![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1293832
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¼ºÀå, ¹Ì·¡ Àü¸Á, °æÀï ºÐ¼®(2023-2031³â)Viral Vectors and Plasmid DNA Manufacturing Market - Growth, Future Prospects and Competitive Analysis, 2023 - 2031 |
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ÷´Ü À¯ÀüÀÚ Ä¡·á, ¹é½Å ¹× ¼¼Æ÷ ±â¹Ý Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ 2023-2031³âÀÇ ¿¹Ãø ±â°£ Áß 22.5%ÀÇ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀå ¸ÅÃâÀº ÇâÈÄ ¸î ³âµ¿¾È À¯¸ÁÇÑ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)·Î Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNA´Â À¯ÀüÀÚ Ä¡·á¿Í ¹é½Å °³¹ß ¹× »ý»ê¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¾Æµ¥³ë¹ÙÀÌ·¯½º, ·»Æ¼¹ÙÀÌ·¯½º, ¾Æµ¥³ëºÎ¼öü¹ÙÀÌ·¯½º(AAV)¿Í °°Àº ¹ÙÀÌ·¯½º º¤ÅÍ´Â À¯Àü ¹°ÁúÀ» Ç¥Àû ¼¼Æ÷¿¡ µµÀÔÇÏ´Â µ¥ »ç¿ëµÇ¸ç, ´Ù¾çÇÑ Áúº´°ú °ü·ÃµÈ ƯÁ¤ À¯ÀüÀÚ¸¦ º¯°æÇϰųª ¼öÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, Çö󽺹̵å DNA´Â Ä¡·á¿ë À¯ÀüÀÚ¸¦ ¿î¹ÝÇÏ´Â ¸Å°³Ã¼ ¿ªÇÒÀ» Çϸç, ¼¼Æ÷³» ´Ü¹éÁú ÇÕ¼º¿¡ ÇÊ¿äÇÑ ¸í·ÉÀ» Á¦°øÇÕ´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº »ý¸í°øÇÐ ¹× À¯Àü°øÇÐÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ÀÇ·á ºÐ¾ß¿¡ Çõ¸íÀûÀÎ º¯È¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä¡·áÁ¦´Â ´Ù¾çÇÑ À¯Àü¼º Áúȯ, Èñ±ÍÁúȯ ¹× ÀϺΠ¾Ï Ä¡·á¿¡ Å« ÀáÀç·ÂÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¨¿°¼º ÁúȯÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â ¹é½Å°ú ¾Ï¿¡ ´ëÇÑ ¸é¿ª ¿ä¹ýÀÇ °³¹ßÀº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖÀ¸¸ç, COVID-19 ÆÒµ¥¹ÍÀº ¹é½Å ¹× Ä¡·áÁ¦ °³¹ßÀ» À§ÇÑ R&D Ȱµ¿À» ±ÞÁõ½ÃÄÑ ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¿©·¯ Á¦¾àȸ»ç¿Í ¿¬±¸±â°üÀÌ COVID-19 ¹é½Å°ú Ä¡·áÁ¦¸¦ °³¹ßÇϱâ À§ÇØ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNA¸¦ Ȱ¿ëÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ Àü·Ê ¾ø´Â ¼¼°è º¸°Ç À§±â´Â »õ·Î¿î Àü¿°º´°ú °øÁߺ¸°Ç ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ´É·ÂÀÇ Á߿伺À» °Á¶Çϰí ÀÖ½À´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº À¯ÀüÀÚ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä¡·á´Â ȯÀÚÀÇ ¼¼Æ÷¿¡ ±â´É¼º À¯ÀüÀÚ¸¦ µµÀÔÇÏ¿© ´Ù¾çÇÑ À¯Àü Áúȯ ¹× À¯Àü¼º ÁúȯÀ» Ä¡·áÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ±ÙÀÌ¿µ¾çÁõ, ³¶Æ÷¼º ¼¶À¯Áõ, Ç÷¿ìº´°ú °°Àº À¯Àü¼º ÁúȯÀÇ À¯º´·ü Áõ°¡´Â À¯ÀüÀÚ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, Journal of the American Medical Association(JAMA)¿¡ °ÔÀçµÈ ¿¬±¸¿¡ µû¸£¸é À¯ÀüÀÚ Ä¡·á´Â ´Ù¾çÇÑ À¯Àü¼º Áúȯ¿¡ ´ëÇÑ ÀÓ»ó½ÃÇè¿¡¼ Å« Ä¡·á È¿°ú¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ±×µ¿¾È Ä¡·á°¡ ºÒ°¡´ÉÇ߰ųª Ä¡·á ¿É¼ÇÀÌ Á¦ÇÑÀûÀ̾ú´ø Áúº´¿¡ ´ëÇÑ À¯ÀüÀÚ Ä¡·áÀÇ ¼º°øÀº ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNA¿¡ ´ëÇÑ ½ÃÀåÀÇ °·ÂÇÑ ¼ö¿ä¸¦ âÃâÇß½À´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ±â¼úÀÇ ¹ßÀüÀº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµé°ú ¹ÙÀÌ¿À Á¦¾à ±â¾÷µéÀº À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å¿¡ »ç¿ëµÇ´Â ¹ÙÀÌ·¯½º º¤ÅÍÀÇ È¿À²¼º, ¾ÈÀü¼º ¹× ƯÀ̼ºÀ» °³¼±Çϱâ À§ÇØ ²÷ÀÓ¾øÀÌ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î À¯ÀüÀÚ µµÀÔ ´É·ÂÀ» °ÈÇÏ°í ¸é¿ª¿ø¼ºÀ» ³·Ãá Â÷¼¼´ë ¾Æµ¥³ëºÎ¼öü ¹ÙÀÌ·¯½º(AAV)ÀÇ °³¹ßÀº ¿©·¯ À¯ÀüÀÚ Ä¡·á ½ÃÇèÀÇ ¼º°ø¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ 'Molecular Therapy'Áö¿¡ °ÔÀçµÈ ¿¬±¸´Â È¿À²ÀûÀÎ À¯ÀüÀÚ Àü´ÞÀ» À§ÇÑ »õ·Î¿î AAV º¯Á¾¿¡ ´ëÇÑ °¡´É¼ºÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ÙÀÌ·¯½º º¤ÅÍ ±â¼úÀÇ ¹ßÀüÀº À¯ÀüÀÚ Ä¡·áÀÇ È¿´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ´Ù¾çÇÑ Ä¡·á ºÐ¾ß·ÎÀÇ ÀÀ¿ëÀ» È®´ëÇÏ¿© ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº »ý¸í°øÇÐ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, Á¦¾àȸ»ç ¹× ¿¬±¸ ±â°üÀº À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å°ú °°Àº Çõ½ÅÀûÀÎ Ä¡·á¹ý °³¹ß¿¡ ¸¹Àº ÀÚ±ÝÀ» ÇÒ´çÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)Àº À¯ÀüÀÚ Ä¡·áÁ¦ ¿¬±¸¿Í ÀÓ»ó½ÃÇèÀ» Áö¿øÇϱâ À§ÇØ ¸·´ëÇÑ ÀÚ±ÝÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´¿¬ÇÕ(EU)Àº 'Horizon 2020' ÇÁ·Î±×·¥À» ÅëÇØ »ý¸í°øÇÐ ¹× À¯ÀüÀÚ Ä¡·á ±¸»óÀ» ÃßÁøÇϱâ À§ÇØ ¸·´ëÇÑ ÀÚ±ÝÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ´Â »õ·Î¿î ±â¼úÀÇ ¹ß°ßÀ» ÃËÁøÇϰí ÷´Ü Ä¡·á¹ýÀÇ »ó¿ëȸ¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. »ý¸í°øÇÐ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÀçÁ¤Àû Áö¿ø°ú ÁýÁßµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÇâÈÄ ¸î ³âµ¿¾È ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ±ÔÁ¦¿Í ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä¡·áÁ¦¿Í ¹é½ÅÀÇ °³¹ß ¹× »ó¿ëȸ¦ À§Çؼ´Â Á¦Ç°ÀÇ È¿´É°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¾ö°ÝÇÑ ±ÔÁ¦ °úÁ¤°ú ¾ÈÀü¼º Æò°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(FDA), À¯·´ÀǾàǰû(EMA) µî ±ÔÁ¦ ±â°üÀº ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNAÀÇ Á¦Á¶, ǰÁú °ü¸®, ÀÓ»ó½ÃÇè¿¡ ´ëÇØ ¾ö°ÝÇÑ °¡À̵å¶óÀΰú ¿ä°ÇÀ» ºÎ°úÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â °ÍÀº Á¦Á¶¾÷ü¿¡°Ô ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ Á¦Ç° ½ÂÀΰú ½ÃÀå ÁøÀÔÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸é¿ª ¹ÝÀÀ, Ç¥Àû ¿Ü È¿°ú, Àå±âÀûÀÎ ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏ µî À¯ÀüÀÚ Ä¡·á¿Í °ü·ÃµÈ ÀáÀçÀû À§Çè¿¡ ´ëÇÑ ¿ì·Á´Â À¯ÀüÀÚ Ä¡·áÀÇ ´ëÁßÈ¿¡ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÓ»ó½ÃÇèÀÇ ºÎÀÛ¿ë ¹× ¾ÈÀü¼º º¸°í´Â À¯ÀüÀÚ Ä¡·á¿¡ ´ëÇÑ Àνİú ¼ö¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÄ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î X-¿¬¼â¼º ÁßÁõº¹Çո鿪°áÇÌÁõ(X-SCID) Ä¡·á¸¦ À§ÇÑ À¯ÀüÀÚÄ¡·áÁ¦ ÀÓ»ó½ÃÇèÀ» µÑ·¯½Ñ ¾ÈÀü¼º ¿ì·Á·Î ÀÎÇØ ÀÓ»ó½ÃÇèÀÌ Áß´ÜµÈ ¹Ù ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ¹®Á¦¿Í ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á´Â À¯ÀüÀÚ Ä¡·áÁ¦¿Í ¹é½ÅÀÇ ¾ÈÀü¼º°ú È¿´ÉÀ» º¸ÀåÇϱâ À§ÇØ ±ÔÁ¦¸¦ ¾ö°ÝÈ÷ ÁؼöÇÏ°í ¿¬±¸¸¦ °è¼ÓÇØ¾ß Çϱ⠶§¹®¿¡ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ¾Æµ¥³ë¹ÙÀÌ·¯½º, ·¹Æ®·Î¹ÙÀÌ·¯½º, ¾Æµ¥³ëºÎ¼öü¹ÙÀÌ·¯½º(AAV), ·»Æ¼¹ÙÀÌ·¯½º, ÇÃ¶ó½º¹Ìµå µî º¤ÅÍ À¯Çü¿¡ µû¶ó ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Áß AAV´Â 2023-2031³âÀÇ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AAV º¤ÅÍ´Â ³·Àº ¸é¿ª¿ø¼º°ú Àå±âÀûÀÎ À¯ÀüÀÚ ¹ßÇöÀ¸·Î Ä¡·á¿ë À¯ÀüÀÚ¸¦ Ç¥Àû ¼¼Æ÷¿¡ È¿À²ÀûÀ¸·Î Àü´ÞÇÒ ¼ö ÀÖÀ¸¸ç, À¯ÀüÀÚ Ä¡·á ÀÀ¿ë ºÐ¾ß¿¡¼ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. Luxturna, Zolgensma¿Í °°Àº ½ÂÀÎµÈ À¯ÀüÀÚÄ¡·áÁ¦¿¡ AAV º¤ÅͰ¡ »ç¿ëµÇ¸é¼ À¯Àü¼º Áúȯ Ä¡·á¿¡ AAV º¤ÅÍÀÇ °¡´É¼ºÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ±× °á°ú, AAV º¤ÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© CAGR Ãø¸é¿¡¼ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå¿¡¼ ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍ´Â 2022³â ¸ÅÃâ¿¡¼ °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍ´Â ³ôÀº µµÀÔ È¿À²°ú Å« DNA »ðÀÔÀ» ¼ö¿ëÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ À¯ÀüÀÚ Ä¡·á ¿¬±¸ ¹× ÀÓ»ó½ÃÇè¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Ï ¸é¿ªÄ¡·á, ¹é½Å °³¹ß µî ¿©·¯ À¯ÀüÀÚ Ä¡·á ÀÀ¿ë ºÐ¾ß¿¡¼ ¼º°øÀ» °ÅµÎ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍÀÇ °ß°íÇÑ Á¦Á¶ °øÁ¤°ú È®¸³µÈ ÇÁ·ÎÅäÄÝÀº ½ÃÀå¿¡¼ ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍÀÇ Áö¹èÀûÀÎ ¸ÅÃâ À§Ä¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ·»Ä¡¹ÙÀÌ·¯½º¸¦ Æ÷ÇÔÇÑ ·¹Æ®·Î¹ÙÀÌ·¯½º º¤Å͵µ CAR-T ¼¼Æ÷Ä¡·á ¹× À¯ÀüÀÚº¯Çü ¼¼Æ÷Ä¡·á¿¡ »ç¿ëµÇ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ¿© Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ º¹Á¦ ¹× ÀçÁ¶ÇÕ DNA ±â¼ú¿¡ ÇʼöÀûÀÎ ÅøÀÎ Çö󽺹̵å´Â ½ÃÀå ¸ÅÃâ¿¡ ±â¿©Çϰí ÀÖÁö¸¸, ¼ºÀå·üÀº »ó´ëÀûÀ¸·Î ³·½À´Ï´Ù. ´Ü¼ø Ç츣Æä½º ¹ÙÀÌ·¯½º(HSV) º¤ÅÍ¿Í ¹é½Ã´Ï¾Æ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í °°Àº ´Ù¸¥ º¤ÅÍ À¯ÇüÀº ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÌ ÀÛ½À´Ï´Ù. ¿ä¾àÇϸé, ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅͰ¡ °¡Àå ³ôÀº ¸ÅÃâÀ» âÃâÇÏ´Â ¹Ý¸é, AAV º¤ÅÍ´Â À¯ÀüÀÚ Ä¡·á¿¡ Àû¿ëµÉ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
