![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1814813
ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀå : ¼¼°è ¹× Áö¿ªº° ºÐ¼® : ¿ëµµº°, Çϵå¿þ¾îº°, ¼ÒÇÁÆ®¿þ¾îº°, Áö¿ªº° - ºÐ¼® ¹× ¿¹Ãø(2025-2035³â)Automated Data Logging Tools and Systems Market - A Global and Regional Analysis: Focus on Application, Product, and Regional Analysis - Analysis and Forecast, 2025-2035 |
ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀº Çö´ë Á¤¹Ð ³ó¾÷ÀÇ Áß¿äÇÑ ÃàÀ¸·Î, ³óºÎµéÀÌ ¹ç, ÀÛ¹°, Àåºñ¿¡ ´ëÇÑ Á¤º¸¸¦ ½Ç½Ã°£À¸·Î ¼öÁý, ÀúÀå, ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼¾¼, IoT ÀåÄ¡, Ŭ¶ó¿ìµå ¿¬°áÀ» Ȱ¿ëÇÏ¿© Åä¾ç ¼öºÐ, ¿µ¾çºÐ ¼öÁØ, ¿Âµµ, ½Àµµ, ±â°è ¼º´É µî Áß¿äÇÑ ¸Å°³º¯¼ö¸¦ ¼öÁýÇϰí À̸¦ ÀÚµ¿À¸·Î ±â·ÏÇÏ¿© Áß¾Ó ÁýÁᫎ Ç÷§ÆûÀ¸·Î Àü¼ÛÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ¼öÀÛ¾÷ ±â·Ï °ü¸®¸¦ ¿À·ù ¾ø´Â ÀÚµ¿ÈµÈ ÇÁ·Î¼¼½º·Î ´ëüÇÔÀ¸·Î½á ³óºÎµéÀÌ ÀÛ¹° ¼öÈ®·®À» ÃÖÀûÈÇϰí, ÅõÀÔ ºñ¿ëÀ» Àý°¨Çϸç, Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇÑ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
ÁÖ¿ä ½ÃÀå Åë°è | |
---|---|
¿¹Ãø ±â°£ | 2025-2035³â |
2025³â Æò°¡ | 52¾ï 3,100¸¸ ´Þ·¯ |
2035³â ¿¹Ãø | 119¾ï 9,500¸¸ ´Þ·¯ |
CAGR | 8.65% |
³ó¾÷ÀÇ ½º¸¶Æ® ³ó¾÷°ú µðÁöÅÐ ÀüȯÀÌ °Á¶µÇ¸é¼ ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë ½Ã½ºÅÛÀº ³óÀå °ü¸®¿¡ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®ÀÇ ÁßÃß ¿ªÇÒÀ» ÇÏ¸ç °ü°³, ½Ãºñ, º´ÃæÇØ ¹æÁ¦¿¡ Àû½Ã¿¡ °³ÀÔÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¿½Ã¿¡ ȯ°æ ±ÔÁ¦ ¹× Áö¼Ó°¡´É¼º Ç¥ÁØÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. AI, ML, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ µî ÷´Ü ±â¼úÀÇ ÅëÇÕÀ¸·Î µ¥ÀÌÅÍ ·Î±ë ½Ã½ºÅÛÀº ´Ü¼øÇÑ ¸ð´ÏÅ͸µ ÀåÄ¡¿¡¼ ³óÀå ¼öÁØ¿¡¼ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â ÀÇ»ç°áÁ¤ Áö¿ø ½Ã½ºÅÛÀ¸·Î ÁøÈÇϰí ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ Á¡Àº 2025³â±îÁö ³ó¾÷ ±â¾÷ÀÇ 65%°¡ µ¥ÀÌÅÍ °ü¸®¸¦ À§ÇØ Å¬¶ó¿ìµå ÄÄÇ»ÆÃÀ» µµÀÔÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2018³â°ú 2022³â »çÀÌ¿¡ ³ó¾÷ ºÐ¾ßÀÇ IoT ¼¾¼ µµÀÔÀÌ 35% ±ÞÁõÇß´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±¤¹üÀ§ÇÑ µðÁöÅÐÈ´Â ³óÀå °ü¸®ÀÇ ÇÙ½É ¿ä¼Ò·Î¼ ÀÚµ¿È µ¥ÀÌÅÍ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.
