시장보고서
상품코드
1765475

세계의 합성생물학(신바이오) 시장(2026-2036년)

The Global Synthetic Biology (SynBio) Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 480 Pages, 133 Tables, 70 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 합성생물학 시장은 의료, 농업, 제조, 환경 문제를 해결하는 방식을 근본적으로 바꾸고 있는 현대 생명공학에서 가장 혁신적이고 빠르게 성장하고 있는 분야 중 하나입니다. 2024년 시장 규모는 약 160억-180억 달러로 유전공학, 컴퓨터 설계, 자동화된 생물학적 시스템의 발전으로 폭발적인 성장이 예상됩니다.

합성생물학 시장은 CAGR 20.6-28.63%의 강력한 성장세를 보이고 있으며, 여러 요인의 수렴에 의해 촉진되고 있습니다. DNA 시퀀싱 및 DNA 합성 비용이 급격히 감소하고, 유전공학 도구에 대한 접근성이 민주화되었으며, AI 및 기계학습 알고리즘이 생물학적 시스템 설계를 가속화하고 있습니다. 바이오 기반 제품에 대한 수요 증가, 맞춤형 치료에 대한 수요 증가, DNA 시퀀싱 및 DNA 합성 기술의 발전은 시장 성장의 주요 촉진요인입니다.

제약 및 의료 부문이 시장 상황에서 우위를 점하고 있습니다. 이러한 우위는 합성생물학이 신약개발, 맞춤의료, 치료법 개발에 미치는 영향에 기인합니다. 이 기술은 기존에 치료할 수 없었던 질병을 치료할 수 있는 새로운 생물학적 제제, 합성 백신, 인공 세포 치료제의 창출을 가능하게 합니다.

합성생물학 시장은 괄목할 만한 성장세를 보이고 있지만, 여러 가지 도전에 직면해 있습니다. 규제 불확실성이 여전히 큰 장벽으로 작용하고 있으며, 기존 프레임워크가 급속한 기술 발전을 따라잡지 못하고 있습니다. 유전공학의 적용을 둘러싼 사회적 수용과 윤리적 문제는 지속적인 관심과 이익과 위험에 대한 투명한 커뮤니케이션이 필요합니다. 기술적 과제로는 실험실에서의 기술 혁신을 산업 생산으로 확장하는 것, 조작된 생물학적 시스템의 신뢰성과 예측 가능성을 보장하는 것, 표준화된 도구와 방법론을 개발하는 것 등을 들 수 있습니다. 생물학적 시스템의 복잡성은 지속적인 연구개발 투자를 필요로 하는 엔지니어링 과제를 지속적으로 제시하고 있습니다.

합성생물학 시장은 프로그래밍 가능한 생물학으로 패러다임의 전환을 보여주고 있으며, 인공생물학 시스템은 의료, 식량 안보, 기후변화, 지속가능한 제조와 같은 세계 과제를 해결할 수 있습니다. 기술이 성숙하고 비용이 지속적으로 감소함에 따라 합성생물학은 21세기 바이오경제의 초석이 되어 인류의 시급한 과제를 해결하는 동시에 혁신과 경제성장을 위한 전례 없는 기회를 창출할 것으로 보입니다.

세계의 합성생물학(신바이오) 시장을 조사 분석했으며, 제약, 농업, 산업 생명공학, 환경 솔루션 등 주요 응용 분야의 시장 역학, 기술 혁신, 경쟁 포지셔닝, 성장 기회 등의 정보를 전해드립니다.

목차

제1장 주요 요약

  • 세계의 합성생물학 시장 개요
  • 합성생물학과 유전자 공학의 차이
  • 시장 규모와 성장 예측
  • 주요 동향과 촉진요인
  • 합성생물학에 대한 투자
  • 테크놀러지 로드맵
  • 산업용 바이오테크놀러지 밸류체인

제2장 소개

  • 합성생물학이란?
  • 기존 프로세스와의 비교
  • 용도
  • 이점
  • 지속가능성
  • 순환경제를 향한 합성생물학

제3장 기술 분석

  • 바이오제조 프로세스
  • 바이오제조를 위한 셀 팩토리
  • 기술 개요

제4장 시장 분석

  • 시장 동향과 성장 촉진요인
  • 산업 과제와 억제요인
  • 바이오경제의 합성생물학
  • SWOT 분석
  • 합성생물학 시장
    • 바이오연료
    • 바이오 기반 화학제품
    • 바이오플라스틱, 바이오폴리머
    • 생물정화
    • 생체 촉매
    • 식품, 뉴트라슈티컬 성분
    • 지속가능한 농업
    • 텍스타일
    • 포장
    • 의료, 의약품
    • 화장품
    • 계면활성제, 세제
    • 건축자재
  • 세계 시장 매출(2018-2036년)
    • 기술별
    • 제품 유형별
    • 시장별
    • 지역별
  • 향후 시장 전망

제5장 기업 개요(기업 321개사 프로파일)

제6장 부록

제7장 참고문헌

ksm 25.07.16

The global synthetic biology market represents one of the most transformative and rapidly expanding sectors in modern biotechnology, fundamentally reshaping how we approach medicine, agriculture, manufacturing, and environmental challenges. Valued at approximately $16-18 billion in 2024, the market is projected to experience explosive growth, driven by advances in genetic engineering, computational design, and automated biological systems.