2022³â ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå¿¡¼ ºÏ¹Ì´Â ¸ÅÃâ Ãø¸é¿¡¼ Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Àß È®¸³µÈ ¹ÙÀÌ¿À Á¦¾à »ê¾÷, źźÇÑ ¿¬±¸ ÀÎÇÁ¶ó, À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å °³¹ß ¹× »ó¿ëȸ¦ ÃËÁøÇÏ´Â À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ º¸À¯Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯È÷ ¹Ì±¹¿¡¼´Â ¿¬±¸°³¹ß Ȱµ¿¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¸ÅÃâ È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´Àº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå¿¡¼ µÎµå·¯Áø Áö¿ªÀ¸·Î ¸ÅÃ⠱⿩µµ°¡ ³ôÀº Áö¿ªÀÔ´Ï´Ù. ÁÖ¿ä ¹ÙÀÌ¿À Á¦¾à ±â¾÷ÀÇ Á¸Àç, »ý¸í °øÇÐ ¿¬±¸ÀÇ ¹ßÀü, Á¤ºÎÀÇ °·ÂÇÑ Áö¿øÀ¸·Î ÀÎÇØ ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀº 2023-2031³âÀÇ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¼±µÎ¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡, ÀÇ·á ÁöÃâ Áõ°¡, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ »ý¸í°øÇÐ ºÐ¾ß¿¡¼ ºü¸¥ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Àεµ¿Í °°Àº ±¹°¡µéÀº °úÇÐÀû Àü¹® Áö½ÄÀ» Ȱ¿ëÇÏ°í ¹ÙÀÌ¿À ÀǾàǰ »ý»ê ´É·ÂÀ» È®´ëÇÔÀ¸·Î½á ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«µµ ÀÇ·á ÀÎÇÁ¶ó °³¼±°ú ÷´Ü ÀÇ·á ±â¼ú µµÀÔ¿¡ Èû¾²¸é¼ ½ÃÀåÀÌ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº °æÀïÀÌ Ä¡¿Çϸç, ¿©·¯ ÁÖ¿ä ±â¾÷µéÀÌ À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å¿ë ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA °³¹ß ¹× »ý»ê¿¡ Àû±ØÀûÀ¸·Î Âü¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷µéÀº ½ÃÀå¿¡¼ÀÇ ÀÔÁö¸¦ °ÈÇÏ°í °æÀï·ÂÀ» È®º¸Çϱâ À§ÇÑ Àü·«Àû ³ë·Â¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼±µÎ ±â¾÷ Áß Çϳª´Â ¼¼°è CDMO(À§Å¹ °³¹ß ¹× Á¦Á¶ ±â°ü)ÀÎ Lonza GroupÀ¸·Î, ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶, Çö󽺹̵å DNA Á¦Á¶, °øÁ¤ °³¹ß µî ´Ù¾çÇÑ ¼ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù. ½ÃÀå ¼±µµ ±â¾÷ µîÀÌ Ã¤ÅÃÇÏ´Â ÁÖ¿ä Àü·«¿¡´Â Á¦Á¶ °øÁ¤À» °ÈÇϱâ À§ÇÑ R&D Ȱµ¿¿¡ ´ëÇÑ ÅõÀÚ, ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ »ý»ê ´É·Â È®´ë, »õ·Î¿î ±â¼ú¿¡ ´ëÇÑ Á¢±Ù°ú ½ÃÀå ÁøÀÔÀ» È®´ëÇϱâ À§ÇÑ Àü·«Àû ÆÄÆ®³Ê½Ê ¹× Á¦ÈÞ ±¸Ãà µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ ÀÌµé ±â¾÷Àº À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å »ê¾÷ÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ±ÔÁ¦ Áؼö, ǰÁú º¸Áõ ¹× ÀûÁ¤ Á¦Á¶ ±Ô¹üÀ» ÁؼöÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ °æÀïÀº Çõ½ÅÀûÀÎ ±â¼ú°ú Ç÷§ÆûÀ¸·Î ½ÃÀå¿¡ ÁøÀÔÇÏ´Â ½Å»ý ±â¾÷ ¹× ½ºÅ¸Æ®¾÷¿¡ ÀÇÇØ ´õ¿í Ä¡¿ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº »ý¸í°øÇÐ ¹× À¯Àü°øÇÐÀÇ Áøº¸¸¦ Ȱ¿ëÇÏ¿© »õ·Î¿î ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ Á¢±Ù¹ýÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù.
