![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1340044
UEBA(User and Entity Behavior Analytics) ½ÃÀå - ¼ºÀå, ÇâÈÄ Àü¸Á, °æÀï ºÐ¼®(2023-2031³â)User And Entity Behavior Analytics Market - Growth, Future Prospects and Competitive Analysis, 2023 - 2031 |
UEBA(User and Entity Behavior Analytics) ½ÃÀåÀº 2023³âºÎÅÍ 2031³â±îÁö ¿¹Ãø ±â°£ µ¿¾È 42%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, »çÀ̹ö º¸¾È ±â¼úÀÇ ÇÑ ÇüÅÂÀÎ UEBA´Â ÀáÀçÀûÀÎ À§Çù°ú ³»ºÎ °ø°ÝÀ» ŽÁöÇÏ°í ¿ÏÈÇϱâ À§ÇØ »ç¿ëÀÚ ¹× ¿£ÅÍÆ¼ÀÇ ÇൿÀ» ¸ð´ÏÅ͸µÇÏ°í ºÐ¼®ÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ºÐ¼®ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇØ »ç¿ëÀÚ Çൿ ÆÐÅϰú ÀÌ»ó ¡Èĸ¦ ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº º¸¾È »ç°í¿¡ ¼±Á¦ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖÀ¸¸ç, UEBA ½ÃÀåÀÇ ¼ºÀå¿¡´Â ¸î °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ù°, »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ »çÀ̹ö °ø°Ý°ú µ¥ÀÌÅÍ À¯ÃâÀÌ ±ÞÁõÇÏ¸é¼ °·ÂÇÑ »çÀ̹ö º¸¾È ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº UEBA¿¡ ÅõÀÚÇÔÀ¸·Î½á À§ÇùÀ» ½Ç½Ã°£À¸·Î °¨ÁöÇÏ°í ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °ÈÇÏ¿© ÀáÀçÀûÀÎ ÇÇÇØ¸¦ ÁÙÀÌ°í ±â¹Ð µ¥ÀÌÅÍ À¯Ãâ À§ÇèÀ» ÃÖ¼ÒÈÇϰí ÀÖ½À´Ï´Ù. µÑ°, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ µµÀÔ È®´ë¿Í ¿ø°Ý ±Ù¹«ÀÇ È®»êÀ¸·Î »çÀ̹ö ¹üÁËÀÚµéÀÇ °ø°Ý ´ë»óÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±â¾÷µéÀº µðÁöÅРȯ°æÀ» ¾ÈÀüÇÏ°Ô º¸È£ÇÏ°í ³»ºÎ À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, UEBA ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀϹݰ³ÀÎÁ¤º¸º¸È£±ÔÁ¤(GDPR), ͏®Æ÷´Ï¾Æ ¼ÒºñÀÚ °³ÀÎÁ¤º¸ º¸È£¹ý(CCPA) µîÀÇ ±ÔÁ¦ ¿ä°Ç°ú ÄÄÇöóÀ̾𽺠±âÁصµ UEBA ¼Ö·ç¼ÇÀÇ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ÄÄÇöóÀ̾𽺸¦ ÀÔÁõÇÏ°í ¹Î°¨ÇÑ °í°´ µ¥ÀÌÅ͸¦ º¸È£ÇØ¾ß Çϱ⠶§¹®¿¡ UEBA´Â µ¥ÀÌÅÍ º¸È£¿Í ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸Ó½Å·¯´×°ú ÀΰøÁö´ÉÀÇ ¹ßÀüµµ UEBA ½ÃÀå ¼ºÀå¿¡ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº UEBA ¼Ö·ç¼ÇÀÌ Áö¼ÓÀûÀ¸·Î ÇнÀÇϰí ÁøÈÇÏ´Â À§Çù¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ŽÁö ´É·ÂÀ» Çâ»ó½ÃŰ°í ¿ÀŽÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
