![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1483469
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå - ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м®, ±âȸ, ¿¹Ãø º¸°í¼(2019-2030³â)Electric Vehicle Engineering Plastics Market - Global Size, Share, Trend Analysis, Opportunity and Forecast Report, 2019-2030 |
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå ±Ô¸ð°¡ 4.6¹è ÀÌ»óÀ¸·Î ±ÞÁõÇÏ¿©, 2030³â¿¡´Â 682¾ï ´Þ·¯·Î Àü¸ÁµÇ¸ç, 510¸¸ ÅæÀ» µ¹ÆÄÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº °æ·® Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹èÃâ °¡½º »è°¨¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·Â, Àü±âÀÚµ¿Â÷ ±â¼úÀÇ Áøº¸, ÀÌÇØ °ü°èÀÚÀÇ È¯°æ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
Àü·« ÄÁ¼³ÆÃ ½ÃÀå Á¶»ç ȸ»çÀÎ BlueWeave ConsultingÀº ÃÖ±Ù 2023³â ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå ±Ô¸ð¸¦ ±Ý¾× ±âÁØÀ¸·Î 146¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡Çß½À´Ï´Ù. 2024³âºÎÅÍ 2030³â±îÁöÀÇ ¿¹Ãø ±â°£ µ¿¾È BlueWeave´Â ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå ±Ô¸ð°¡ CAGR 23.76%ÀÇ °ßÁ¶ÇÑ ¼ºÀåÀ» º¸ÀÏ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 682¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. º¸´Ù °¡º¿î BEV(¹èÅ͸® Àü±âÀÚµ¿Â÷), PHEV(Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷) ¹× HEV(ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷)¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä´Â ±î´Ù·Î¿î ȯ°æ¿¡¼ ÇÃ¶ó½ºÆ½ ¼º´É °ÈÀÇ Çʿ伺°ú ÇÔ²² ÀÌ ºÐ¾ßÀÇ ÇÃ¶ó½ºÆ½ ¼ö¿ä¸¦ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ȯ°æ¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í Àüµ¿È¿Í °æ·®È¸¦ ÃßÁøÇÏ´Â ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦µµ ½ÃÀåÀÇ Å« ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
BlueWeave´Â 2023³â ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå ±Ô¸ð¸¦ ¼ö·® ±âÁØÀ¸·Î 320¸¸ ÅæÀ¸·Î Æò°¡Çß½À´Ï´Ù. 2024³âºÎÅÍ 2030³â±îÁöÀÇ ¿¹Ãø ±â°£ µ¿¾È BlueWeave´Â ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå ±Ô¸ð°¡ CAGR 24.88%·Î È®´ëµÉ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 510¸¸ Åæ¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. EV¿¡ Ç×±Õ¼º Æú¸®¸Ó°¡ ¸¹ÀÌ »ç¿ëµÇ´Â °ÍÀÌ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹, ¿µ±¹, Àεµ, ÀϺ», Áß±¹, µ¶ÀÏ, ij³ª´Ù µî ÁÖ¿ä ±¹°¡µéÀº »ê¾÷ È®´ë °¡´É¼ºÀ» °¡Àå ¸¹ÀÌ º¸¿©ÁÝ´Ï´Ù. ÇÃ¶ó½ºÆ½Àº ¸ÂÃãÇü, ¼ºÇü¼º, Àú·ÅÇÑ °¡°Ý, ¼º´É µîÀÇ ÀåÁ¡ÀÌ ÀÖÀ¸¸ç EV ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ °æ·®È, ºÎǰ ÅëÇÕ, ¼ÒÀ½ ¹× Áøµ¿ °¨¼è¿¡µµ ±â¿©ÇÏ¿© EV¿ë ¼ö¿ä¸¦ ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.