The viral vectors and plasmid DNA manufacturing market is expected to grow at a CAGR of 22.5% during the forecast period of 2023 to 2031, driven by the increasing demand for advanced gene therapies, vaccines, and cell-based therapies. The market revenue is expected to witness substantial growth in the coming years, with a promising compound annual growth rate (CAGR).Viral vectors and plasmid DNA are essential components in the development and production of gene therapies and vaccines. Viral vectors, such as adenoviruses, lentiviruses, and adeno-associated viruses (AAVs), are used to deliver genetic material into target cells, enabling the modification or correction of specific genes associated with various diseases. Plasmid DNA, on the other hand, serves as a vehicle for carrying therapeutic genes, providing the necessary instructions for protein synthesis within cells.The market for viral vectors and plasmid DNA manufacturing is driven by advancements in biotechnology and genetic engineering, which have revolutionized the field of medicine. Gene therapies have shown tremendous potential in treating a range of genetic disorders, rare diseases, and certain types of cancer. Additionally, the development of vaccines targeting infectious diseases and immunotherapies for cancer has further propelled the demand for viral vectors and plasmid DNA manufacturing.The COVID-19 pandemic has further accelerated the growth of this market, with a surge in research and development activities to develop vaccines and treatments. Several pharmaceutical companies and research organizations have focused their efforts on leveraging viral vectors and plasmid DNA to develop COVID-19 vaccines and therapeutics. This unprecedented global health crisis has highlighted the importance of viral vectors and plasmid DNA manufacturing capabilities in addressing emerging infectious diseases and public health challenges.
Growing Demand for Gene Therapies
The viral vectors and plasmid DNA manufacturing market is driven by the growing demand for gene therapies. Gene therapy offers a promising approach to treat a wide range of genetic disorders and inherited diseases by introducing functional genes into patients' cells. The increasing prevalence of genetic diseases, such as muscular dystrophy, cystic fibrosis, and hemophilia, has fuelled the demand for gene therapies. According to a study published in the Journal of the American Medical Association (JAMA), gene therapy has shown significant therapeutic benefits in clinical trials for various genetic disorders. The success of gene therapies in treating diseases that were previously untreatable or had limited treatment options has generated a strong market demand for viral vectors and plasmid DNA used in their manufacturing.