UEBA(User and Entity Behavior Analytics) ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â »çÀ̹ö À§ÇùÀÇ °íµµÈ´Ù. »çÀ̹ö ¹üÁËÀÚµéÀº ±âÁ¸ º¸¾È Á¶Ä¡¸¦ ¿ìȸÇÏ´Â Àü¼ú°ú ±â¹ýÀ» Áö¼ÓÀûÀ¸·Î ¹ßÀü½ÃÄÑ Á¶Á÷ÀÌ °ø°ÝÀ» ŽÁöÇÏ°í ¹æÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, UEBA ¼Ö·ç¼ÇÀº »ç¿ëÀÚ ¹× ¿£ÅÍÆ¼ÀÇ ÇൿÀ» ¸ð´ÏÅ͸µÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â °í±Þ ±â´ÉÀ» Á¦°øÇÏ¿© ¾ÇÀÇÀûÀÏ ¼ö ÀÖ´Â ºñÁ¤»óÀûÀÎ ÇൿÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ºñÁ¤»óÀûÀÎ ÇൿÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. »çÀ̹ö À§ÇùÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó À§Çù ŽÁö ¹× ´ëÀÀÀ» °ÈÇϱâ À§ÇØ UEBA¸¦ µµÀÔÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ´º½º ±â»ç¿Í º¸µµ¿¡¼ »çÀ̹ö À§ÇùÀÇ ÁøÈ¿Í °í±Þ º¸¾È ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ÀÚÁÖ °Á¶µÇ°í ÀÖ½À´Ï´Ù. Áö´ÉÇüÁö¼ÓÀ§Çù(APT)À̳ª ³»ºÎ À§Çù°ú °°Àº Á¤±³ÇÑ °ø°Ý »ç·Ê´Â Á¶Á÷ÀÌ Á÷¸éÇÑ À§ÇèÀÌ Ç×»ó Á¸ÀçÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ »ç·Ê´Â UEBA ±â¼úÀ» µµÀÔÇÏ¿© ÀáÀçÀûÀÎ À§ÇùÀ» »çÀü¿¡ ½Äº°ÇÏ°í ¿ÏÈÇÏ´Â °ÍÀÌ ¾ó¸¶³ª Áß¿äÇÑÁö °Á¶ÇÕ´Ï´Ù.
ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤(GDPR), ͏®Æ÷´Ï¾Æ ¼ÒºñÀÚ °³ÀÎÁ¤º¸ º¸È£¹ý(CCPA), °áÁ¦ Ä«µå »ê¾÷ µ¥ÀÌÅÍ º¸¾È Ç¥ÁØ(PCI DSS)°ú °°Àº ±ÔÁ¦ Áؼö ¿ä±¸»çÇ×Àº UEBA ¼Ö·ç¼Ç µµÀÔÀÇ Áß¿äÇÑ µ¿ÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Á¶Á÷¿¡ ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ¹× °³ÀÎ Á¤º¸ º¸È£ Àǹ«¸¦ ºÎ°úÇϰí, °·ÂÇÑ º¸¾È Á¶Ä¡°¡ ÇÊ¿äÇϸç, UEBA ±â¼úÀº »ç¿ëÀÚ ¹× ´ÜüÀÇ ÇൿÀ» ¸ð´ÏÅ͸µÇÏ°í ¹«´Ü ¾×¼¼½º, µ¥ÀÌÅÍ À¯Ãâ ¹× ±âŸ º¸¾È »ç°í¸¦ ŽÁöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼Ö·ç¼ÇÀ» µµÀÔÇÏ¸é ±â¾÷Àº ±ÔÁ¦ ¿ä°Ç Áؼö¸¦ ÀÔÁõÇÏ°í ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¹× ¿ø°Ý±Ù¹« µµÀÔ È®´ë
Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ µµÀÔ°ú ¿ø°Ý±Ù¹«ÀÇ È®»êÀ¸·Î »çÀ̹ö À§ÇùÀÇ °ø°Ý ´ë»óÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Á÷¿øµéÀÌ ´Ù¾çÇÑ Àå¼Ò¿Í ±â±â¿¡¼ ±â¾÷ ¸®¼Ò½º¿¡ Á¢±ÙÇÔ¿¡ µû¶ó ±â¾÷Àº °·ÂÇÑ º¸¾È Á¶Ä¡¸¦ À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, UEBA ¼Ö·ç¼ÇÀº Ŭ¶ó¿ìµå ȯ°æ°ú ¿ø°Ý ±Ù¹« ȯ°æ¿¡¼ »ç¿ëÀÚ ÇൿÀ» ¸ð´ÏÅ͸µÇϰí, ¹«´Ü ¾×¼¼½º¸¦ °¨ÁöÇϰí, Àǽɽº·¯¿î ÇൿÀ» ½Äº°ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àǽɽº·¯¿î