½ÃÀå °³¿ä
ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀÇ ¸ÅÃâÀº 2024³â 4¾ï 7,784¸¸ ´Þ·¯¿¡¼ ¿¹Ãø ±â°£(2025-2035³â) µ¿¾È ¿¬Æò±Õ 8.65%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2035³â¿¡´Â 11¾ï 9,950¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀº Àü ¼¼°è ½Ä·® ¼ö¿ä Áõ°¡, ³ó°¡ÀÇ »ý»ê¼º Çâ»ó¿¡ ´ëÇÑ ¾Ð·Â Áõ°¡, IoT, AI, Ŭ¶ó¿ìµå Ç÷§Æû°ú °°Àº µðÁöÅÐ ±â¼úÀÇ ³ó¾÷ µµÀÔ °¡¼ÓÈ·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Åä¾ç, ÀÛ¹°, ³¯¾¾ »óÅ¿¡ ´ëÇÑ Á¤È®ÇÑ ÅëÂû·ÂÀ» ½Ç½Ã°£À¸·Î Á¦°øÇÏ¿© ÀÚ¿øÀ» ÃÖÀûÈÇϰí, Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í, Áö¼Ó°¡´É¼º ±âÁØÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ±âÈÄ ½º¸¶Æ® ³ó¾÷¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Àμ¾Æ¼ºê´Â ¹° »ç¿ë, ºñ·á È¿À², ź¼Ò ¹èÃâ¿¡ ´ëÇÑ ¿ì·Á Áõ°¡¿Í ÇÔ²² äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ëµ¿·Â ºÎÁ·°ú Àú·ÅÇÑ °¡°ÝÀÇ Å¾籤 ¹ßÀü ¹× ¸ð¹ÙÀÏ ·Î°ÅÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ¼Ò±Ô¸ð ³ó°¡¿¡¼µµ ÀÌ ±â¼úÀ» »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼ ¼±Áø±¹°ú ½ÅÈï±¹ ½ÃÀå ¸ðµÎ¿¡¼ º¸±ÞÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
»ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ
ÀÚµ¿ÈµÈ µ¥ÀÌÅÍ ·Î±ë Åø¿Í ½Ã½ºÅÛÀÇ µµÀÔÀº µ¥ÀÌÅÍ ±â¹Ý Á¤¹Ð ÀÛ¾÷À¸·ÎÀÇ ±Ùº»ÀûÀÎ ÀüȯÀ» ÃËÁøÇÔÀ¸·Î½á ³ó¾÷ »ê¾÷À» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ³ó±â°è Á¦Á¶¾÷ü´Â ½º¸¶Æ® ¼¾¼, Ä¿³ØÆ¼ºñƼ, Ŭ¶ó¿ìµå Ç÷§ÆûÀ» Á¦Ç° Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±âȸ¸¦ ¾ò°Ô µÉ °ÍÀÔ´Ï´Ù. ³ó¾àȸ»ç³ª Á¾¹¦È¸»çµéÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» ±Ø´ëÈÇϱâ À§ÇØ Á¦Ç° »ç¿ë ÇöȲ°ú ½Ç½Ã°£ ÇöÀå »óȲÀ» ¿¬°èÇÏ¿© ¸ÂÃãÇü ÀÛ¹° °ü¸® ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. °ü°³ ¹× ¹° °ü¸® ±â¾÷ÀÇ °æ¿ì, µ¥ÀÌÅÍ ·Î°Å´Â ¹° »ç¿ëÀ» ÃÖÀûÈÇϴ ÷´Ü ¼Ö·ç¼ÇÀ» Áö¿øÇÏ¿© ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. Áß¿äÇÑ °ÍÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ³óºÎµéÀÇ ¼öÀÛ¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í, ±ÔÁ¦ ¿ä°Ç Áؼö¸¦ °³¼±Çϸç, ÃßÀû °¡´ÉÇÑ »ý»ê °üÇàÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á °ø±Þ¸ÁÀÇ Åõ¸í¼ºÀ» ³ôÀδٴ Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ ÀüȯÀº ³ó¾÷, ±â¼ú, Áö¼Ó°¡´É¼º¿¡ ÃÊÁ¡À» ¸ÂÃá ºÎ¹® °£ Çù·ÂÀ» ÃËÁøÇÏ°í ³ó¾÷ÀÇ µðÁöÅÐ ÅëÇÕ, ±âÈÄ º¯È¿¡ °ÇÑ »ê¾÷À¸·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå ¼¼ºÐÈ
