½ÃÀ庸°í¼­
»óǰÄÚµå
1269614

¼¼°èÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°, Àü°³º°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(2022-2029³â)

Global Predictive Disease Analytics Market Size study & Forecast, by Component by Deployment, by End User and Regional Analysis, 2022-2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀåÀº 2021³â¿¡ ¾à 16¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ°í, ¿¹Ãø±â°£ 2022-2029³â¿¡´Â 22.70% ÀÌ»óÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ºÐ¼®Àº µ¥ÀÌÅÍ ¸¶ÀÌ´×, Åë°è, ¸ðµ¨¸µ, ÀΰøÁö´É, ¸Ó½Å ·¯´× µî Ãֽе¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÇâÈÄ ¿¹ÃøÀ» ¼öÇàÇÏ´Â ´Ù¾çÇÑ ±â¼úÀ» »ç¿ëÇÕ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¿¹Ãø ºÐ¼®ÀÇ È°¿ëÀ¸·Î ¿©·¯ ¿µ¿ª¿¡¼­ °³¼±ÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â º´¿ø °ü¸®, °ø±Þ¸Á ´Ü¼øÈ­, ¸¸¼º Áúȯ Ä¡·á µîÀÌ Æ÷ÇԵ˴ϴÙ. Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀåÀº ¸ÂÃãÇü ÀÇ·áÀÇ »ó½Â°ú ÇコÄÉ¾î »ê¾÷¿¡¼­ÀÇ µðÁöÅÐ ±â¼ú äÅÃÀÇ Áõ°¡¿Í °°Àº ¿äÀÎÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ºÐ¼® µµ±¸´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºêÀÇ Áõ°¡¿Í ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ÀçÁ¤ ÅõÀÚÀÇ Áõ°¡°¡ Áߺ¹µÇ¾î ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ´õ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2023³â 2¿ù À¯·´À§¿øÈ¸´Â ½Å±Ô¾Ï Ä¡·áÁ¦ÀÇ ÀÓ»ó µ¥ÀÌÅ͸¦ ¼öÁý¡¤Æò°¡Çϱâ À§ÇÑ AI ±â¹Ý Ç÷§ÆûÀ» ±¸ÃàÇÏ°í ±ÔÁ¦ ´ç±¹°ú HTA ±â°üÀÇ Æò°¡¸¦ Áö¿øÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ »õ·Î¿î ÇÁ·ÎÁ§Æ®¿¡ 720¸¸ ´Þ·¯¸¦ ÇÒ´çÇß½À´Ï´Ù. ÀÌ¿Í ¸¶Âù°¡Áö·Î ¹Ì±¹ Á¤ºÎ´Â ÀÓ»ó µ¥ÀÌÅÍ, Áö¿ª °Ç°­ ½ÇÀû, ÀÇÇÐÀû ¹× °úÇÐÀû Áö½Ä°ú °°Àº ÁÖÁ¦¿¡ ´ëÇÑ ¸¹Àº ¿¬¹æ Á¤ºÎ µ¥ÀÌÅͺ£À̽º¿¡¼­ µ¥ÀÌÅ͸¦ °áÇÕÇÑ HealthData.gov Æ÷ÅÐ µîÀÌ ºÐ¾ß¿¡¼­ ¸¹Àº ³ë·ÂÀ» ½ÃÀÛÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ¾öû³­ ÅõÀÚ·Î ÇコÄÉ¾î ºÐ¾ß°¡ ºü¸£°Ô µðÁöÅÐÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼® µµ±¸´Â ȯÀÚÀÇ Ã¼·ù¸¦ °ü¸®Çϱâ À§ÇØ Àü¼¼°èÀûÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄÉ¾î ºÐ¼®À» »ç¿ëÇϸé Á÷¿øÀÇ »ý»ê¼ºÀ» ³ôÀ̰í ȯÀÚ °ü¸®¸¦ °­È­ÇÏ¸ç °£º´ÀÎÀÇ ½ºÆ®·¹½º¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸ ¹× Äɾ Çõ½ÅÀ» °¡Á®¿À±â À§ÇØ µ¥ÀÌÅÍ ºê¸¯½º´Â 2022³â 3¿ù ÀÇ·á ¹× »ý¸í°úÇÐ ¾÷°è¸¦ À§ÇÑ ÆÐ·¯´ÙÀÓ '·¹ÀÌÅ©ÇϿ콺'¸¦ °³¹ßÇß½À´Ï´Ù. Áúº´ ¿¹Ãø, ÀÇ·á ¿µ»ó ºÐ·ù, ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°À» À§ÇÑ ºÐ¼®, µ¥ÀÌÅÍ °ü¸®, ÃÖ÷´Ü AI¸¦ ¸ðµÎ ÇϳªÀÇ Ç÷§Æû¿¡¼­ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ ÀÇ·á ºÐ¾ß¿¡¼­ÀÇ Á¦Ç° °³¹ß Ȱµ¿°ú Á¤ºÎ·ÎºÎÅÍÀÇ ÀÚ±Ý Á¦°øÀÇ Áõ°¡°¡ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Áúº´ ¿¹Ãø ºÐ¼®ÀÇ ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ 2022³âºÎÅÍ 2029³â±îÁöÀÇ ¿¹Ãø±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.

Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, Áß³²¹Ì ¹× ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â ÇコÄÉ¾î »ê¾÷¿¡¼­ÀÇ µðÁöÅÐ ±â¼ú µµÀÔÀÇ Áõ°¡, ¸ÂÃãÇü ÀÇ·áÀÇ ¿¬±¸°³¹ßÀÇ Áõ°¡, »ê¾÷¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀÇ Áõ°¡¿¡ ÀÇÇØ ¼öÀ͸鿡¼­ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤ºÎ Áö¿ø ¹× ÀÌ´Ï¼ÅÆ¼ºê Áõ°¡, ¸¸¼º Áúȯ Áõ°¡, Á¦Ç° °³Ã´À» À§ÇÑ Á¦ÈÞ Áõ°¡, ÁÖ¿ä ÁøÀÔ ±â¾÷ÀÇ Áö¿ª È®´ë, Á¤ºÎ ±â°ü ¹× ºñ¿µ¸® ´Üü ½ÃÀå ÁøÀÔ µîÀÇ ¿äÀÎÀ¸·ÎºÎÅÍ ¿¹Ãø±â°£ µ¿¾È ÃÖ°íÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³â µ¿¾È ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ÀÇ ½ÃÀå ±Ô¸ð¸¦ ÆÄ¾ÇÇÏ°í ¾ÕÀ¸·Î ¼ö³â°£ÀÇ ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ »ê¾÷ÀÇ ÁúÀû ¹× ¾çÀû Ãø¸éÀ» Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦ µî Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °æÀï »óȲ°ú ÁÖ¿ä ±â¾÷ÀÌ Á¦°øÇÏ´Â ÄÄÆ÷³ÍÆ®¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀûÀÎ ±âȸµµ Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå ÇöȲ
  • ¼¼°è¡¤ºÎ¹®º° ½ÃÀå ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
    • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, Áö¿ªº°, 2019-2029³â
    • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, ÄÄÆ÷³ÍÆ®º°, 2019-2029³â
    • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, Àü°³º°, 2019-2029³â
    • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, ÃÖÁ¾»ç¿ëÀÚº°, 2019-2029³â
  • ÁÖ¿ä µ¿Çâ
  • Á¶»ç ¹æ¹ý
  • Á¶»çÀÇ °¡Á¤

Á¦2Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • Á¶»ç ´ë»ó ¹üÀ§
    • »ê¾÷ÀÇ ÁøÈ­
  • º» Á¶»çÀÇ ´ë»óÀÌ µÈ ÇØ
  • ȯÀ² º¯È¯À²

Á¦3Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå ¿ªÇÐ

  • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀåÀÇ ¿µÇ⠺м®(2019-2029³â)
    • ½ÃÀå ÃËÁø¿äÀÎ
      • ¸ÂÃãÇü ÀÇ·áÀÇ ´ëµÎ
      • ÇコÄÉ¾î ¾÷°è¿¡¼­ÀÇ µðÁöÅÐ ±â¼ú µµÀÔÀÇ Áõ°¡
    • ½ÃÀåÀÇ °úÁ¦
      • Áúº´ ¿¹Ãø ºÐ¼®ÀÇ ³ôÀº ºñ¿ë
    • ½ÃÀå ±âȸ
      • ÇコÄÉ¾î »ê¾÷¿¡ À־ÀÇ Á¤ºÎ ÀÚ±ÝÀÇ Áõ°¡
      • ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸

Á¦4Àå ¼¼°èÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's 5 Force ¸ðµ¨
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷ °£ÀÇ Àû´ë °ü°è
  • Porter's 5 Force ¸ðµ¨¿¡ ´ëÇÑ ¹Ì·¡Àû Á¢±Ù(2019-2029³â)
  • PEST ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦Àû
    • »çȸÀû
    • ±â¼úÀû
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • ¾÷°è °ü°èÀÚ Àü¸Á
  • ¾Ö³Î¸®½ºÆ®ÀÇ ±Ç°í¿Í °á·Ð

Á¦5Àå À§Çè Æò°¡: COVID-19ÀÇ ¿µÇâ

  • COVID-19°¡ ¾÷°è¿¡ ¹ÌÄ¡´Â ÀüüÀûÀÎ ¿µÇâ¿¡ ´ëÇÑ Æò°¡
  • COVID-19 ÀÌÀü°ú COVID-19 ÀÌÈÄÀÇ ½ÃÀå ½Ã³ª¸®¿À

Á¦6Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ½ÃÀå ÇöȲ
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå ÄÄÆ÷³ÍÆ®º° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¼ÒÇÁÆ®¿þ¾î & ¼­ºñ½º
    • Çϵå¿þ¾î

Á¦7Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå, Àü°³º°

  • ½ÃÀå ÇöȲ
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : Àü°³º°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå Àü°³º° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¿ÂÇÁ·¹¹Ì½º
    • Ŭ¶ó¿ìµå ±â¹Ý

Á¦8Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ½ÃÀå ÇöȲ
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
  • Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå ÃÖÁ¾»ç¿ëÀÚº° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ÇコÄÉ¾î ÆäÀ̾î
    • ÇコÄɾî ÇÁ·Î¹ÙÀÌ´õ
    • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀå : Áö¿ªº° ºÐ¼®

  • Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå, Áö¿ªº° ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • ÄÄÆ÷³ÍÆ®º° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
      • Àü°³º° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
      • ÃÖÁ¾»ç¿ëÀÚº° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
    • ij³ª´Ù
  • À¯·´ÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå ÇöȲ
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå ÇöȲ
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå ÇöȲ
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • ¼¼°èÀÇ ±âŸ Áö¿ª

Á¦10Àå °æÀï Á¤º¸

  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Oracle Corporation
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫(µ¥ÀÌÅÍÀÇ ÀÔ¼ö°¡ °¡´ÉÇÑ °æ¿ì¸¸)
      • Á¦Ç° °³¿ä
      • ÃÖ±Ù µ¿Çâ
    • International Business Machines(IBM) Corporation
    • SAS Software
    • Allscripts Healthcare Solutions Inc.
    • MedeAnalytics, Inc.
    • Health Catalyst.
    • Apixio Inc.
    • Microsoft Corporation
    • UnitedHealth Group Incorporated(Optum Inc.),
    • Cerner Corporation

Á¦11Àå Á¶»ç ÇÁ·Î¼¼½º

  • Á¶»ç ÇÁ·Î¼¼½º
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»çÀÇ Æ¯Â¡
  • Á¶»çÀÇ °¡Á¤
ksm 23.05.25

Global Predictive Disease Analytics Market is valued approximately USD 1.63 billion in 2021 and is anticipated to grow with a healthy growth rate of more than 22.70% over the forecast period 2022-2029. Predictive analytics uses a variety of techniques to analyze the most recent data and make future predictions, including data mining, statistics, modelling, artificial intelligence, and machine learning. The healthcare sector has made improvements in several areas by using predictive analytics. These include administering a hospital, simplifying the supply chain, and treating chronic diseases. The Predictive Disease Analytics market is expanding because of factors such as rising emergence of personalized medicine, rising adoption of digital technologies in healthcare industry.

Predictive analytical tools are being more widely used in the healthcare sector due to a combination of rising government initiatives and rising financial investments in the area. For instance, in February 2023, the European Commission allocated USD 7.2 million for a new project that aims to create an AI-based platform for gathering and evaluating clinical data on novel oncology drugs to help regulators' and HTA agencies' evaluations of those drugs. Similar to this, the American government has launched a number of initiatives in this area, such as the HealthData.gov portal, which compiles data from a number of federal databases on subjects like clinical data, community health performance, and medical and scientific knowledge. In addition, the healthcare sector is rapidly becoming digitalized due to the quick development of technology and significant investment made by the sector. These analytical tools are being used all around the world to control patients' retention. The use of healthcare analytics also boosts employee productivity, enhances patient care, and lessens the stress on carers. To bring innovation in research and care, Databricks developed the Lakehouse paradigm for the healthcare and life science industries in March 2022. Analytics, data management, and cutting-edge AI for disease prediction, medical picture classification, and biomarker identification can all be done on one platform. Thus rising product development activities and government funding in healthcare sector is catering the market growth. However, the high cost of Predictive Disease Analytics stifles market growth throughout the forecast period of 2022-2029.

