시장보고서
상품코드
1891805

세계의 첨단 재활용 시장 : 기술별, 원료별, 최종 제품별, 용도별 - 시장 규모, 산업 동향, 기회 분석, 예측(2026-2035년)

Global Advanced Recycling Market: By Technology, Feedstock, End-Product, Application - Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2026-2035

발행일: | 리서치사: Astute Analytica | 페이지 정보: 영문 280 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

첨단 재활용 시장(일반적으로 화학 재활용이라고도 함)은 현저한 성장과 변화를 이루고 있습니다. 2025년에는 약 28억 달러로 평가되는 이 시장은 2035년까지 102억 달러 규모로 확대될 것으로 예상되고 있습니다. 이 성장은 2026년부터 2035년까지의 예측 기간에서 견조한 CAGR 13.9%를 나타낼 전망이며, 세계적으로 첨단 재활용 기술의 중요성과 채택이 증가하고 있음을 보여줍니다. 이러한 급속한 확대는 기술 진보, 환경 의식 증가, 플라스틱 폐기물 감소 및 순환 경제의 실천을 촉진하는 정책 압력 등 여러 요인에 의해 추진되고 있습니다.

시장을 형성하는 주요 동향 중 하나는 열분해 기술의 이점입니다. 열분해는 혼합·오염된 플라스틱 폐기물을 열분해유 등의 유용한 원료로 변환할 수 있는 능력으로부터, 첨단 재활용 기술 중에서 주도적인 수법으로서 대두하고 있습니다. 이 원료는 추가 정제되고 재사용이 가능합니다. 범용성과 확장성을 통해 지속 가능한 재활용 솔루션을 구축하려는 제조업체와 투자자들 사이에서 우선적인 선택이 되었습니다. 열분해 기술과 병행하여, 탈중합과 같은 다른 화학적 재활용 공정도 주목을 받고 있으며, 특히 폐루프 시스템에 재통합 가능한 버진 품질의 재료를 생산하는 분야에서 진전을 볼 수 있습니다.

주목할만한 시장 동향

첨단 재활용 시장 경쟁 구도는 업계의 거인 기업과 민첩한 신생 기업이 역동적으로 혼재하는 특징을 가지고 있으며, 각각은 복잡한 플라스틱 폐기물 스트림에 대한 혁신 추진과 솔루션 확대에 중요한 역할을 수행하고 있습니다. ExxonMobil과 Dow와 같은 확립된 다국적 기업은 첨단 재활용 기술에 많은 투자를 하고 풍부한 자원과 세계의 네트워크를 활용하여 대규모 인프라와 연구 이니셔티브를 개발하고 있습니다.

이러한 업계의 거인들과 함께 Agilyx, Plastic Energy, Enerkem, Loop 등 민첩한 스타트업 기업도 전문 기술과 혁신적인 접근에 초점을 맞추어 큰 진전을 이루고 있습니다. 이러한 기업은 AI를 활용한 선별 시스템이나 화학적 재활용 프로세스 등의 선진적인 방법을 빈번히 채용하고 있어, 종래의 기계적 재활용에서는 처리가 곤란한 복잡한 오염 플라스틱 폐기물이나 혼합 플라스틱 폐기물의 흐름을 효율적으로 처리하는 것을 가능하게 하고 있습니다.

최근의 동향은 이 경쟁 환경에서의 기세를 뒷받침하고 있습니다. 2025년 12월, United Microelectronics Corp(UMC)는 대만 남부 과학원구에 있는 Fab 12A 캠퍼스 내에 순환형 경제·리사이클 혁신 센터를 개설했습니다. 이 시설은 재활용 기술 혁신과 순환 경제 원칙에 초점을 맞춘 R&D를 추진하기 위해 설계되었으며, UMC의 지속가능성과 기술 발전에 대한 노력을 강조하고 있습니다.

한편, 차세대 고도 플라스틱 재활용의 선구자로서 세계적으로 인정받고 있는 Mura Technology사는 2025년 8월에 싱가포르에 연간 5만톤 규모의 시설을 건설할 계획을 발표했습니다. 이 야심찬 프로젝트는 재활용 능력을 크게 강화하고 Mura의 독특한 기술을 대규모로 상업적으로 실현할 수 있음을 입증하는 것입니다.