¼¼ºÐÈ 1 : ¿ëµµº°
°ü°³ ¹× ½Ãºñ Á¦¾î ½Ã½ºÅÛÀÌ ½ÃÀåÀ» ¼±µµ(¿ëµµº°)
°ü°³ ¹× ½Ãºñ Á¦¾î ½Ã½ºÅÛÀº È¿À²ÀûÀÎ ¹° °ü¸®¿Í ÃÖÀûÈµÈ ¿µ¾çºÐ °ø±ÞÀ̶ó´Â ³ó¾÷ÀÇ °¡Àå Áß¿äÇÑ µÎ °¡Áö °úÁ¦¸¦ Á÷Á¢ÀûÀ¸·Î ÇØ°áÇϱ⠶§¹®¿¡ ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹° ºÎÁ·, ÅõÀÔ ºñ¿ë »ó½Â, ´õ ¾ö°ÝÇÑ Áö¼Ó°¡´É¼º ±ÔÁ¦¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼ ³óºÎµéÀº Åä¾ç ¼öºÐ, ³¯¾¾ ÆÐÅÏ, ÀÛ¹°ÀÇ ¿µ¾ç ¿ä±¸ »çÇ×À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ°í °ü°³ ¹× °ü°³ ÀÏÁ¤À» Á¤È®ÇÏ°Ô Á¦¾îÇÏ´Â ½º¸¶Æ® µ¥ÀÌÅÍ ·Î°Å¸¦ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹°°ú ºñ·áÀÇ ³¶ºñ¸¦ ÃÖ¼ÒÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÛ¹°ÀÇ ¼öÈ®·®°ú ǰÁúÀ» Çâ»ó½Ã۰í, ºñ¿ë È¿À²ÀûÀ̸ç ȯ°æÀûÀ¸·Îµµ Áö¼Ó °¡´ÉÇÑ ½Ã½ºÅÛÀÔ´Ï´Ù. ±× °á°ú, °ü°³ ¹× °ü¼ö Á¦¾î ½Ã½ºÅÛÀº °¡Àå Å©°í °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ÀÀ¿ë ºÐ¾ß·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¼±Áø±¹°ú ½ÅÈï±¹ ½ÃÀå ¸ðµÎ¿¡¼ Å« º¸±ÞÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
¼¼ºÐÈ 2 : Çϵå¿þ¾îº°
½ÃÀåÀ» ¼±µµÇÏ´Â ¸ÖƼ¼¾¼ ·Î±ë À¯´Ö(Çϵå¿þ¾îº°)
¸ÖƼ ¼¾¼ ·Î±ë À¯´ÖÀº Åä¾ç ¼öºÐ, ¿Âµµ, ½Àµµ, ¿µ¾ç ¼öÁØ, ±â»ó Á¶°Ç µî ¿©·¯ ¼¾¼¸¦ ÇϳªÀÇ Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© Á¾ÇÕÀûÀÎ ¸ð´ÏÅ͸µ ±â´ÉÀ» Á¦°øÇÔÀ¸·Î½á ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛÀÇ Çϵå¿þ¾îº° ½ÃÀåÀ» µ¶Á¡ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ½ÃÀåÀ» µ¶Á¡ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ´ÙÁß ¸Å°³º¯¼ö Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ³óºÎµéÀº ´ÜÀÏ ¼¾¼ ÀåÄ¡º¸´Ù ´õ Á¤È®ÇÏ°í ½Ã±âÀûÀýÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â Á¾ÇÕÀûÀÎ ÇöÀå »óȲÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ´Ù¾çÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²À» µ¿½Ã¿¡ ¼öÁýÇÒ ¼ö ÀÖ´Â ´É·ÂÀº È¿À²¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó Á¤¹Ð °ü°³, °ü°³, ÀÛ¹° °Ç° ¸ð´ÏÅ͸µ°ú °°Àº °í±Þ ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ³ó¾÷ÀÌ Á¡Á¡ ´õ µ¥ÀÌÅÍ Áß½Éȵʿ¡ µû¶ó ´ÙÀç´Ù´ÉÇÑ ÅëÇÕ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ¸ÖƼ ¼¾¼ ·Î±ë ÀåÄ¡´Â »ý»ê¼º°ú Áö¼Ó°¡´É¼ºÀ» ±Ø´ëÈÇϰíÀÚ ÇÏ´Â ´ë±Ô¸ð ³ó¾÷ ±â¾÷ ¹× ¼Ò±Ô¸ð ³ó°¡ ¸ðµÎ¿¡°Ô ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¼¼ºÐÈ 3 : ¼ÒÇÁÆ®¿þ¾îº° ¼¼ºÐÈ
½ÃÀåÀ» ¼±µµÇÏ´Â IoT ±â¹Ý µ¥ÀÌÅÍ ·Î±ë Ç÷§Æû(¼ÒÇÁÆ®¿þ¾îº°)
IoT ±â¹Ý µ¥ÀÌÅÍ ·Î±ë Ç÷§ÆûÀº ¼¾¼, µð¹ÙÀ̽º, ³óÀå °ü¸® ½Ã½ºÅÛÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Ä¿³ØÆ¼µå ³ó¾÷ÀÇ ÁßÃß ¿ªÇÒÀ» ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¼ÒÇÁÆ®¿þ¾îº°·Î ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Ç÷§ÆûÀº ³óºÎµéÀÌ °ü°³, ºñ·á, º´ÃæÇØ ¹æÁ¦, ÀÛ¹° °ü¸® Àü¹ÝÀ» ÃÖÀûÈÇÒ ¼ö ÀÖµµ·Ï °í±Þ ºÐ¼®°ú AI ±â¹Ý ÅëÂû·ÂÀ» ÅëÇØ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ¼öÁýÇϰí Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå·Î Àü¼ÛÇÕ´Ï´Ù. È®À强, ½º¸¶Æ®Æù ¹× ÅÂºí¸´À» ÅëÇÑ ¿ø°Ý ¾×¼¼½º, ¿¹ÃøÀû ÀÇ»ç°áÁ¤ Áö¿ø ´É·ÂÀº ±âÁ¸ µ¶¸³Çü ¼ÒÇÁÆ®¿þ¾îº¸´Ù ÈξÀ ´õ ³ôÀº °¡Ä¡¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ³ó¾÷ÀÇ È®»ê°ú Á¤ºÎ Áö¿ø µðÁöÅÐ ³ó¾÷ ÀÌ´Ï¼ÅÆ¼ºê´Â IoT Áö¿ø Ç÷§ÆûÀÇ È®»êÀ» °¡¼ÓÈÇÏ¿© ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀå¿¡¼ °¡Àå Áß¿äÇÑ ¼ÒÇÁÆ®¿þ¾î ºÎ¹®À¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¼¼ºÐÈ 4 : Áö¿ªº° ¼¼ºÐÈ
½ÃÀåÀ» ¼±µµÇÏ´Â ºÏ¹Ì(Áö¿ªº°)
ºÏ¹Ì´Â °íµµ·Î ±â°èÈµÈ ³ó¾÷ ºÎ¹®, °·ÂÇÑ µðÁöÅÐ ÀÎÇÁ¶ó, Á¤¹Ð ³ó¾÷ÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. IoT, AI, Ŭ¶ó¿ìµå ±â¹Ý ³ó¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í ÇÔ²² ´ëÇü ³ó¾÷ ±â¼ú ±â¾÷ÀÇ Á¸Àç´Â ´ë±Ô¸ð ³óÀå Àüü¿¡ °í±Þ µ¥ÀÌÅÍ ·Î±ë ½Ã½ºÅÛÀÇ ÅëÇÕÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ³ó¾÷, ¹° º¸Á¸, ±âÈÄ Ä£ÈÀû ³ë·Â¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÀÚµ¿È¸¦ ´õ¿í ÃËÁøÇÏ´Â ÇÑÆí, ÀΰǺñ »ó½Â°ú »ý»ê¼º Çâ»ó¿¡ ´ëÇÑ Çʿ伺ÀÌ ÀÚµ¿È·ÎÀÇ ÀüȯÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀû ¼º¼÷µµ, Áö¿ø Á¤Ã¥, Á¶±â µµÀÔ ³ó°¡¸¦ ¸ðµÎ °®Ãá ºÏ¹Ì´Â ÀÌ ½ÃÀå¿¡¼ ±â¼ú Çõ½Å°ú ¹ßÀüÀÇ ¼Óµµ¸¦ °è¼Ó ¸¸µé¾î³»°í ÀÖÀ¸¸ç, ÀÌ Áö¿ªÀ» ¼¼°è ¼ºÀåÀÇ ÃÖÀü¼±¿¡ À§Ä¡½Ã۰í ÀÖ½À´Ï´Ù.
ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀÇ ÃÖ±Ù µ¿Çâ
Á¦Ç°/Çõ½Å Àü·«: ÀÌ º¸°í¼´Â ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀ» ¿ëµµ, Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, Áö¿ªº°·Î »ó¼¼ÇÏ°Ô ºÐ¼®ÇÕ´Ï´Ù. ¹çÀÛ¹° ¸ð´ÏÅ͸µ, °ü°³ ¹× ½Ãºñ¹æÁ¦ Á¦¾î ½Ã½ºÅÛ, ȯ°æ ¸ð´ÏÅ͸µ, ±âŸ(ÇØÃæ ¹× º´ÇØÃæ À§Çè ¸ð´ÏÅ͸µ) µî ´Ù¾çÇÑ ¿ëµµ¸¦ À§ÇÑ µ¶¸³Çü µ¥ÀÌÅÍ ·Î°Å, ¸ÖƼ ¼¾¼ ·Î±ë À¯´Ö, ¼¾¼+ÅÚ·¹¸ÞÆ®¸® ¸ðµâ, ÀÚµ¿ Á¦¾î ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø°ú ½Ã½ºÅÛ(Çϵå¿þ¾î), IoT ±â¹Ý µ¥ÀÌÅÍ ·Î±ë Ç÷§Æû, ÀÇ»ç°áÁ¤ Áö¿ø ¹× ºÐ¼® Ç÷§Æû, AI/ML µî µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ(Çϵå¿þ¾î), IoT ±â¹Ý µ¥ÀÌÅÍ ·Î±ë Ç÷§Æû ¹× ÀÇ»ç°áÁ¤ Áö¿ø ¹× ºÐ¼® Ç÷§Æû(AI/ML) µîÀÇ ¼ÒÇÁÆ®¿þ¾î¸¦ ¸Á¶óÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼´Â Çõ½Å°¡µéÀÌ ÇöÀç Á¦°øµÇ°í ÀÖ´Â ¼Ö·ç¼ÇÀÇ °ÝÂ÷¸¦ ÆÄ¾ÇÇϰí Á¦Ç° ·Îµå¸ÊÀ» Á¶Á¤ÇÏ¿© Â÷º°ÈµÇ°í È®Àå °¡´ÉÇÏ¸ç ±ÔÁ¦¿¡ ºÎÇÕÇÏ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
¼ºÀå/¸¶ÄÉÆÃ Àü·«: ÀÚµ¿ µ¥ÀÌÅÍ ·Î±ë Åø ¹× ½Ã½ºÅÛ ½ÃÀåÀº ºü¸£°Ô ¹ßÀüÇϰí ÀÖÀ¸¸ç, ÁÖ¿ä ±â¾÷µéÀº ½ÃÀå ÁöÀ§¸¦ °ÈÇϱâ À§ÇØ »ý»ê ´É·Â È®´ë, Àü·«Àû Á¦ÈÞ, ½Ã¹ü µµÀÔ¿¡ Èû¾²°í ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼´Â ÀÌ·¯ÇÑ ¹ßÀüÀ» ÃßÀûÇϰí ÁÖ¿ä ±â¾÷µéÀÌ ¾î¶»°Ô ¿ëµµ ºÎ¹®¿¡ ÁøÀÔÇϰųª È®ÀåÇϰí ÀÖ´ÂÁö¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ º¸°í¼´Â ¸¶ÄÉÆÃ ÆÀÀÌ °í¼ºÀå ºÐ¾ß¸¦ ÆÄ¾ÇÇϰí, ÃÖÁ¾ »ç¿ëÀÚÀÇ ±â´ë¿¡ ºÎÇÕÇÏ´Â °¡Ä¡ Á¦¾È°ú Áö¿ª ¿ªÇÐ ¹× ±â¼ú Áغñ¿¡ ±â¹ÝÇÑ ½ÃÀå ÁøÃâ Àü·«À» ¼ö¸³ÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.