ÇൿÀ» ½Äº°ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¶Á÷ÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» äÅÃÇÔ¿¡ µû¶ó »ç¿ëÀÚ ¹× ±â¾÷ÀÇ ÇൿÀ» ¾ÈÀüÇÏ°Ô ¸ð´ÏÅ͸µÇϱâ À§ÇÑ UEBA ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ µµÀÔ°ú ¿ø°Ý ±Ù¹«ÀÇ Áõ°¡ Ãß¼¼´Â º¸°í¼¿Í ¾÷°è ÀâÁö¿¡¼ ÀÚÁÖ ´Ù·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨·ÎÀÇ ÀüȯÀº ´Ù¾çÇÑ Á¶»ç¿Í ¿¬±¸¸¦ ÅëÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå º¸¾È ¹× ¿ø°Ý ±Ù¹« ¼Ö·ç¼ÇÀÇ Áõ°¡´Â ÀÌ·¯ÇÑ È¯°æ¿¡¼ ¾ÈÀüÇÑ ¿î¿µÀ» º¸ÀåÇϱâ À§ÇØ UEBA ±â¼ú µµÀÔÀÇ Á߿伺À» ´õ¿í °Á¶Çϰí ÀÖ½À´Ï´Ù.
»ç¿ëÀÚ ¹× ¹ýÀÎ Çൿ ºÐ¼®(UEBA) ½ÃÀåÀÇ Áß¿äÇÑ Á¦¾à ¿äÀÎ Áß Çϳª´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ ¿ì·ÁÀÔ´Ï´Ù. ºÐ¼®ÇÏ¿© »ç¿ëÀÚÀÇ ÇൿÀ» ºÐ¼® ¹× ¸ð´ÏÅ͸µÇÕ´Ï´Ù. µû¶ó¼ °³ÀÎÁ¤º¸ ¹× ±â¹Ð Á¤º¸ º¸È£, µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Åµ´Ï´Ù. Á¶Á÷Àº UEBA ¼Ö·ç¼ÇÀÌ ¼öÁýÇÏ°í ºÐ¼®ÇÏ´Â µ¥ÀÌÅͰ¡ °³ÀÎÁ¤º¸ º¸È£¹ý, ¾÷°è ±ÔÁ¤ ¹× ³»ºÎ µ¥ÀÌÅÍ °Å¹ö³Í½º Á¤Ã¥À» ÁؼöÇÏ´ÂÁö È®ÀÎÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä°ÇÀ» ÁؼöÇÏÁö ¾ÊÀ» °æ¿ì, ¹ýÀû ó¹ú°ú ¸í¿¹ÈѼÕÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ À¯Ãâ ¹× ÇÁ¶óÀ̹ö½Ã Ä§ÇØ »ç·Ê´Â µ¥ÀÌÅÍ º¸È£¿Í ÇÁ¶óÀ̹ö½ÃÀÇ Á߿伺À» °Á¶Çϰí ÀÖÀ¸¸ç, Cambridge Analytica ½ºÄµµé ¹× Equifax µ¥ÀÌÅÍ À¯Ãâ°ú °°Àº À¯¸íÇÑ »ç°ÇÀº Á¶Á÷ÀÌ Ã¥ÀÓ°¨ ÀÖ°Ô µ¥ÀÌÅ͸¦ ó¸®ÇØ¾ß ÇÔÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤ ¹ÌÁؼö¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °Á¦ Á¶Ä¡¿Í ó¹úÀº ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ ¾ó¸¶³ª Áß¿äÇÑÁö º¸¿©ÁÖ´Â Áõ°ÅÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, GDPR À§¹Ý¿¡ ´ëÇÑ Á¤º¸°¨µ¶°ü »ç¹«±¹(ICO)ÀÇ ¹ú±Ý ºÎ°ú, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¹ý À§¹Ý¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹°úÀÇ ÇÕÀÇ µîÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾÷°è Æ÷·³, ¿Â¶óÀÎ Ä¿¹Â´ÏƼ ¹× Àü¹®°¡ ³×Æ®¿öÅ©¿¡¼ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ ³íÀǰ¡ Ȱ¹ßÇÏ°Ô ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³íÀÇ´Â µ¥ÀÌÅÍÀÇ Ã¥ÀÓ°¨ ÀÖ´Â »ç¿ëÀ» µÑ·¯½Ñ Áö¼ÓÀûÀÎ ´ëÈ¿Í UEBA ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¶§ Á¶Á÷ÀÌ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦ÀÇ º¹À⼺À» ±Øº¹ÇØ¾ß ÇÏ´Â Çʿ伺À» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.