성장의 핵심 요인

소비 후 재활용 플라스틱(PCR)을 포함한 엔지니어링 플라스틱의 사용 증가 동향은 플라스틱 폐기물 감소를 목표로 하는 세계의 엄격한 규제를 실시함으로써 크게 추진되고 있습니다. 세계 각국의 정부는 플라스틱 폐기물의 발생량을 제한할 뿐만 아니라 신제품에 있어서 재활용 플라스틱 함량의 향상을 의무화하는 정책을 제정하고 있습니다. 이러한 규제는 특히 안전성과 품질 기준이 높은 식품 접촉 재료 및 의료 제품과 같은 중요한 용도로 확장되기 때문에 특히 큰 영향을 미칩니다. 결과적으로 제조업체는 엄격한 규제 및 성능 요구 사항을 충족하는 PCR 재료를 생산할 수있는 첨단 재활용 기술을 혁신하고 채택해야 할 상황에 있습니다.

새로운 기회 동향

첨단 재활용 기술, 특히 열분해, 크래킹, 탈중합 등의 공정에서의 기술 혁신은 급속히 진행되어 효율성이 향상되고 있습니다. 이러한 발전은 재활용 시설의 전반적인 처리 능력을 향상시키고 더 많은 플라스틱 폐기물을 정밀도를 높이고 에너지 소비를 줄이면서 처리할 수 있도록 하는 데 매우 중요합니다. 이러한 기술이 성숙함에 따라 전 세계적으로 발생하는 엄청난 양의 플라스틱 폐기물을 다루는 데 필수적인 수요 증가에 대응할 수 있는 사업 규모 확대를 위한 유망한 기회를 제공합니다. 처리 효율성 향상은 처리량을 늘릴 뿐만 아니라 생산 비용 절감에도 기여하고, 첨단 재활용을 보다 경제적으로 실현할 수 있게 하고, 투자자와 제조자에게 매력적인 것으로 하고 있습니다.

최적화에 대한 장벽

첨단 재활용 시장은 높은 자본 비용과 운영 비용으로 인한 심각한 과제에 직면하고 있으며, 이는 성장 궤도를 방해할 수 있습니다. 열분해 및 화학적 재활용 기술 등을 활용하는 첨단 재활용 시설을 설립하려면 특수 설비, 인프라 및 기술 개발에 많은 투자가 필요합니다. 이러한 비용은 기존의 기계적 재활용 및 기존의 플라스틱 생산과 관련된 비용보다 훨씬 높아지는 경우가 많으며, 신규 참가자에게 재무적인 장벽이 되어 기존 사업자가 사업을 확대할 수 있는 페이스를 제한하고 있습니다.

목차

제1장 주요 요약 : 세계의 첨단 재활용 시장

제2장 조사 방법과 조사 프레임워크

  • 조사 목적
  • 제품 개요
  • 시장 세분화
  • 정성 조사
    • 1차 정보와 2차 정보
  • 정량적 조사
    • 1차 정보와 2차 정보
  • 지역별 1차 조사 응답자의 내역
  • 조사의 전제
  • 시장 규모 추정
  • 데이터의 삼각측량

제3장 세계의 첨단 재활용 시장 개요

  • 산업 밸류체인 분석
    • 재료 공급업체
    • 제조업체
    • 유통업체
    • 최종 사용자
  • 업계 전망
  • PESTLE 분석
  • Porter's Five Forces 분석
    • 공급기업의 협상력
    • 구매자의 협상력
    • 대체품의 위협
    • 신규 참가업체의 위협
    • 경쟁의 정도
  • 시장 성장과 전망
    • 시장 수익 추정 및 예측(2020-2035년)
    • 가격 동향 분석
  • 시장 매력 분석
    • 부문/지역별
    • 실행 가능한 인사이트(애널리스트의 추천 사항)