°æÀï Àü·«: Á¦Ç° Á¦°ø, Çõ½Å ÆÄÀÌÇÁ¶óÀÎ, ÆÄÆ®³Ê½Ê, È®Àå °èȹ¿¡ µû¶ó ÁÖ¿ä ÁøÃâ±â¾÷À» ÇÁ·ÎÆÄÀϸµÇÏ¿© öÀúÇÑ °æÀï ±¸µµ¸¦ Á¦°øÇÕ´Ï´Ù. °æÀï»ç º¥Ä¡¸¶Å·À» ÅëÇØ µ¶ÀÚ´Â Á¦Ç° À¯Çü ¹× ÀÀ¿ë ºÐ¾ß¿¡¼ °¢ ȸ»çÀÇ Æ÷Áö¼Å´×À» Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ ½ÃÀå¿¡¼ È®°íÈ÷ ÀÚ¸®¸¦ ÀâÀº À¯¸í ±â¾÷µéÀº ´ÙÀ½°ú °°½À´Ï´Ù.
This report can be delivered within 1 working day.
Introduction of the Automated Data Logging Tools and Systems Market
The automated data logging tools and systems market represents a critical pillar of modern precision agriculture, enabling farmers to collect, store, and analyze real-time information about their fields, crops, and equipment. These systems utilize sensors, IoT devices, and cloud connectivity to capture essential parameters, including soil moisture, nutrient levels, temperature, humidity, and machinery performance, which are then automatically recorded and transmitted to centralized platforms. By replacing manual record-keeping with automated, error-free processes, these solutions empower farmers to make data-driven decisions that optimize crop yields, reduce input costs, and enhance sustainability.
KEY MARKET STATISTICS | |
---|---|
Forecast Period | 2025 - 2035 |
2025 Evaluation | $5,231.0 Million |
2035 Forecast | $11,995.0 Million |
CAGR | 8.65% |
The growing emphasis on smart farming and digital transformation in agriculture has positioned automated data logging systems as indispensable tools for farm management. They serve as the backbone of predictive analytics, enabling timely interventions for irrigation, fertilization, and pest control while ensuring compliance with environmental regulations and sustainability standards. With the integration of advanced technologies such as AI, ML, and cloud computing, data logging systems are evolving from simple monitoring devices to decision-support systems that provide actionable insights at the farm level. Notably, by 2025, 65% of agricultural companies are estimated to have adopted cloud computing for data management, and the deployment of IoT sensors in farming soared 35% between 2018 and 2022. This widespread digitization highlights the increasing reliance on automated data systems as a central component of farm management.
Market Overview
The automated data logging tools and systems market's revenue was $4,784.4 million in 2024, and it is expected to reach $11,995.0 million by 2035, advancing at a CAGR of 8.65% during the forecast period (2025-2035). The automated data logging tools and systems market is growing rapidly due to rising global food demand, increasing pressure on farmers to improve productivity, and the accelerating adoption of digital technologies, including IoT, AI, and cloud platforms, in agriculture. These systems provide real-time, accurate insights into soil, crop, and weather conditions, enabling the optimization of resources, informed decision-making, and compliance with sustainability standards. Strong government incentives for climate-smart farming, combined with growing concerns over water use, fertilizer efficiency, and carbon emissions, are further boosting adoption. Additionally, labor shortages and the rising availability of affordable, solar-powered, and mobile-enabled loggers are making the technology accessible to smallholder farmers, ensuring widespread adoption across both developed and emerging markets.