UEBA(User and Entity Behavior Analytics) ½ÃÀåÀº À¯Çüº°·Î ¼Ö·ç¼Ç°ú ¼ºñ½º µÎ °¡Áö·Î ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ ºÎ¹®Àº ½ÃÀå ¼ºÀå°ú ¼öÀÍ ºÐ¹è¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¼ºñ½º ºÎ¹®Àº 2023³âºÎÅÍ 2031³â±îÁö ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, UEBA ¼ºñ½º¿¡´Â ÄÁ¼³ÆÃ, ±¸Çö, ±³À°, ¸Å´ÏÁöµå ¼ºñ½º µî ´Ù¾çÇÑ ¼ºñ½º°¡ Æ÷ÇԵ˴ϴÙ. ¸Å´ÏÁöµå ¼ºñ½º µî ´Ù¾çÇÑ ¼ºñ½º¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ±â¾÷ÀÌ UEBA ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¶§ ÀÌ·¯ÇÑ ±â¼úÀ» È¿°úÀûÀ¸·Î µµÀÔÇϰí Ȱ¿ëÇϱâ À§Çؼ´Â Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼ºñ½º Á¦°ø¾÷ü´Â Àü¹® Áö½Ä°ú Áö¿øÀ» Á¦°øÇÔÀ¸·Î½á Á¶Á÷ÀÌ UEBA ¼Ö·ç¼ÇÀÇ °¡Ä¡¸¦ ±Ø´ëÈÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ¸ç, UEBA µµÀÔÀÌ È®´ëµÇ°í ¸ÂÃãÇü ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼ºñ½º ºÐ¾ßÀÇ CAGRÀÌ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª 2022³â ¸ÅÃâ¿¡¼ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÏ´Â °ÍÀº ¼Ö·ç¼Ç ºÎ¹®À¸·Î, UEBA ¼Ö·ç¼ÇÀº Á¶Á÷ÀÌ »ç¿ëÀÚ ¹× ±â¾÷ÀÇ ÇൿÀ» ¸ð´ÏÅ͸µÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ¹× Ç÷§ÆûÀ» ÀǹÌÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ÀÌ»ó ¡ÈÄ¿Í ÀáÀçÀûÀÎ º¸¾È À§ÇùÀ» ŽÁöÇÕ´Ï´Ù. ¼Ö·ç¼Ç ºÎ¹®ÀÇ ¼öÀÍÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ °·ÂÇϰí Á¾ÇÕÀûÀÎ UEBA ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. Á¶Á÷ÀÌ »çÀ̹ö º¸¾È°ú À§Çù ŽÁö¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, UEBA ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ´Â ¼öÀÍ Ã¢Ãâ¿¡ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù.