제4장 경쟁 구도 대시보드

  • 시장 집중률
  • 기업별 시장 점유율 분석(금액 기준, 2025년)
  • 경쟁 매핑 및 벤치마킹

제5장 세계의 첨단 재활용 시장 분석

  • 시장 역학과 동향
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 주요 동향
  • 시장 규모와 예측(2020-2035년)
    • 기술별
    • 원료별
    • 용도별
    • 최종 제품별
    • 지역별

제6장 북미의 첨단 재활용 시장 분석

제7장 유럽의 첨단 재활용 시장 분석

제8장 아시아태평양의 첨단 재활용 시장 분석

제9장 중동 및 아프리카의 첨단 재활용 시장 분석

제10장 남미의 첨단 재활용 시장 분석

제11장 기업 프로파일

  • Agilyx
  • BASF
  • BlueAlp Innovations
  • Brightmark
  • Carbios
  • Enerkem
  • ExxonMobil Chemical
  • Gr3n Recycling
  • GreenMantra Technologies
  • Ioniqa Technologies
  • Loop Industries
  • LyondellBasell
  • Mura Technology
  • Plastic Energy
  • Polystyvert
  • Pyrowave
  • Quantafuel
  • Recycling Technologies
  • Renewlogy
  • Shell
  • Other Prominent Players

제12장 부록

KTH 26.01.02

The advanced recycling market, often referred to as chemical recycling, is experiencing remarkable growth and transformation. Valued at approximately US$ 2.8 billion in 2025, the market is projected to expand significantly, reaching an estimated valuation of US$ 10.2 billion by 2035. This growth corresponds to a robust compound annual growth rate (CAGR) of 13.9% over the forecast period from 2026 to 2035, highlighting the increasing importance and adoption of advanced recycling technologies worldwide. The rapid expansion is driven by multiple factors, including technological advancements, rising environmental awareness, and policy pressures aimed at reducing plastic waste and promoting circular economy practices.

One of the key trends shaping the market is the dominance of pyrolysis technology. Pyrolysis has emerged as a leading method within advanced recycling due to its ability to convert mixed and contaminated plastic waste into valuable feedstocks such as pyrolysis oil, which can be further refined and reused. Its versatility and scalability make it a preferred choice among manufacturers and investors seeking to build sustainable recycling solutions. Alongside pyrolysis, other chemical recycling processes like depolymerization are gaining traction, particularly for producing virgin-quality materials that can be reintegrated into closed-loop systems.

Noteworthy Market Developments

The competitive landscape in the advanced recycling market is marked by a dynamic mix of industry giants and agile startups, each playing crucial roles in driving innovation and scaling solutions for complex plastic waste streams. Established multinational corporations such as ExxonMobil and Dow are investing heavily in advanced recycling technologies, leveraging their vast resources and global reach to develop large-scale infrastructure and research initiatives.

Alongside these industry behemoths, nimble startups like Agilyx, Plastic Energy, Enerkem, and Loop are making significant strides by focusing on specialized technologies and innovative approaches. These companies frequently adopt advanced methods such as AI-powered sorting systems and chemical recycling processes, enabling them to efficiently handle complex, contaminated, or mixed plastic waste streams that traditional mechanical recycling struggles to process.

Recent developments underscore the momentum in this competitive environment. In December 2025, United Microelectronics Corp. (UMC) inaugurated a dedicated Circular Economy & Recycling Innovation Center within its Fab 12A campus located in the Southern Taiwan Science Park. This facility is designed to advance research and development focused on recycling innovations and circular economy principles, highlighting UMC's commitment to sustainability and technological progress in the sector.

Meanwhile, in August 2025, Mura Technology, recognized globally as a pioneer in next-generation advanced plastic recycling, announced plans to build a 50-kilotonnes-per-annum (kta) facility in Singapore. This ambitious project aims to significantly boost recycling capacity and demonstrate the commercial viability of Mura's proprietary technology on a large scale.