Industrial Impact
The adoption of automated data logging tools and systems is reshaping the agricultural industry by driving a fundamental shift toward data-driven, precision-based operations. For farm equipment manufacturers, this creates new opportunities to integrate smart sensors, connectivity, and cloud platforms into their product portfolios, thereby strengthening after-sales services and generating recurring revenue streams through data subscriptions. Agrochemical and seed companies are leveraging these systems to provide tailored crop management solutions, linking product usage with real-time field conditions to maximize efficiency and sustainability. For irrigation and water management firms, data loggers support advanced solutions for optimizing water use, aligning with global sustainability goals. Importantly, these systems are reducing farmers' dependence on manual labor, improving compliance with regulatory requirements, and enhancing supply chain transparency by enabling traceable production practices. Collectively, this industrial shift is fostering collaboration between agriculture, technology, and sustainability-focused sectors, accelerating the transformation of farming into a digitally integrated, climate-resilient industry.
Market Segmentation:
Segmentation 1: By Application
Irrigation and Fertigation Control System to Lead the Market (by Application)
Irrigation and fertigation control systems are expected to lead the automated data logging tools and systems market by application, as they directly address two of the most critical challenges in agriculture, efficient water management and optimized nutrient delivery. With growing concerns over water scarcity, rising input costs, and stricter sustainability regulations, farmers are increasingly adopting smart data loggers that monitor soil moisture, weather patterns, and crop nutrient needs in real time to precisely control irrigation and fertigation schedules. These systems not only minimize wastage of water and fertilizers but also enhance crop yields and quality, making them highly cost-effective and environmentally sustainable. As a result, irrigation and fertigation control systems are emerging as the largest and fastest-growing application area, driving significant adoption across both developed and emerging agricultural markets.
Segmentation 2: By Hardware
Multi-Sensor Logging Units to Dominate the Market (by Hardware)
Multi-sensor logging units are set to dominate the automated data logging tools and systems market by hardware, as they offer comprehensive monitoring capabilities by integrating multiple sensors, such as those for soil moisture, temperature, humidity, nutrient levels, and weather conditions, into a single platform. This multi-parameter approach provides farmers with a holistic view of field conditions, enabling more accurate and timely decision-making compared to single-sensor devices. Their ability to collect diverse data streams simultaneously not only enhances efficiency but also supports advanced applications, such as precision irrigation, fertigation, and crop health monitoring. As farming becomes increasingly data-driven, the demand for versatile, integrated solutions is surging, positioning multi-sensor logging units as the preferred choice for both large-scale agribusinesses and smallholder farmers looking to maximize productivity and sustainability.
Segmentation 3: By Software
IoT-Based Data Logging Platforms to Dominate the Market (by Software)
IoT-based data logging platforms are projected to dominate the market by software, as they serve as the backbone of connected agriculture by enabling seamless integration of sensors, devices, and farm management systems. These platforms collect and transmit real-time data from the field to cloud-based dashboards, where advanced analytics and AI-driven insights help farmers optimize irrigation, fertigation, pest control, and overall crop management. Their scalability, remote accessibility through smartphones and tablets, and ability to support predictive decision-making make them far more valuable than traditional standalone software. Moreover, the growing adoption of smart farming practices and government-backed digital agriculture initiatives is accelerating the deployment of IoT-enabled platforms, cementing their position as the most critical software segment in the automated data logging tools and systems market.
Segmentation 4: By Region
North America to Lead the Market (by Region)
North America is expected to lead the automated data logging tools and systems market by region, driven by its highly mechanized agricultural sector, strong digital infrastructure, and widespread adoption of precision farming practices. The presence of major agri-tech companies, coupled with significant investments in IoT, AI, and cloud-based farming solutions, has accelerated the integration of advanced data logging systems across large-scale farms. Government support for sustainable agriculture, water conservation, and climate-smart initiatives further boosts adoption, while rising labor costs and the need for higher productivity reinforce the shift toward automation. With its combination of technological maturity, supportive policies, and early adopter farmers, North America continues to set the pace for innovation and deployment in this market, positioning the region at the forefront of global growth.
Recent Developments in the Automated Data Logging Tools and Systems Market
How can this report add value to an organization?
Product/Innovation Strategy: This report provides a detailed analysis of the automated data logging tools and systems market, segmented by application, hardware, software, and region. It covers various automated data logging tools and systems (hardware), such as standalone data loggers, multi-sensor logging units, sensor + telemetry modules, and automated control systems, and software such as IoT-based data logging platforms and decision support and analytics platforms (AI/ML) for several applications such as field crop monitoring, irrigation and fertigation control system, environmental monitoring, and others (pest and disease risk monitoring). The report helps innovators identify gaps in the current offering landscape and adapt product roadmaps to deliver differentiated, scalable, and regulatory-compliant solutions.