UEBA(User and Entity Behavior Analytics) ½ÃÀåÀº ±¸Ãà À¯Çü¿¡ µû¶ó ¿ÂÇÁ·¹¹Ì½º¿Í Ŭ¶ó¿ìµå µÎ °¡Áö·Î ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ ºÎ¹®Àº ½ÃÀå ¼ºÀå°ú ¼öÀÍ ºÐ¹è¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, 2023³âºÎÅÍ 2031³â±îÁö ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÑ ºÎ¹®Àº Ŭ¶ó¿ìµå ¹èÆ÷ ºÎ¹®ÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý UEBA ¼Ö·ç¼ÇÀº È®À强, À¯¿¬¼º, µµÀÔ ¿ëÀ̼º µî ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃÀ» äÅÃÇÏ°í º¸´Ù ¹ÎøÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó Ŭ¶ó¿ìµå ±â¹Ý UEBA µµÀÔ¿¡ ´ëÇÑ ¼ö¿ä´Â ´«¿¡ ¶ç°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå µµÀÔ ºÐ¾ß´Â »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Å¬¶ó¿ìµå ±â¼ú äÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÌ Á¦°øÇÏ´Â Á¢±Ù¼º ¹× È®À强 µîÀÇ ÀÌÁ¡À¸·Î ÀÎÇØ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¼öÀÍ Ãø¸é¿¡¼´Â ¿ÂÇÁ·¹¹Ì½º ±¸Ãà ºÎ¹®ÀÌ 2022³â °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º ¹èÆ÷´Â Á¶Á÷ ³» µ¥ÀÌÅͼ¾ÅÍ ³»¿¡¼ UEBA ÀÎÇÁ¶ó¸¦ È£½ºÆÃÇÏ°í °ü¸®ÇÕ´Ï´Ù. ÀÌ ¹èÆ÷ À¯ÇüÀº º¸¾È ¹× ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ×ÀÌ ±î´Ù·Î¿î Á¶Á÷ÀÌ ¼±È£ÇÏ´Â ¹æ½ÄÀÔ´Ï´Ù. ƯÈ÷ ±ÝÀ¶, ÀÇ·á, Á¤ºÎ ±â°ü µî ±ÔÁ¦°¡ ¾ö°ÝÇÑ »ê¾÷¿¡¼ UEBA ½Ã½ºÅÛ°ú µ¥ÀÌÅ͸¦ ¿Ïº®ÇÏ°Ô °ü¸®ÇϰíÀÚ ÇÏ´Â Á¶Á÷ÀÌ ¿ÂÇÁ·¹¹Ì½º ±¸Ãà ºÎ¹®ÀÇ ¸ÅÃâÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ÇöÀç 2022³â UEBA ½ÃÀå¿¡¼ °¡Àå ³ôÀº ¸ÅÃâ ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ìÀ§´Â ¼º¼÷ÇÑ »çÀ̹ö º¸¾È »ê¾÷ÀÇ Á¸Àç, ³ôÀº ¼öÁØÀÇ À§Çù ŽÁö¿¡ ´ëÇÑ ÀνÄ, °·ÂÇÑ ±ÔÁ¦ ȯ°æ µîÀÇ ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ºÏ¹Ì´Â »çÀ̹ö º¸¾È º¥´õ, ¼ºñ½º Á¦°ø¾÷ü, ±â¼ú äÅÃÀÚÀÇ »ýŰ谡 Àß ±¸ÃàµÇ¾î ÀÖ¾î Å« ¼öÀÍ Ã¢ÃâÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, 2023-2031³â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ó´çÇÑ ¼ºÀå ÀáÀç·ÂÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â »çÀ̹ö À§ÇùÀÇ Áõ°¡¿Í µðÁöÅÐ ±â¼ú äÅà Áõ°¡·Î ÀÎÇØ »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ÁöÃâÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼ »çÀ̹ö °ø°ÝÀÌ ±ÞÁõÇÏ¸é¼ ±â¾÷µéÀº UEBA¿Í °°Àº °í±Þ º¸¾È ¼Ö·ç¼ÇÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±Þ¼ÓÇÑ µðÁöÅÐÈ, IT ÀÎÇÁ¶ó È®Àå, »çÀ̹ö º¸¾È °È¸¦ À§ÇÑ Á¤ºÎÀÇ ³ë·Âµµ ÀÌ Áö¿ªÀÇ ³ôÀº CAGR¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
UEBA(User and Entity Behavior Analytics) ½ÃÀåÀº °æÀïÀÌ Ä¡¿Çϸç, ¿©·¯ ÁÖ¿ä ¾÷üµéÀÌ ½ÃÀå Á¡À¯À²À» ³õ°í °æÀïÇÏ¸ç ¾÷°èÀÇ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. UEBA ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷À¸·Î´Â Splunk Inc, Rapid7 Inc, Varonis Systems Inc, Exabeam Inc, Securonix Inc, Securonix Inc. µîÀÌ ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº °í±Þ ºÐ¼® ¹× ¸Ó½Å·¯´× ±â´ÉÀ» ±â¹ÝÀ¸·Î Á¾ÇÕÀûÀÎ UEBA ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ¾÷°è ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ÀÌµé ±â¾÷Àº Á¦Ç° °³¹ß°ú Çõ½Å¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. À̵éÀº UEBA ¼Ö·ç¼ÇÀ» °ÈÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, À§Çù ŽÁö¸¦ °³¼±ÇÏ°í ¿ÀŽÀ» ÁÙÀ̸ç