±âȸ-¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½¿¡ ÀÇÇÑ Åº¼Ò ¹ßÀÚ±¹ °¨¼Ò¿¡ ´ëÇÑ ³ôÀº °ü½É
ź¼Ò ½ÇÀû¿¡ ´ëÇÑ ¼¼°èÀûÀÎ °ü½É Áõ°¡´Â ¼¼°è Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)´Â ȯ°æÄ£ÈÀûÀÎ ¿É¼ÇÀ¸·Î ȯ¿µ¹ÞÀ¸¸ç Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ °æ·® ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿Â÷ÀÇ È¿À²À» ³ôÀÌ°í ¿¡³ÊÁö ¼Òºñ¸¦ ¾ïÁ¦ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ Àç·á´Â »ý»ê ´Ü°è¿Í ¿î¿µ ´Ü°è ¸ðµÎ¿¡¼ ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ±â¿©ÇÕ´Ï´Ù. ȯ°æ ÀÇ½Ä ÀüȯÀº Çõ½ÅÀûÀÎ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ Ã˱¸ÇÏ°í ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
ÁöÁ¤ÇÐÀû ±äÀåÀÇ °íÁ¶°¡ ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ
ÁöÁ¤ÇÐÀû ±äÀå °íÁ¶´Â ¼¼°è Àü±âÀÚµ¿Â÷ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¹«¿ª Á¦ÇÑ, °ü¼¼ ¹× °ø±Þ¸ÁÀÇ È¥¶õÀº Àç·á ºñ¿ëÀ» Áõ°¡½ÃŰ°í ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹°ú Áß±¹ÀÇ ¹«¿ªÀüÀï¿¡¼´Â ¼öÀÔǰ¿¡ ´ëÇÑ °ü¼¼°¡ Àü±âÀÚµ¿Â÷ ºÎǰÀÇ ºñ¿ë »ó½ÂÀ¸·Î À̾îÁ³½À´Ï´Ù. ¸¶Âù°¡Áö·Î ±¹°¡ °£ÀÇ Á¤Ä¡Àû ±äÀåÀº ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ÀÇ »ý»ê¿¡ »ç¿ëµÇ´Â Áß¿äÇÑ ¿øÀç·á È帧À» ¹æÇØÇÏ°í °ø±Þ ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÁöÁ¤ÇÐÀû ºÒÈ®½Ç¼ºÀÌ ³ô¾ÆÁö¸é Àü±âÀÚµ¿Â÷ÀÇ ÀÎÇÁ¶ó¿Í ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ°¡ ¾ïÁ¦µÇ¾î ±â¼ú Áøº¸°¡ µÐ鵃 ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀÌ °ãÄ¡¸é ½ÃÀå °ü°èÀÚ¿¡°Ô °úÁ¦°¡ »ý°Ü »ý»ê ´É·Â°ú ¼öÀͼº¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, °á±¹ ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¸¦ ÀúÇØÇÏ°Ô µË´Ï´Ù.
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå
ºÎ¹®º° Ä¿¹ö¸®Áö
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå : ÇÃ¶ó½ºÆ½º°
ÇÃ¶ó½ºÆ½º°·Î´Â ¾ÆÅ©¸±·Î´ÏÆ®¸±¡¤ºÎŸµð¿£¡¤½ºÆ¼·»(ABS), Æú¸®¾Æ¹Ìµå(PA), Æú¸®Ä«º¸³×ÀÌÆ®(PC), Æú¸®ºñ´ÒºÎƼ¶ö, Æú¸®¿ì·¹Åº(PU), ±âŸ(Æú¸®ÇÁ·ÎÇÊ·», Æú¸®¿°Èºñ´Ò, Æú¸®¸ÞÆ¿¸ÞŸũ¸±·¹ÀÌÆ®, °í¹Ðµµ Æú¸®¿¡Æ¿·», Àú¹Ðµµ Æú¸®¿¡Æ¿·», Æú¸® ºÎÆ¿ ·» Å×·¹ÇÁÅ»·¹ÀÌÆ®)·Î ºÐ·ùµË´Ï´Ù. Æú¸®¾Æ¹Ìµå(PA) ºÎ¹®Àº ¼¼°è Àü±âÀÚµ¿Â÷ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀ» ¼±µµÇÏ´Â ÇÃ¶ó½ºÆ½ÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ³ªÀÏ·ÐÀ¸·Î ¾Ë·ÁÁø Æú¸®¾Æ¹Ìµå´Â ³ôÀº °µµ, ³»±¸¼º ¹× ³»¿¼ºÀ¸·Î Æò°¡µÇ´Â ´Ù¸ñÀû ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½À¸·Î ´Ù¾çÇÑ ÀÚµ¿Â÷ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¹èÅ͸® ÄÉÀ̽Ì, Ä¿³ØÅÍ ¹× ±¸Á¶ ºÎǰ°ú °°Àº EV ºÎǰ¿¡ ³Î¸® »ç¿ëµÇ´Â °ÍÀº ½ÃÀå ¼¼ºÐÈ¿¡¼ Æú¸®¾Æ¹ÌµåÀÇ ÀÌÁ¡¿¡ Å©°Ô ±â¿©ÇÕ´Ï´Ù. Æú¸®¾Æ¹Ìµå´Â ¿ì¼öÇÑ Æ¯¼º°ú ±¤¹üÀ§ÇÑ Àû¿ë ¹üÀ§¸¦ ÅëÇØ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼ ¶Ù¾î³ ¿É¼ÇÀ¸·Î ¶°¿À¸£°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿Â÷ »ê¾÷ÀÌ Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ´Â °ÍÀ» ¹Ý¿µÇÕ´Ï´Ù.
