCool Systems USA
    • 3.6.8. SolCold Israel
    • 3.6.9. Spinoff from University of Massachusetts Amherst USA
    • 3.6.10. SRI USA
  • 3.7. PDRC SWOT report

4. Self-adaptive, switchable, tuned, Janus and Anti-Stokes solid state cooling

  • 4.1. Overview of the bigger picture with SWOT
  • 4.2. Maturity curve of radiative cooling technologies
  • 4.3. Self-adaptive and switchable radiative cooling
    • 4.3.1. The vanadium phase change approaches
    • 4.3.2. Alternative using liquid crystal
  • 4.4. Tuned radiative cooling using both sides: Janus emitter JET advances and SWOT
  • 4.5. Anti-Stokes fluorescence cooling with SWOT appraisal

5. Phase change and particularly caloric cooling

  • 5.1. Structural and ferroic phase change cooling modes and materials
  • 5.2. Solid-state phase-change cooling potentially competing with other forms in named applications
  • 5.3. The physical principles adjoining caloric cooling
  • 5.4. Operating principles for caloric cooling
  • 5.5. Caloric compared to thermoelectric cooling and winning caloric technologies identified
  • 5.6. Some proposals for work to advance the use of caloric cooling
  • 5.7. Electrocaloric cooling
    • 5.7.1. Overview and SWOT appraisal
    • 5.7.2. Operating principles, device construction, successful materials and form factors
    • 5.7.3. Electrocaloric material popularity in latest research with explanation
    • 5.7.4. Giant electrocaloric effect
    • 5.7.5. Electrocaloric cooling: issues to address
    • 5.7.6. 10 important advances in 2025
    • 5.7.7. 58 earlier advances
  • 5.8. Magnetocaloric cooling with SWOT appraisal
  • 5.9. Mechanocaloric cooling (elastocaloric, barocaloric, twistocaloric) cooling
    • 5.9.1. Elastocaloric cooling overview: operating principle, system design, applications, SWOT
    • 5.9.2. Elastocaloric advances in 2024-5
    • 5.9.3. Barocaloric cooling
  • 5.10. Multicaloric cooling advances in 2025

6. Enabling technology: Metamaterial and other advanced photonic cooling: emerging materials and devices

  • 6.1. Metamaterials
    • 6.1.1. Metamaterial and metasurface basics and thermal metamaterial advances in 2025
    • 6.1.2. The meta-atom, patterning and functional options
    • 6.1.3. SWOT assessment for metamaterials and metasurfaces generally
    • 6.1.4. Metamaterial energy harvesting may power 6G active cooling
    • 6.1.5. Thermal metamaterial with 14 advances in 2025 and 2024
  • 6.2. Advanced photonic cooling and prevention of heating

7. Future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling

  • 7.1. Basics
    • 7.1.1. Operation, examples, SWOT appraisal
    • 7.1.2. Thermoelectric cooling and temperature control applications 2026 and 2046
    • 7.1.3. SWOT appraisal of thermoelectric cooling, temperature control, harvesting for 6G
  • 7.2. Thermoelectric materials
    • 7.2.1. Requirements
    • 7.2.2. Useful and misleading metrics
    • 7.2.3. Quest for better zT performance which is often the wrong approach
    • 7.2.4. Some alternatives to bismuth telluride being considered
    • 7.2.5. Non-toxic and less toxic thermoelectric materials, some lower cost
    • 7.2.6. Ferron and spin driven thermoelectrics
  • 7.3. Wide area and flexible thermoelectric cooling is a gap in the market for you to address
    • 7.3.1. The need and general approaches
    • 7.3.2. Advances in flexible and wide area thermoelectric cooling in 2025 and earlier
    • 7.3.3. Wide area or flexible TEG research 40 examples that may lead to similar TEC
  • 7.4. Radiation cooling of buildings: multifunctional with thermoelectric harvesting
  • 7.5. The heat removal problem of TEC and TEG - evolving solutions
  • 7.6. 20 advances in thermoelectric cooling and harvesting involving cooling and a review
  • 7.7. Earlier advances
  • 7.8. 82 Manufactures of Peltier thermoelectric modules and products

8. Future evaporative, melting and flow cooling including heat pipes, thermal hydrogels for 6G smartphones, other 6G client devices, 6G infrastructure