Àü¹ÝÀûÀÎ Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ »õ·Î¿î ±â¼ú°ú ±â¹ýÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷µéÀº ÁøÈÇÏ´Â À§Çù ȯ°æÀ» ¾Õ¼¼ °í°´ÀÇ °íÀ¯ÇÑ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Áö¼ÓÀûÀ¸·Î Á¦Ç°À» ¾÷±×·¹À̵åÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, UEBA ¾÷°èÀÇ ½ÃÀå ¸®´õµéÀº Àü·«Àû ÆÄÆ®³Ê½Ê°ú Çù¾÷À» Áß¿äÇÏ°Ô ¿©±é´Ï´Ù. À̵éÀº ´Ù¸¥ »çÀ̹ö º¸¾È °ø±Þ¾÷ü, ±â¼ú Á¦°ø¾÷ü ¹× ¾÷°è °ü°èÀÚµé°ú ÆÄÆ®³Ê½ÊÀ» ¸Î¾î ÀÚ»ç Á¦Ç°À» º¸¿ÏÇÏ°í °í°´¿¡°Ô ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ »óÈ£º¸¿ÏÀûÀÎ Àü¹®Áö½ÄÀ» Ȱ¿ëÇÏ°í »çÀ̹ö º¸¾ÈÀÇ ´Ù¾çÇÑ Ãø¸éÀ» Æ÷°ýÇÏ´Â ¿£µåÅõ¿£µå º¸¾È ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í°´ Áß½ÉÁÖÀÇ´Â °æÀï ȯ°æÀÇ Áß¿äÇÑ Ãø¸éÀ¸·Î, UEBA ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀº °í°´ÀÇ ¿ä±¸¸¦ ÀÌÇØÇÏ°í ±×¿¡ µû¶ó ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â °ÍÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ UEBA ±â¼úÀ» ¼º°øÀûÀ¸·Î µµÀÔÇϰí Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Á¾ÇÕÀûÀÎ Áö¿ø, ±³À° ¹× ÄÁ¼³ÆÃ ¼ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù. °í°´ ¸¸Á·À» Áß½ÃÇϰí Àå±âÀûÀÎ °ü°è¸¦ ±¸ÃàÇÔÀ¸·Î½á ÀÌµé ±â¾÷Àº ±âÁ¸ °í°´À» À¯ÁöÇÏ°í ½Å±Ô °í°´À» È®º¸ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
: ¾÷°èº°
The user and entity behavior analytics (UEBA) market is expected to experience a CAGR of 42% during the forecast period of 2023 to 2031. UEBA is a form of cybersecurity technology that focuses on monitoring and analyzing user and entity behavior to detect and mitigate potential threats and insider attacks. It leverages machine learning and data analytics to identify patterns and anomalies in user behavior, allowing organizations to proactively respond to security incidents. The growth of the UEBA market can be attributed to several factors. First, the surge in cyber-attacks and data breaches across industries has created a heightened awareness of the need for robust cybersecurity solutions. Organizations are investing in UEBA to enhance their ability to detect and respond to threats in real time, mitigating potential damages and minimizing the risk of sensitive data breaches. Second, the increasing adoption of cloud computing and the proliferation of remote work has expanded the attack surface for cybercriminals. This has further fueled the demand for UEBA solutions as organizations strive to secure their digital environments and protect against insider threats. Additionally, regulatory requirements and compliance standards, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), are driving the adoption of UEBA solutions. Organizations need to demonstrate compliance and safeguard sensitive customer data, making UEBA an essential tool in ensuring data protection and privacy. Furthermore, the advancements in machine learning and artificial intelligence have significantly contributed to the growth of the UEBA market. These technologies enable UEBA solutions to continuously learn and adapt to evolving threats, improving their detection capabilities and reducing false positives.