The key regions considered for the Global Predictive Disease Analytics Market study includes Asia Pacific, North America, Europe, Latin America, and Rest of the World. North America dominated the market in terms of revenue, owing to rising adoption of digital technologies in healthcare industry, rising research and development of personalized medicine and rising government support to the industry. Whereas Asia Pacific is expected to grow with a highest CAGR during the forecast period, owing to factors such as increasing government support and initiative, growing chronic disease in the region an increase in the number of collaborations for product development, geographic expansion of key players, and active participation of government and nonprofit organizations in the market space.

Major market player included in this report are:

  • Oracle Corporation
  • International Business Machines (IBM) Corporation
  • SAS Software
  • Allscripts Healthcare Solutions Inc.
  • MedeAnalytics, Inc.
  • Health Catalyst.
  • Apixio Inc.
  • Microsoft Corporation
  • UnitedHealth Group Incorporated (Optum Inc.),
  • Cerner Corporation

Recent Developments in the Market:

  • In September 2020, Microsoft, a U.S.-based company, unveiled Microsoft Cloud for Healthcare, a partnership between patients and providers that will aid in providing improved patient care insights.
  • In January 2023, SwitchPoint Ventures and Ardent Health Service partnered to launch an innovation lab. The studio will focus on developing and putting into practise data-driven solutions. Ardent has also implemented Polaris, a game-changing technology from SwitchPoint that accurately forecasts patient volume in any clinical setting.

Global Predictive Disease Analytics Market Report Scope:

  • Historical Data 2019-2020-2021
  • Base Year for Estimation 2021
  • Forecast period 2022-2029
  • Report Coverage Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered Component, Deployment, End User, Region
  • Regional Scope North America; Europe; Asia Pacific; Latin America; Rest of the World
  • Customization Scope Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and component offerings of key players. The detailed segments and sub-segment of the market are explained below.

By Component:

  • Software & Services
  • Hardware

By Deployment:

  • On-premises
  • Cloud based

By End User:

  • Healthcare Payers
  • Healthcare Providers
  • Other End Users

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • RoLA
  • Rest of the World

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2019-2029 (USD Billion)
    • 1.2.1. Predictive Disease Analytics Market, by Region, 2019-2029 (USD Billion)
    • 1.2.2. Predictive Disease Analytics Market, by Component, 2019-2029 (USD Billion)
    • 1.2.3. Predictive Disease Analytics Market, by Deployment, 2019-2029 (USD Billion)
    • 1.2.4. Predictive Disease Analytics Market, by End User, 2019-2029 (USD Billion)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Predictive Disease Analytics Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Scope of the Study
    • 2.2.2. Industry Evolution
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Predictive Disease Analytics Market Dynamics

  • 3.1. Predictive Disease Analytics Market Impact Analysis (2019-2029)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Rising emergence of personalized medicine
      • 3.1.1.2. Rising adoption of digital technologies in healthcare industry
    • 3.1.2. Market Challenges
      • 3.1.2.1. High Cost of Predictive Disease Analytics
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Increase in government funding in healthcare industry.
      • 3.1.3.2. The rapid advancement in technology

Chapter 4. Global Predictive Disease Analytics Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Futuristic Approach to Porter's 5 Force Model (2019-2029)
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
  • 4.4. Top investment opportunity
  • 4.5. Top winning strategies
  • 4.6. Industry Experts Prospective
  • 4.7. Analyst Recommendation & Conclusion

Chapter 5. Risk Assessment: COVID-19 Impact

  • 5.1. Assessment of the overall impact of COVID-19 on the industry
  • 5.2. Pre COVID-19 and post COVID-19 Market scenario

Chapter 6. Global Predictive Disease Analytics Market, by Component

  • 6.1. Market Snapshot
  • 6.2. Global Predictive Disease Analytics Market by Component, Performance - Potential Analysis
  • 6.3. Global Predictive Disease Analytics Market Estimates & Forecasts by Component 2019-2029 (USD Billion)
  • 6.4. Predictive Disease Analytics Market, Sub Segment Analysis
    • 6.4.1. Software & Services
    • 6.4.2. Hardware