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå : ºÎǰº°
ºÎǰº°·Î º¼ ¶§ ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº ´ë½Ãº¸µå, ½ÃÆ®, Æ®¸², ¹üÆÛ, ¹Ùµð, Â÷·® À¯Çü, ¿£Áø, Á¶¸í ¹× ¹è¼±ÀÇ °¢ ºÎ¹®À¸·Î ³ª´¹´Ï´Ù. ¹Ùµð ºÎ¹®Àº ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼ °¡Àå Å« ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ ºÎ¹®¿¡´Â Â÷·® ±¸Á¶ ÇÁ·¹ÀÓ¿öÅ©, ¿ÜÀå ÆÐ³Î ¹× ±âŸ Â÷·®ÀÇ Àü¹ÝÀûÀÎ µðÀÚÀΰú ±â´É¿¡ ±â¿©ÇÏ´Â Áß¿äÇÑ ¿ä¼Ò¸¦ Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ ±¸¼º ¿ä¼Ò°¡ Æ÷ÇԵ˴ϴÙ. Àü±âÂ÷°¡ °è¼Ó º¸±ÞµÇ°í Á¦Á¶¾÷ü°¡ È¿À²¼º Çâ»óÀ» À§ÇØ °æ·®Àç·á¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ Â÷ü °ü·Ã ¿ëµµÀÇ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ¼ö¿ä´Â °è¼Ó Ä¿¼ ½ÃÀåÀÇ Áß¿äÇÑ ºÎºÐÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°æÀï ±¸µµ
¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀº °æÀïÀÌ ½ÉÇÕ´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº Covestro AG, Celanese Corporation, DuPont de Nemours, Inc., Evonik Industries AG, LANXESS Deutschland GmbH, Mitsubishi Engineering-Plastics Corporation, BASF SE, LyondellBasell Industries Holdings B.V., Sabic, Dow, Sumitomo Chemicals Co. Ltd, Asahi Kasei ÁÖ½Äȸ»ç µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº ¿¬±¸°³¹ß Ȱµ¿ ÅõÀÚ È®´ë, ÇÕº´ ¹× Àμö, ÇÕÀÛ ÅõÀÚ, Á¦ÈÞ, ¶óÀ̼±½Ì °è¾à, ½ÅÁ¦Ç° ¹× ¼ºñ½º Ãâ½Ã µî ´Ù¾çÇÑ Àü·«À» Ȱ¿ëÇÏ¿© ¼¼°è Àü±âÀÚµ¿Â÷ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ÁöÀ§¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼ÀÇ »ó¼¼ÇÑ ºÐ¼®À» ÅëÇØ ¼¼°è Àü±âÀÚµ¿Â÷ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀå °¡´É¼º, ¹Ì·¡ µ¿Çâ ¹× Åë°è¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ½ÃÀå ±Ô¸ð ¿¹ÃøÀ» ÃËÁøÇÏ´Â ¿äÀεµ ´Ù·ç°í ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼´Â ¼¼°è Àü±âÀÚµ¿Â÷ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ Ãֽбâ¼ú µ¿Çâ ¹× ÀÇ»ç °áÁ¤ÀÚ°¡ Àü·«Àû ÀÇ»ç °áÁ¤À» ¼öÇàÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â »ê¾÷ ÀλçÀÌÆ®¸¦ Á¦°øÇÒ °ÍÀ» ¾à¼ÓÇÕ´Ï´Ù. ¶ÇÇÑ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎ, °úÁ¦ ¹× °æÀï·Â¿¡ ´ëÇØ¼µµ ºÐ¼®Çß½À´Ï´Ù.
Global Electric Vehicle Engineering Plastics Market Size Zooming More Than 4.6X to Surpass USD 68.2 Billion & 5.1 Million Tons by 2030
Global Electric Vehicle Engineering Plastics Market is expanding rapidly due to an increasing demand for lightweight materials, regulatory pressure for emissions reduction, advancements in EV technology, and growing environmental awareness among stakeholders.
BlueWeave Consulting, a leading strategic consulting and market research firm, in its recent study, estimated the Global Electric Vehicle Engineering Plastics Market size by value at USD 14.62 billion in 2023. During the forecast period between 2024 and 2030, BlueWeave expects the Global Electric Vehicle Engineering Plastics Market size to boom at a robust CAGR of 23.76% reaching a value of USD 68.21 billion by 2030. The Global Electric Vehicle Engineering Plastics Market is driven by various factors. Consumer demand for lighter BEVs (battery electric vehicles)/PHEV (plug in hybrid electric vehicles) and HEVs (hybrid electric vehicles), coupled with the need for enhanced plastic performance in challenging environments, is increasing the demand for plastics in the sector. Growing environmental concerns and strict emission regulations promoting electrification and weight reduction are also significant drivers for the market.