Advancements in Viral Vector Technology
Advancements in viral vector technology play a crucial role in driving the growth of the viral vectors and plasmid DNA manufacturing market. Researchers and biopharmaceutical companies are constantly working on improving the efficiency, safety, and specificity of viral vectors used in gene therapies and vaccines. For example, the development of new generation adeno-associated viruses (AAVs) with enhanced transduction capabilities and reduced immunogenicity has contributed to the success of several gene therapy trials. A study published in the journal Molecular Therapy demonstrated the potential of novel AAV variants in achieving efficient gene delivery. These advancements in viral vector technology have not only improved the efficacy of gene therapies but also expanded their application in various therapeutic areas, further driving the demand for viral vectors and plasmid DNA manufacturing.
Increasing Investments in Biotechnology Research and Development
The viral vectors and plasmid DNA manufacturing market is propelled by increasing investments in biotechnology research and development. Governments, pharmaceutical companies, and research institutions are allocating significant funds for the development of innovative therapies, including gene therapies and vaccines. For instance, the National Institutes of Health (NIH) in the United States has invested substantial resources in supporting gene therapy research and clinical trials. The European Union has also committed significant funding through its Horizon 2020 program for advancing biotechnology and gene therapy initiatives. These investments in research and development activities fuel the discovery of novel viral vectors and plasmid DNA manufacturing technologies, leading to the commercialization of advanced therapies. The growing financial support and focus on biotechnology research and development are expected to drive the viral vectors and plasmid DNA manufacturing market in the coming years.
Regulatory Challenges and Safety Concerns
The viral vectors and plasmid DNA manufacturing market faces regulatory challenges and safety concerns that serve as a restraint to its growth. The development and commercialization of gene therapies and vaccines involve stringent regulatory processes and safety assessments to ensure the efficacy and safety of these products. Regulatory agencies, such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA), impose strict guidelines and requirements for the manufacturing, quality control, and clinical testing of viral vectors and plasmid DNA. Compliance with these regulations can be time-consuming and expensive for manufacturers, leading to delays in product approvals and market entry. Additionally, concerns about the potential risks associated with gene therapies, such as immune responses, off-target effects, and long-term safety profiles, pose challenges to the widespread adoption of these therapies. Reports of adverse events and safety issues in clinical trials can impact the perception and acceptance of gene therapies, affecting the demand for viral vectors and plasmid DNA manufacturing. For example, the safety concerns surrounding a gene therapy trial for the treatment of X-linked severe combined immunodeficiency (X-SCID) led to a temporary halt in the trial. These regulatory challenges and safety concerns pose a restraint to the viral vectors and plasmid DNA manufacturing market, necessitating rigorous compliance with regulations and continued research to ensure the safety and efficacy of gene therapies and vaccines.
Adenovirus Vectors Dominates the Market by Vector Type
The viral vectors and plasmid DNA manufacturing market can be segmented based on vector types, including adenovirus, retrovirus, adeno-associated virus (AAV), lentivirus, plasmids, and others. Among these, AAV is expected to witness the highest CAGR during the forecast period of 2023 to 2031. AAV vectors have gained significant attention in gene therapy applications due to their ability to efficiently deliver therapeutic genes to target cells with low immunogenicity and long-term gene expression. The use of AAV vectors in approved gene therapies, such as Luxturna and Zolgensma, has showcased their potential in treating inherited genetic disorders. As a result, the demand for AAV vectors is increasing, driving the growth of the market in terms of CAGR. In terms of revenue, adenovirus vectors held the highest share in 2022 in the viral vectors and plasmid DNA manufacturing market. Adenovirus vectors are widely used in gene therapy research and clinical trials due to their high transduction efficiency and ability to accommodate large DNA inserts. They have demonstrated success in several gene therapy applications, particularly in cancer immunotherapies and vaccine development. Moreover, the robust manufacturing processes and well-established protocols for adenovirus vectors contribute to their dominant revenue position in the market. Retrovirus vectors, including lentivirus, also hold a significant revenue share, primarily driven by their use in CAR-T cell therapies and gene-modified cell therapies. Plasmids, which serve as essential tools in gene cloning and recombinant DNA technology, contribute to the market's revenue but have a comparatively lower growth rate. Other vector types, such as herpes simplex virus (HSV) vectors and vaccinia virus vectors, hold a smaller revenue share in the market. In summary, while adenovirus vectors generate the highest revenue, AAV vectors are expected to witness the highest CAGR, driven by their promising applications in gene therapies.