Chapter 7. Global Predictive Disease Analytics Market, by Deployment

  • 7.1. Market Snapshot
  • 7.2. Global Predictive Disease Analytics Market by Deployment, Performance - Potential Analysis
  • 7.3. Global Predictive Disease Analytics Market Estimates & Forecasts by Deployment 2019-2029 (USD Billion)
  • 7.4. Predictive Disease Analytics Market, Sub Segment Analysis
    • 7.4.1. On-premises
    • 7.4.2. Cloud based

Chapter 8. Global Predictive Disease Analytics Market, by End User

  • 8.1. Market Snapshot
  • 8.2. Global Predictive Disease Analytics Market by End User, Performance - Potential Analysis
  • 8.3. Global Predictive Disease Analytics Market Estimates & Forecasts by End User 2019-2029 (USD Billion)
  • 8.4. Predictive Disease Analytics Market, Sub Segment Analysis
    • 8.4.1. Healthcare Payers
    • 8.4.2. Healthcare Providers
    • 8.4.3. Other End Users

Chapter 9. Global Predictive Disease Analytics Market, Regional Analysis

  • 9.1. Predictive Disease Analytics Market, Regional Market Snapshot
  • 9.2. North America Predictive Disease Analytics Market
    • 9.2.1. U.S. Predictive Disease Analytics Market
      • 9.2.1.1. Component breakdown estimates & forecasts, 2019-2029
      • 9.2.1.2. Deployment breakdown estimates & forecasts, 2019-2029
      • 9.2.1.3. End User breakdown estimates & forecasts, 2019-2029
    • 9.2.2. Canada Predictive Disease Analytics Market
  • 9.3. Europe Predictive Disease Analytics Market Snapshot
    • 9.3.1. U.K. Predictive Disease Analytics Market
    • 9.3.2. Germany Predictive Disease Analytics Market
    • 9.3.3. France Predictive Disease Analytics Market
    • 9.3.4. Spain Predictive Disease Analytics Market
    • 9.3.5. Italy Predictive Disease Analytics Market
    • 9.3.6. Rest of Europe Predictive Disease Analytics Market
  • 9.4. Asia-Pacific Predictive Disease Analytics Market Snapshot
    • 9.4.1. China Predictive Disease Analytics Market
    • 9.4.2. India Predictive Disease Analytics Market
    • 9.4.3. Japan Predictive Disease Analytics Market
    • 9.4.4. Australia Predictive Disease Analytics Market
    • 9.4.5. South Korea Predictive Disease Analytics Market
    • 9.4.6. Rest of Asia Pacific Predictive Disease Analytics Market
  • 9.5. Latin America Predictive Disease Analytics Market Snapshot
    • 9.5.1. Brazil Predictive Disease Analytics Market
    • 9.5.2. Mexico Predictive Disease Analytics Market
    • 9.5.3. Rest of Latin America Predictive Disease Analytics Market
  • 9.6. Rest of The World Predictive Disease Analytics Market

Chapter 10. Competitive Intelligence

  • 10.1. Top Market Strategies
  • 10.2. Company Profiles
    • 10.2.1. Oracle Corporation
      • 10.2.1.1. Key Information
      • 10.2.1.2. Overview
      • 10.2.1.3. Financial (Subject to Data Availability)
      • 10.2.1.4. Product Summary
      • 10.2.1.5. Recent Developments
    • 10.2.2. International Business Machines (IBM) Corporation
    • 10.2.3. SAS Software
    • 10.2.4. Allscripts Healthcare Solutions Inc.
    • 10.2.5. MedeAnalytics, Inc.
    • 10.2.6. Health Catalyst.
    • 10.2.7. Apixio Inc.
    • 10.2.8. Microsoft Corporation
    • 10.2.9. UnitedHealth Group Incorporated (Optum Inc.),
    • 10.2.10. Cerner Corporation

Chapter 11. Research Process

  • 11.1. Research Process
    • 11.1.1. Data Mining
    • 11.1.2. Analysis
    • 11.1.3. Market Estimation
    • 11.1.4. Validation
    • 11.1.5. Publishing
  • 11.2. Research Attributes
  • 11.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