By volume, BlueWeave estimated the Global Electric Vehicle Engineering Plastics Market size at 3.2 million tons in 2023. During the forecast period between 2024 and 2030, BlueWeave expects the Global Electric Vehicle Engineering Plastics Market size to expand at a CAGR of 24.88% reaching the volume of 5.1 million tons by 2030. The greater use of anti-microbial polymers in EVs contributes to market growth. Major countries like United States, United Kingdom, India, Japan, China, Germany, and Canada show the most potential for industry expansion. Plastics offer advantages, such as customizability, formability, affordability, and performance, making them suitable for EV applications. They also contribute to weight reduction, part consolidation, and noise and vibration dampening, further driving their demand for EVs.
Opportunity - High focus on reducing carbon footprints through engineering plastics
The escalating global concern over carbon footprints drives the Global Electric Vehicle Engineering Plastics Market. Electric vehicles (EVs) are hailed as environmentally friendly alternatives, necessitating the adoption of lightweight engineering plastics to meet sustainability targets. By enhancing vehicle efficiency and curbing energy consumption, these materials contribute to reduced carbon emissions both in production and operation phases. The eco-conscious transition fosters a heightened demand for innovative engineering plastics, fueling the expansion of the Global Electric Vehicle Engineering Plastics Market.
Impact of Escalating Geopolitical Tensions on Global Electric Vehicle Engineering Plastics Market
Escalating geopolitical tensions can significantly impact the Global Electric Vehicle Engineering Plastics Market. Trade restrictions, tariffs, and disruptions in the supply chain can raise material costs and hinder market growth. For instance, during the US-China trade war, tariffs on imported goods led to increased costs for electric vehicle components. Similarly, political tensions between countries can disrupt the flow of critical raw materials used in engineering plastics production, affecting supply stability. Additionally, heightened geopolitical uncertainties may discourage investment in electric vehicle infrastructure and research, slowing down technological advancements. These factors collectively can create challenges for market players, affecting their production capabilities and profitability, and ultimately impeding the growth trajectory of the global electric vehicle engineering plastics market.
Global Electric Vehicle Engineering Plastics Market
Segmental Coverage
Global Electric Vehicle Engineering Plastics Market - By Plastic
Based on plastic, Global Electric Vehicle Engineering Plastics Market is divided into Acrylonitrile Butadiene Styrene (ABS), Polyamide (PA), Polycarbonate (PC), Polyvinyl Butyral, Polyurethane (PU), and Other (Polypropylene, Polyvinyl Chloride, Polymethylmethacrylate, High-Density Polyethylene, Low-Density Polyethylene, and Polybutylene Terephthalate) segments. The polyamide (PA) segment is the leading plastic in the Global Electric Vehicle Engineering Plastics Market. Polyamide, commonly known as nylon, is a versatile engineering plastic valued for its high strength, durability, and thermal resistance, making it ideal for various automotive applications. Its widespread usage in EV components, such as battery casings, connectors, and structural parts contributes significantly to its dominance in the market segment. With its favorable properties and extensive application scope, polyamide emerges as a prominent choice in the electric vehicle engineering plastics market, reflecting its pivotal role in advancing the automotive industry's transition towards sustainable mobility solutions.
Global Electric Vehicle Engineering Plastics Market - By Component
Based on component, Global Electric Vehicle Engineering Plastics Market is divided into Dashboard, Seat, Trim, Bumper, Body, Vehicle Type, Engine, Lighting, and Wiring segments. The body segment is the largest component in the Global Electric Vehicle Engineering Plastics Market. The segment encompasses a wide range of components, including the vehicle's structural framework, exterior panels, and other crucial elements that contribute to the overall design and functionality of the vehicle. As electric vehicles continue to gain popularity and manufacturers prioritize lightweight materials for improved efficiency, the demand for engineering plastics in body-related applications is expected to remain substantial, making it a significant portion of the market.
Competitive Landscape
Global Electric Vehicle Engineering Plastics Market is fiercely competitive. Major companies in the market include Covestro AG, Celanese Corporation, DuPont de Nemours, Inc., Evonik Industries AG, LANXESS Deutschland GmbH, Mitsubishi Engineering-Plastics Corporation, BASF SE, LyondellBasell Industries Holdings B.V., Sabic, Dow, Sumitomo Chemicals Co. Ltd, and Asahi Kasei. These companies use various strategies, including increasing investments in their R&D activities, mergers, and acquisitions, joint ventures, collaborations, licensing agreements, and new product and service releases to further strengthen their position in the Global Electric Vehicle Engineering Plastics Market.
The in-depth analysis of the report provides information about growth potential, upcoming trends, and statistics of Global Electric Vehicle Engineering Plastics Market. It also highlights the factors driving forecasts of total Market size. The report promises to provide recent technology trends in Global Electric Vehicle Engineering Plastics Market and industry insights to help decision-makers make sound strategic decisions. Further, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.