  • 8.1. Overview: 6G smartphone vapor cooling and hydrogel cooling for 6G
  • 8.2. Background to phase change cooling
  • 8.3. Heat pipes and vapor chambers
    • 8.3.1. Definitions and relevance to 6G infrastructure and client devices
    • 8.3.2. Focus of vapor chamber research relevant to 6G success
    • 8.3.3. Research on relevant heat pipes, vapor chambers and allied: 39 advances
    • 8.3.4. Thermal storage heat pipes: nano-enhanced phase change material (NEPCM) for device thermal management
  • 8.4. Hydrogels for 6G Communications
    • 8.4.1. Thermal hydrogels: context, ambitions and limitations
    • 8.4.2. Hydrogels cooling suitable for 6G microelectronics and solar panels: Five advances
    • 8.4.3. Thermogalvanic hydrogel for synchronous evaporative cooling
    • 8.4.4. Hydrogels in architectural cooling that can involve 6G functions: advances
    • 8.4.5. Aerogel and hydrogel together for cooling
    • 8.4.6. Other emerging cooling hydrogels for 6G microchips, power electronics, data centers, large batteries, cell towers and buildings

9. Thermal Interface Materials TIM, other emerging materials for 6G conductive cooling challenges

  • 9.1. Overview: thermal adhesives to thermally conductive concrete for 6G
    • 9.1.1. TIM, heat spreaders from micro to heavy industrial: activity of 17 companies
    • 9.1.2. 17 examples of research advances in 2025 and 2024 relevant to 6G transistors up to buildings
    • 9.1.3. Annealed pyrolytic graphite: progress in 2025 and 2024 as microelectronic TIM
    • 9.1.4. Thermally conductive concrete and allied work
  • 9.2. Important considerations when solving thermal challenges with conductive materials
    • 9.2.1. Bonding or non-bonding
    • 9.2.2. Varying heat
    • 9.2.3. Electrically conductive or not
    • 9.2.4. Placement
    • 9.2.5. Environmental attack
    • 9.2.6. Choosing a thermal structure
    • 9.2.7. Research on embedded cooling
  • 9.3. Thermal Interface Material TIM
    • 9.3.1. General
    • 9.3.2. Seven current options compared against nine parameters
    • 9.3.3. Nine important research advances in 2025 and 2024 relevant to 6G
    • 9.3.4. Thermal pastes compared
    • 9.3.5. TIM and other examples today: Henkel, Momentive, ShinEtsu, Sekisui, Fujitsu, Suzhou Dasen
    • 9.3.6. 37 examples of TIM manufacturers
    • 9.3.7. Thermal interface material trends as needs change: graphene, liquid metals etc.
  • 9.4. Polymer choices: silicones or carbon-based
    • 9.4.1. Comparison
    • 9.4.2. Silicone parameters, ShinEtsu, patents
    • 9.4.3. SWOT appraisal for silicone thermal conduction materials
  • 9.5. Thermally conductive polymer advances in 2025 and earlier
    • 9.5.1. Overview
    • 9.5.2. Examples of companies making thermally conductive additives
    • 9.5.3. Thermally conductive polymers: pie charts of host materials and particulates prioritised in research
    • 9.5.4. Important progress in 2025 and earlier

10. Advanced heat shielding, thermal insulation and ionogels for 6G

  • 10.1. Overview
  • 10.2. Inorganic, organic and composite thermal insulation for 6G
  • 10.3. Heat shield film and multipurpose thermally insulating windows
  • 10.4. Thermal insulation for heat spreaders and other passive cooling
    • 10.4.1. W.L.Gore enhancing graphite heat spreader performance
    • 10.4.2. Protecting smartphones from heat
    • 10.4.3. 20 companies involved in silica aerogel thermal insulation of devices
  • 10.5. Ionogels for 6G applications including electrically conductive thermal insulation
    • 10.5.1. Basics for 6G
    • 10.5.2. Eight ionogel advances in 2025 and 2024

11. Thermal metamaterials - the big picture

  • 11.1. Purpose of this chapter
    • 11.1.1. General
    • 11.1.2. Types of metamaterial thermal management materials by function
    • 11.1.3. Applications analysed from sensors to surgical robots and spacecraft
    • 11.1.4. Three families of metamaterials overlap
  • 1.2. Thermal metamaterials
    • 11.2.1. Some of the drivers of commercialisation of thermal metamaterials
    • 11.2.2. Cooling toolkit, 7 metamaterial-enabled options in blue text, trend to multifunctionality
    • 11.2.3. Examples of thermal metamaterials in 2025 advances
  • 11.3. Primary conclusions; market positioning
  • 11.4. Primary conclusions: leading formulations, functionality and manufacturing technologies
  • 11.5. Popularity by formulation in 132 examples of latest thermal metamaterial research
  • 11.6. Static to dynamic heat transfer using metamaterials
  • 11.7. Static radiative cooling materials showing metamaterials as one of many options
  • 11.8. Thermal metamaterial and cooling roadmap by market and by technology 2025-2045
  • 11.9. Thermal meta-device market $ billion 2025-2045 by application segment
  • 11.10. Electromagnetic meta-device market $ billion 2025-2045
  • 11.11. Electromagnetic meta-device market $ billion 2025-2045 by application segment
  • 11.12. Meta-device market electromagnetic vs thermal 2025-2045
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제