Core Growth Drivers

The trend toward increased use of engineered plastics containing post-consumer recycled content (PCR) is being driven largely by the implementation of stringent regulations worldwide aimed at reducing plastic waste. Governments across the globe are enacting policies that not only limit the volume of plastic waste generated but also mandate higher percentages of recycled content in new products. These regulations are particularly impactful because they extend to critical applications such as food contact materials and medical products, areas where safety and quality standards are exceptionally high. As a result, manufacturers are compelled to innovate and adopt advanced recycling technologies that can produce PCR materials meeting strict regulatory and performance requirements.

Emerging Opportunity Trends

Technological innovations in advanced recycling, particularly in processes like pyrolysis, cracking, and depolymerization, are progressing rapidly and becoming increasingly efficient. These advancements are crucial in enhancing the overall processing capabilities of recycling facilities, enabling them to handle larger volumes of plastic waste with improved precision and reduced energy consumption. As these technologies mature, they offer promising opportunities for scaling operations to meet growing demand, which is essential for addressing the vast quantities of plastic waste generated globally. Improved processing efficiency not only increases throughput but also contributes to lowering production costs, making advanced recycling more economically viable and attractive for investors and manufacturers.

Barriers to Optimization

The advanced recycling market faces significant challenges stemming from high capital and operational costs, which could potentially hamper its growth trajectory. Establishing advanced recycling facilities, such as those utilizing pyrolysis or chemical recycling technologies, demands substantial upfront investment in specialized equipment, infrastructure, and technology development. These costs are often much higher than those associated with traditional mechanical recycling or conventional plastic production, creating financial barriers for new entrants and limiting the pace at which existing players can scale their operations.

Detailed Market Segmentation

Based on technology, Pyrolysis remains the dominant technology in the advanced recycling market, capturing over 41% of the market share in 2025. This commanding position underscores pyrolysis's critical role in transforming plastic waste into valuable products such as pyrolysis oil, fuels, and feedstocks. The technology's ability to handle mixed and contaminated plastic streams that are difficult to recycle mechanically makes it highly versatile and attractive to industry players. Pyrolysis breaks down complex polymers into simpler hydrocarbons through thermal decomposition in an oxygen-free environment, producing outputs that can be directly used as fuel or further refined into chemicals, thereby closing the loop in plastic recycling.

Based on feedstock, Polyethylene (PE) is poised to experience the fastest growth within the advanced recycling market, with a projected compound annual growth rate (CAGR) of 18.89% in the coming years. This rapid expansion reflects polyethylene's widespread use across a variety of industries, making it a critical target for advanced recycling technologies. As one of the most commonly produced and consumed plastics globally, polyethylene is found in countless applications, from packaging films and containers to household goods and agricultural products. Its ubiquity in the waste stream presents both a challenge and an opportunity for recyclers aiming to capture value from plastic waste and reduce environmental impact.

By End-Product, Recycled feedstock oils and fuels, particularly pyrolysis oil, hold the largest share in the advanced recycling market, accounting for approximately 32.5% of the total market. Pyrolysis oil serves as the industry's primary currency due to its versatility and ability to replace conventional petroleum-based feedstocks. Produced through the thermal decomposition of plastic waste in an oxygen-free environment, pyrolysis oil closely mimics the properties of synthetic crude oil, making it suitable for refinery processing and chemical production. This quality allows it to be integrated seamlessly into existing petrochemical supply chains, supporting the circular economy by converting end-of-life plastics into valuable raw materials.

  • Based on application/end-use industry, the consumer goods and electronics sector holds a dominant position in the advanced recycling market, commanding over 38% of the total market share. This substantial share reflects the critical role that recycled materials play in the production of a wide array of electronic devices and consumer products, where quality and appearance are paramount. As manufacturers strive to meet both sustainability goals and the demanding aesthetic standards of high-end electronics, they are increasingly shifting their focus toward advanced recycling technologies that can provide superior material quality.