North America Leads the Revenues While APAC Leads the Growth
North America held a significant share in terms of revenue in the viral vectors and plasmid DNA manufacturing market in 2022. The region has a well-established biopharmaceutical industry, robust research infrastructure, and favorable regulatory frameworks that facilitate the development and commercialization of gene therapies and vaccines. Moreover, increasing investments in research and development activities, particularly in the United States, contribute to the market's revenue growth. Europe is also a prominent region in the viral vectors and plasmid DNA manufacturing market, with a significant revenue contribution. The presence of leading biopharmaceutical companies, advancements in biotechnology research, and strong government support drive the market's growth in this region. In terms of the highest CAGR during the forecast period of 2023 to 2031, Asia Pacific is expected to top the ranl. The region has witnessed rapid growth in the biotechnology sector, driven by factors such as increasing investments in research and development, rising healthcare expenditure, and a growing focus on personalized medicine. Countries like China, Japan, and India are emerging as key players in the viral vectors and plasmid DNA manufacturing market, leveraging their scientific expertise and expanding biopharmaceutical capabilities. Latin America and the Middle East and Africa regions are also witnessing steady growth in the market, driven by the increasing focus on improving healthcare infrastructure and the adoption of advanced medical technologies.
Market Competition to Intensify During the Forecast Period
The viral vectors and plasmid DNA manufacturing market is highly competitive, with several key players actively participating in the development and production of viral vectors and plasmid DNA for gene therapies and vaccines. These companies are focusing on strategic initiatives to strengthen their market presence and gain a competitive edge.One of the top players in the market is Lonza Group, a global contract development and manufacturing organization (CDMO). Lonza offers a wide range of services, including viral vector manufacturing, plasmid DNA production, and process development.Key strategies adopted by top players and others in the market include investing in research and development activities to enhance manufacturing processes, expanding production capacity to meet the growing demand, and establishing strategic partnerships and collaborations to access novel technologies and broaden their market reach. These companies are also focusing on ensuring regulatory compliance, quality assurance, and adherence to good manufacturing practices to meet the stringent requirements of the gene therapy and vaccine industry. Moreover, competition in the viral vectors and plasmid DNA manufacturing market is further intensified by emerging players and start-ups that are entering the market with innovative technologies and platforms. These players are leveraging advancements in biotechnology and genetic engineering to develop novel viral vectors and plasmid DNA manufacturing approaches.
This study report represents analysis of each segment from 2021 to 2031 considering 2022 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2023 to 2031.
The current report comprises of quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends and technological analysis, case studies, strategic conclusions and recommendations and other key market insights.
The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. key data point that enables the estimation ofViral Vectors and Plasmid DNA Manufacturing market are as follows:
Micro and macro environment factors that are currently influencing the Viral Vectors and Plasmid DNA Manufacturing market and their expected impact during the forecast period.
Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top down and bottom-up approach for validation of market estimation assures logical, methodical and mathematical consistency of the quantitative data.
Vector Type
Adenovirus
Retrovirus
Adeno-Associated Virus (AAV)
Lentivirus
Plasmids
Others
Workflow
Upstream Manufacturing
Vector Amplification & Expansion
Vector Recovery/Harvesting
Downstream Manufacturing
Purification
Fill Finish
Application
Antisense & RNAi Therapy
Gene Therapy
Cell Therapy
Vaccinology
Research Applications
End-use
Pharmaceutical and Biopharmaceutical Companies
Research Institutes
Disease
Cancer
Genetic Disorders
Infectious Diseases
Others
Region Segment (2021-2031; US$ Million)
North America
U.S.
Canada
Rest of North America
UK and European Union
UK
Germany
Spain
Italy
France
Rest of Europe
Asia Pacific
China
Japan
India
Australia
South Korea
Rest of Asia Pacific
Latin America
Brazil
Mexico
Rest of Latin America
Middle East and Africa
GCC
Africa
Rest of Middle East and Africa