Growth/Marketing Strategy: The automated data logging tools and systems market has been rapidly evolving, with major players engaging in capacity expansion,strategic alliances, and pilot deployments to strengthen their market position. This report tracks those developments and provides insights into how key companies are entering or expanding into application segments. It supports marketing teams in identifying high-growth sectors, aligning value propositions with end-user expectations, and crafting targeted go-to-market strategies based on regional dynamics and technological readiness.
Competitive Strategy: A thorough competitive landscape is provided, profiling leading players based on their product offerings, innovation pipelines, partnerships, and expansion plans. Competitive benchmarking enables readers to evaluate how companies are positioned across product types and application areas.
Research Methodology
Data Sources
Primary Data Sources
The primary sources comprise industry experts from the automated data logging tools and systems market, as well as various stakeholders within the ecosystem. Respondents, including CEOs, vice presidents, marketing directors, and technology and innovation directors, have been interviewed to gather and verify both qualitative and quantitative aspects of this research study.
The key data points taken from primary sources include:
Secondary Data Sources
This research study utilizes extensive secondary research, including directories, company websites, and annual reports. It also utilizes databases, such as Hoover's, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market. In addition to core data sources, the study referenced insights from reputable organizations and websites, such as the Food and Agriculture Organization (FAO), United States Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA), Farm Bureau Federation (FBF), Canadian Agri-Food Automation and Intelligence Network (CAAIN), Smart Agriculture Council Mexico, Ministry of Agriculture, Food and Rural Affairs (MAFRA), Korea National Agricultural Cooperative Federation (NACF), Ministry of Agriculture and Rural Affairs (MARA), International Cooperative Agricultural Organization (ICAO), and others, to understand trends in the adoption of automated data logging tools and systems.
Secondary research has been done to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.
The key data points taken from secondary research include:
Data Triangulation
This research study utilizes extensive secondary sources, including certified publications, articles by recognized authors, white papers, company annual reports, directories, and major databases, to collect useful and effective information for a comprehensive, technical, market-oriented, and commercial study of the automated data logging tools and systems market.
The process of market engineering involves the calculation of the market statistics, market size estimation, market forecast, market crackdown, and data triangulation (the methodology for such quantitative data processes has been explained in further sections). A primary research study has been undertaken to gather information and validate market numbers for segmentation types and industry trends among key players in the market.
Key Market Players and Competition Synopsis
Automated data logging tools and systems for agriculture are technology-driven solutions designed to continuously capture and record critical farm parameters, including soil moisture, temperature, humidity, equipment performance, and weather conditions. By eliminating manual data entry and ensuring real-time monitoring, these systems empower farmers to make informed, timely decisions that optimize resource utilization, enhance productivity, and reduce operational risks. The market for automated data logging tools and systems is poised for substantial growth, driven by the integration of IoT, AI, and cloud-based analytics platforms that transform raw field data into actionable insights. These innovations enable predictive modeling for irrigation, fertilization, and crop health management, contributing to higher yields and more sustainable farming practices. Strong policy support for climate-smart agriculture, coupled with the rising global focus on efficient water and fertilizer use, is accelerating adoption across both large-scale and smallholder farms. As a result, automated data logging systems are becoming foundational to the digital transformation of agriculture, enabling compliance with sustainability standards and reducing environmental impact.
In March 2024, Campbell Scientific partnered with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to deploy solar-powered IoT-enabled data loggers across pilot farms in India and Africa. The project aims to provide farmers with real-time insights into soil moisture, rainfall, and nutrient conditions, thereby facilitating efficient irrigation scheduling and resource management. These loggers are also integrated with mobile applications, supporting smallholder farmers in regions with limited infrastructure and enabling them to adopt precision agriculture practices at scale. Such initiatives reflect a broader trend toward data-driven farming, where automation and digital tools bridge the gap between sustainability goals and practical farm management, ultimately enhancing resilience against climate variability and labor shortages.
Some prominent names established in this market are:
Scope and Definition