Segment Breakdown

By Technology

  • Thermal pyrolysis (plastic-to-oil)
  • Catalytic pyrolysis
  • Depolymerization (including glycolysis, methanolysis)
  • PET depolymerization to monomers
  • Polyurethane/nylon depolymerization
  • Enzymatic/biochemical recycling
  • Gasification
  • Pyrolysis
  • Syngas production for chemicals/fuels
  • High-temp gasification of mixed feedstock
  • Solvolysis / chemical solvolysis
  • Solvent-based recycling of polymers
  • Hydrothermal liquefaction (HTL)
  • Wet waste/biomass co-processing
  • Enzyme-assisted depolymerisation pilots
  • Others

By Feedstock

  • Mixed plastic waste (unsorted municipal plastic)
  • Polyethylene (PE)
  • Polypropylene (PP)
  • Polyethylene terephthalate (PET)
  • Multi-layer films & flexible packaging
  • Styrenics, ABS & other engineering plastics

By Application

  • Packaging (rigid & flexible)
  • Automotive & transportation
  • Consumer goods & electronics
  • Building & construction materials
  • Textiles & fibers
  • Industrial & oilfield applications

By End-Product

  • Recycled feedstock oils & fuels (pyrolysis oil)
  • Recovered monomers / chemical intermediates
  • rPET / recycled resin pellets
  • Performance/engineering polymers
  • Waxes & specialty chemicals
  • Energy/cogeneration outputs
  • Others

By Region

  • North America
  • The US
  • Canada
  • Mexico
  • Europe
  • Western Europe
  • The UK
  • Germany
  • France
  • Italy
  • Spain
  • Rest of Western Europe
  • Eastern Europe
  • Poland
  • Russia
  • Rest of Eastern Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia and New Zealand
  • South Korea
  • ASEAN
  • Rest of Asia Pacific
  • Middle East and Africa
  • Saudi Arabia
  • South Africa
  • UAE
  • Rest of MEA
  • South America
  • Argentina
  • Brazil
  • Rest of South America

Geography Breakdown

  • North America currently holds a dominant position in the advanced recycling market, controlling approximately 34.33% of the global share. This leadership is largely driven by aggressive industrial scaling efforts concentrated along the U.S. Gulf Coast, where significant infrastructure investments are underway. Unlike regions that rely primarily on voluntary corporate commitments to increase recycled content, North America has shifted toward implementing massive, large-scale infrastructure projects that aim to build capacity and improve the efficiency of advanced recycling processes.
  • Policy frameworks in the region also play a critical role as catalysts for market growth. Increasingly stringent regulations, mandates requiring recycled content in products and packaging, and landfill bans are creating a more favorable environment for advanced recycling technologies. These policies encourage manufacturers and brands to prioritize the use of post-consumer recycled materials, thereby driving demand for recycled plastics and incentivizing investment in recycling infrastructure.
  • Furthermore, the Gulf Coast's concentration of petrochemical and plastics resin manufacturing facilities provides a unique advantage. This geographic clustering facilitates the integration of advanced recycling outputs into existing supply chains, enabling recycled materials to be efficiently converted back into feedstocks for new plastic production.

Leading Market Participants

  • Agilyx
  • BASF
  • BlueAlp Innovations
  • Brightmark
  • Carbios
  • Enerkem
  • ExxonMobil Chemical
  • Gr3n Recycling
  • GreenMantra Technologies
  • Ioniqa Technologies
  • Loop Industries
  • LyondellBasell
  • Mura Technology
  • Plastic Energy
  • Polystyvert
  • Pyrowave
  • Quantafuel
  • Recycling Technologies
  • Renewlogy
  • Shell
  • Other Prominent Players

Table of Content

Chapter 1. Executive Summary: Global Advanced Recycling Market

Chapter 2. Research Methodology & Research Framework

  • 2.1. Research Objective
  • 2.2. Product Overview
  • 2.3. Market Segmentation
  • 2.4. Qualitative Research
    • 2.4.1. Primary & Secondary Sources
  • 2.5. Quantitative Research
    • 2.5.1. Primary & Secondary Sources
  • 2.6. Breakdown of Primary Research Respondents, By Region
  • 2.7. Assumption for Study
  • 2.8. Market Size Estimation
  • 2.9. Data Triangulation