One of the primary drivers of the User and Entity Behavior Analytics (UEBA) market is the increasing sophistication of cyber threats. Cybercriminals are continuously evolving their tactics and techniques to bypass traditional security measures, making it challenging for organizations to detect and prevent attacks. UEBA solutions offer advanced capabilities to monitor and analyze user and entity behavior, allowing for the identification of anomalous activities that may indicate malicious intent. The rising complexity of cyber threats necessitates the adoption of UEBA to enhance threat detection and response. News articles and reports often highlight the evolving nature of cyber threats and the need for advanced security solutions. Examples of sophisticated attacks, such as advanced persistent threats (APTs) and insider threats, demonstrate the ever-present risk organizations face. These instances emphasize the importance of implementing UEBA technologies to proactively identify and mitigate potential threats.
Regulatory compliance requirements, such as the General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), and Payment Card Industry Data Security Standard (PCI DSS), serve as significant drivers for the adoption of UEBA solutions. These regulations impose strict data protection and privacy obligations on organizations, necessitating robust security measures. UEBA technologies assist in monitoring user and entity behavior to detect unauthorized access, data breaches, and other security incidents. By implementing UEBA solutions, organizations can demonstrate compliance with regulatory requirements and protect sensitive data.
Evidence: The existence of stringent regulatory frameworks is well-documented and widely reported. News articles, industry publications, and government websites provide information on the specific requirements of various regulations, emphasizing the need for organizations to implement adequate security measures, including UEBA solutions.
The increased adoption of cloud computing and the prevalence of remote work has expanded the attack surface for cyber threats. With employees accessing corporate resources from various locations and devices, organizations face challenges in maintaining robust security measures. UEBA solutions play a vital role in monitoring user activities, detecting unauthorized access, and identifying suspicious behaviors within cloud environments and remote work setups. As organizations embrace these technologies, the demand for UEBA solutions to secure and monitor user and entity behavior is on the rise. Reports and industry publications often discuss the growing trend of cloud computing adoption and remote work. The shift towards these models is supported by various surveys and studies. The rise of cloud security and remote work solutions further underscores the importance of implementing UEBA technologies to ensure secure operations in these environments.
One significant restraint in the User and Entity Behavior Analytics (UEBA) market is the concern over data privacy and compliance. UEBA solutions analyze and monitor user behavior by collecting and analyzing vast amounts of data, including user activities, network traffic, and system logs. This raises concerns about the privacy and protection of sensitive information, as well as compliance with data protection regulations. Organizations must ensure that the data collected and analyzed by UEBA solutions adhere to privacy laws, industry regulations, and internal data governance policies. Failure to comply with these requirements can result in legal and reputational consequences. Numerous instances of data breaches and privacy violations have highlighted the importance of data protection and privacy. High-profile cases such as the Cambridge Analytica scandal and the Equifax data breach have underscored the need for organizations to handle data responsibly. Furthermore, the enforcement actions and penalties imposed by regulatory bodies for non-compliance with data protection regulations provide evidence of the importance of addressing privacy concerns. Examples include fines levied by the Information Commissioner's Office (ICO) for violations of the GDPR and settlements reached with regulatory authorities for breaches of data privacy laws. Additionally, concerns about data privacy and compliance are frequently raised in discussions within industry forums, online communities, and professional networks. These conversations reflect the ongoing dialogue surrounding the responsible use of data and the need for organizations to navigate the intricacies of data privacy regulations when implementing UEBA solutions.
The User and Entity Behavior Analytics (UEBA) market can be segmented based on type into two categories: solution and services. Each segment plays a role in the growth and revenue distribution within the market. In terms of the highest CAGR during the forecast period of 2023 to 2031, the services segment demonstrates significant growth potential. UEBA services encompass a range of offerings, including consulting, implementation, training, and managed services. As organizations adopt UEBA solutions, they require expertise to effectively deploy and utilize these technologies. Service providers offer specialized knowledge and support, enabling organizations to maximize the value of UEBA solutions. With the increasing adoption of UEBA and the need for tailored services, the services segment is expected to experience a notable CAGR. However, in terms of revenue in 2022, the solution segment held the highest share. UEBA solutions refer to the software and platforms that enable organizations to monitor and analyze user and entity behavior. These solutions leverage machine learning and data analytics to detect anomalies and potential security threats. The revenue generated by the solution segment is driven by the demand for robust and comprehensive UEBA software solutions across various industries. As organizations prioritize cybersecurity and threat detection, the investment in UEBA solutions contributes significantly to revenue generation.