Chapter 3. Global Advanced Recycling Market Overview

  • 3.1. Industry Value Chain Analysis
    • 3.1.1. Material Provider
    • 3.1.2. Manufacturer
    • 3.1.3. Distributor
    • 3.1.4. End User
  • 3.2. Industry Outlook
  • 3.3. PESTLE Analysis
  • 3.4. Porter's Five Forces Analysis
    • 3.4.1. Bargaining Power of Suppliers
    • 3.4.2. Bargaining Power of Buyers
    • 3.4.3. Threat of Substitutes
    • 3.4.4. Threat of New Entrants
    • 3.4.5. Degree of Competition
  • 3.5. Market Growth and Outlook
    • 3.5.1. Market Revenue Estimates and Forecast (US$ Mn), 2020-2035
    • 3.5.2. Price Trend Analysis
  • 3.6. Market Attractiveness Analysis
    • 3.6.1. By Segment/Region
    • 3.6.2. Actionable Insights (Analyst's Recommendations)

Chapter 4. Competition Dashboard

  • 4.1. Market Concentration Rate
  • 4.2. Company Market Share Analysis (Value %), 2025
  • 4.3. Competitor Mapping & Benchmarking

Chapter 5. Global Advanced Recycling Market Analysis

  • 5.1. Market Dynamics and Trends
    • 5.1.1. Growth Drivers
    • 5.1.2. Restraints
    • 5.1.3. Opportunity
    • 5.1.4. Key Trends
  • 5.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 5.2.1. By Technology
      • 5.2.1.1. Key Insights
        • 5.2.1.1.1. Thermal pyrolysis (plastic-to-oil)
        • 5.2.1.1.2. Catalytic pyrolysis
        • 5.2.1.1.3. Depolymerization (including glycolysis, methanolysis)
        • 5.2.1.1.4. PET depolymerization to monomers
        • 5.2.1.1.5. Polyurethane/nylon depolymerization
        • 5.2.1.1.6. Enzymatic / biochemical recycling
        • 5.2.1.1.7. Gasification
        • 5.2.1.1.8. Pyrolysis
        • 5.2.1.1.9. Syngas production for chemicals/fuels
        • 5.2.1.1.10. High-temp gasification of mixed feedstock
        • 5.2.1.1.11. Solvolysis / chemical solvolysis
        • 5.2.1.1.12. Solvent-based recycling of polymers
        • 5.2.1.1.13. Hydrothermal liquefaction (HTL)
        • 5.2.1.1.14. Wet waste/biomass co-processing
        • 5.2.1.1.15. Enzyme-assisted depolymerisation pilots
        • 5.2.1.1.16. Others
    • 5.2.2. By Feedstock
      • 5.2.2.1. Key Insights
        • 5.2.2.1.1. Mixed plastic waste (unsorted municipal plastic)
        • 5.2.2.1.2. Polyethylene (PE)
        • 5.2.2.1.3. Polypropylene (PP)
        • 5.2.2.1.4. Polyethylene terephthalate (PET)
        • 5.2.2.1.5. Multi-layer films & flexible packaging
        • 5.2.2.1.6. Styrenics, ABS & other engineering plastics
    • 5.2.3. By Application
      • 5.2.3.1. Key Insights
        • 5.2.3.1.1. Mixed plastic waste (unsorted municipal plastic)
        • 5.2.3.1.2. Polyethylene (PE)
        • 5.2.3.1.3. Polypropylene (PP)
        • 5.2.3.1.4. Polyethylene terephthalate (PET)
        • 5.2.3.1.5. Multi-layer films & flexible packaging
        • 5.2.3.1.6. Styrenics, ABS & other engineering plastics
    • 5.2.4. By End-Product
      • 5.2.4.1. Key Insights
        • 5.2.4.1.1. Mixed plastic waste (unsorted municipal plastic)
        • 5.2.4.1.2. Polyethylene (PE)
        • 5.2.4.1.3. Polypropylene (PP)
        • 5.2.4.1.4. Polyethylene terephthalate (PET)
        • 5.2.4.1.5. Multi-layer films & flexible packaging
        • 5.2.4.1.6. Styrenics, ABS & other engineering plastics
    • 5.2.5. By Region
      • 5.2.5.1. Key Insights
        • 5.2.5.1.1. North America
          • 5.2.5.1.1.1. The U.S.
          • 5.2.5.1.1.2. Canada
          • 5.2.5.1.1.3. Mexico
        • 5.2.5.1.2. Europe
          • 5.2.5.1.2.1. Western Europe
  • 5.2.5.1.2.1.1. The UK
  • 5.2.5.1.2.1.2. Germany
  • 5.2.5.1.2.1.3. France
  • 5.2.5.1.2.1.4. Italy
  • 5.2.5.1.2.1.5. Spain
  • 5.2.5.1.2.1.6. Rest of Western Europe
          • 5.2.5.1.2.2. Eastern Europe
  • 5.2.5.1.2.2.1. Poland
  • 5.2.5.1.2.2.2. Russia
  • 5.2.5.1.2.2.3. Rest of Eastern Europe
        • 5.2.5.1.3. Asia Pacific
          • 5.2.5.1.3.1. China
          • 5.2.5.1.3.2. India
          • 5.2.5.1.3.3. Japan
          • 5.2.5.1.3.4. South Korea
          • 5.2.5.1.3.5. Australia & New Zealand
          • 5.2.5.1.3.6. ASEAN
          • 5.2.5.1.3.7. Rest of Asia Pacific
        • 5.2.5.1.4. Middle East & Africa
          • 5.2.5.1.4.1. UAE
          • 5.2.5.1.4.2. Saudi Arabia
          • 5.2.5.1.4.3. South Africa
          • 5.2.5.1.4.4. Rest of MEA
        • 5.2.5.1.5. South America
          • 5.2.5.1.5.1. Argentina
          • 5.2.5.1.5.2. Brazil
          • 5.2.5.1.5.3. Rest of South America

Chapter 6. North America Advanced Recycling Market Analysis

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 6.2.1. By Technology
    • 6.2.2. By Feedstock
    • 6.2.3. By Application
    • 6.2.4. By End-Product
    • 6.2.5. By Country

Chapter 7. Europe Advanced Recycling Market Analysis

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 7.2.1. By Technology
    • 7.2.2. By Feedstock
    • 7.2.3. By Application
    • 7.2.4. By End-Product
    • 7.2.5. By Country

Chapter 8. Asia Pacific Advanced Recycling Market Analysis

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 8.2.1. By Technology
    • 8.2.2. By Feedstock
    • 8.2.3. By Application
    • 8.2.4. By End-Product
    • 8.2.5. By Country

Chapter 9. Middle East & Africa Advanced Recycling Market Analysis

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 9.2.1. By Technology
    • 9.2.2. By Feedstock
    • 9.2.3. By Application
    • 9.2.4. By End-Product
    • 9.2.5. By Country

Chapter 10. South America Advanced Recycling Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 10.2.1. By Technology
    • 10.2.2. By Feedstock
    • 10.2.3. By Application
    • 10.2.4. By End-Product
    • 10.2.5. By Country

Chapter 11. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 11.1. Agilyx
  • 11.2. BASF
  • 11.3. BlueAlp Innovations
  • 11.4. Brightmark
  • 11.5. Carbios
  • 11.6. Enerkem
  • 11.7. ExxonMobil Chemical
  • 11.8. Gr3n Recycling
  • 11.9. GreenMantra Technologies
  • 11.10. Ioniqa Technologies
  • 11.11. Loop Industries
  • 11.12. LyondellBasell
  • 11.13. Mura Technology
  • 11.14. Plastic Energy
  • 11.15. Polystyvert
  • 11.16. Pyrowave
  • 11.17. Quantafuel
  • 11.18. Recycling Technologies
  • 11.19. Renewlogy
  • 11.20. Shell
  • 11.21. Other Prominent Players

Chapter 12. Annexure

  • 12.1. List of Secondary Sources
  • 12.2. Key Country Markets- Macro Economic Outlook/Indicators
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제