The User and Entity Behavior Analytics (UEBA) market can be segmented based on deployment type into two categories: on-premises and cloud. Each segment contributes to the growth and revenue distribution within the market. In terms of the highest CAGR during the forecast period of 2023 to 2031, the cloud deployment segment exhibits significant growth potential. Cloud-based UEBA solutions offer several advantages, including scalability, flexibility, and ease of implementation. As organizations embrace cloud computing and seek more agile and cost-effective solutions, the demand for cloud-based UEBA deployments is expected to experience notable growth. The cloud deployment segment benefits from the increasing adoption of cloud technologies across industries and the advantages offered by cloud-based solutions in terms of accessibility and scalability. However, in terms of revenue, the on-premises deployment segment held the highest share in 2022. On-premises deployments involve hosting and managing the UEBA infrastructure within an organization's own data centers. This deployment type is preferred by organizations with stringent security and compliance requirements, as it allows them to have greater control over their data and infrastructure. The revenue generated by the on-premises deployment segment is driven by organizations seeking to maintain full control over their UEBA systems and data, particularly in highly regulated industries such as finance, healthcare, and government.
North America currently held the highest revenue percentage in the UEBA market in 2022. The region's dominance can be attributed to factors such as the presence of a mature cybersecurity industry, a high level of awareness about advanced threat detection, and a strong regulatory environment. North America has a well-established ecosystem of cybersecurity vendors, service providers, and technology adopters, driving significant revenue generation. In terms of the highest CAGR during the forecast period of 2023 to 2031. The Asia Pacific region demonstrates substantial growth potential. The region has witnessed a significant increase in cybersecurity spending, driven by the rising number of cyber threats and the increasing adoption of digital technologies. Countries such as China, India, Japan, and South Korea have witnessed a surge in cyber-attacks, leading organizations to prioritize advanced security solutions like UEBA. Furthermore, rapid digitization, expanding IT infrastructure, and government initiatives to enhance cybersecurity contribute to the region's high CAGR.
The User and Entity Behavior Analytics (UEBA) market is highly competitive, with several key players vying for market share and driving innovation in the industry. These companies employ various strategies to maintain their market position, expand their customer base, and enhance their product offerings. Some of the top players in the UEBA market include Splunk Inc., Rapid7 Inc., Varonis Systems Inc., Exabeam Inc., and Securonix Inc. These companies have established themselves as leaders in the industry by offering comprehensive UEBA solutions backed by advanced analytics and machine learning capabilities. To maintain their competitive edge, these companies focus on product development and innovation. They invest heavily in research and development to enhance their UEBA solutions, incorporating new technologies and techniques to improve threat detection, reduce false positives, and enhance overall accuracy. These companies continually upgrade their offerings to stay ahead of the evolving threat landscape and address the unique needs of their customers. Furthermore, market leaders in the UEBA industry emphasize strategic partnerships and collaborations. They forge alliances with other cybersecurity vendors, technology providers, and industry players to complement their offerings and provide customers with integrated solutions. These partnerships allow them to leverage complementary expertise and offer end-to-end security solutions that encompass multiple aspects of cybersecurity. Additionally, customer-centricity is a key aspect of the competitive landscape. Leading companies in the UEBA market prioritize understanding customer needs and delivering tailored solutions accordingly. They provide comprehensive support, training, and consulting services to ensure the successful implementation and utilization of UEBA technologies. By focusing on customer satisfaction and building long-term relationships, these companies aim to retain existing customers and attract new ones.
This study report represents analysis of each segment from 2021 to 2031 considering 2022 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2023 to 2031.
The current report comprises of quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends and technological analysis, case studies, strategic conclusions and recommendations and other key market insights.
The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. key data point that enables the estimation ofUser And Entity Behavior Analytics market are as follows:
Micro and macro environment factors that are currently influencing the User And Entity Behavior Analytics market and their expected impact during the forecast period.
Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top down and bottom-up approach for validation of market estimation assures logical, methodical and mathematical consistency of the quantitative data.
By Vertical