The synthetic biology market is experiencing robust growth at a compound annual growth rate (CAGR) of 20.6-28.63%, fueled by several converging factors. The dramatic reduction in DNA sequencing and synthesis costs has democratized access to genetic engineering tools, while artificial intelligence and machine learning algorithms have accelerated the design of biological systems. Rising demand for bio-based products, growing demand for personalized therapies, and advancements in DNA sequencing and synthesis technologies are key factors accelerating market growth.

The pharmaceutical and healthcare sector dominates the market landscape. This dominance stems from synthetic biology's impact on drug discovery, personalized medicine, and therapeutic development. The technology enables the creation of novel biologics, synthetic vaccines, and engineered cell therapies that address previously untreatable conditions.

Despite remarkable growth prospects, the synthetic biology market faces several challenges. Regulatory uncertainty remains a significant barrier, as existing frameworks struggle to keep pace with rapid technological advancement. Public acceptance and ethical concerns surrounding genetic engineering applications require ongoing attention and transparent communication about benefits and risks. Technical challenges include scaling laboratory innovations to industrial production, ensuring reliability and predictability of engineered biological systems, and developing standardized tools and methodologies. The complexity of biological systems continues to present engineering challenges that require sustained research and development investment.

The synthetic biology market represents a paradigm shift toward programmable biology, where engineered biological systems address global challenges in healthcare, food security, climate change, and sustainable manufacturing. As the technology matures and costs continue to decline, synthetic biology is poised to become a cornerstone of the 21st-century bioeconomy, creating unprecedented opportunities for innovation and economic growth while addressing humanity's most pressing challenges.

"The Global Synthetic Biology (Synbio) Market 2026-2036" represents the most comprehensive analysis of one of biotechnology's fastest-growing sectors, providing essential intelligence for investors, industry leaders, and strategic planners. This definitive market report delivers critical insights into the transformative synthetic biology landscape, covering market dynamics, technological innovations, competitive positioning, and growth opportunities across key application areas including pharmaceuticals, agriculture, industrial biotechnology, and environmental solutions.

Report contents include:

  • Technology-based revenue projections
  • Product type market dynamics (oligonucleotides, enzymes, synthetic genes, synthetic cells)
  • Regional market opportunities across North America, Europe, Asia-Pacific, and emerging markets
  • Application-specific growth drivers spanning 13 major industry verticals
  • Advanced biomanufacturing analysis encompasses:
    • Batch versus continuous bioprocessing optimization
    • Cell-free synthesis systems and scalability challenges
    • Fermentation process innovations and efficiency improvements
    • Biofilm-based production and microfluidic manufacturing systems
    • Photobioreactor technologies and membrane bioreactor applications
  • Markets & Applications:
    • Biofuels & Energy: Bioethanol, biodiesel, biogas, renewable diesel, biojet fuel, and hydrogen production
    • Bio-based Chemicals: Industrial chemicals, specialty chemicals, and sustainable chemical manufacturing
    • Bioplastics & Biopolymers: PLA, PHA, bio-PET, and next-generation biodegradable materials
    • Healthcare & Pharmaceuticals: Drug discovery, gene therapy, vaccine production, personalized medicine
    • Agriculture & Food: Crop enhancement, biofertilizers, biopesticides, alternative proteins
    • Textiles & Materials: Bio-based fibers, sustainable leather alternatives, mycelium materials
    • Environmental Solutions: Bioremediation, carbon capture, pollution control technologies
  • Regional Market Analysis & Growth Opportunities
  • Competitive Landscape & Company Profiles. The report features comprehensive profiles of 320+ leading synthetic biology companies, providing detailed analysis of business models, product portfolios, financial performance, and strategic positioning. Our competitive intelligence covers established biotechnology leaders, emerging startups, and technology platform providers across the synthetic biology value chain. Companies profiled include Aanika Biosciences, Aemetis Inc., AEP Polymers, Afyren, AgBiome, AgriSea NZ Seaweed Ltd, Agrivida, Ainnocence, AIO, AI Proteins, Algal Bio Co. Ltd., Algenol, AlgiKnit, Algiecel ApS, Alpha Biofuels Singapore Pte Ltd, Allonnia LLC, Allozymes, Alt.Leather, Alto Neuroscience, Amano Enzyme Inc., AmphiStar, Amply Discovery, AMSilk GmbH, Amyris, Andes Ag Inc., Ansa Biotechnologies, Antheia, Apeel Sciences, Aralez Bio, Arctic Biomaterials Oy, Ardra Bio, Arkeon, Arsenale Bioyards, Arzeda, Asimov, Atantares, Autolus, AVA Biochem AG, Avantium B.V., Azolla, Axcelon Biopolymers Corporation, Basecamp Research, BBCA Biochemical & GALACTIC Lactic Acid Co. Ltd., Benefuel Inc., BioBetter, Bioextrax AB, Bio Fab NZ, Biokemik, BIOLO, Biomason Inc., Biomemory, Bioplastech Ltd, BioSmart Nano, Biotic Circular Technologies Ltd., Biosyntia, Biotecam, Bioweg, bit.bio, Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc., Bluepha Beijing Lanjing Microbiology Technology Co. Ltd., Bon Vivant, Bolt Threads, Bosk Bioproducts Inc., Bowil Biotech Sp. z o.o., Braskem SA, Brightseed, Bucha Bio Inc., C1 Green Chemicals AG, C16 Biosciences, CABIO Biotech Wuhan Co Ltd, California Cultured, Calysta, Camena Bioscience, Capra Biosciences, Carbios, Cargill, Calyxt, Cascade Biocatalysts, Cass Materials Pty Ltd, Catalyxx, Cathy Biotech Inc., Cauldron Ferm, Cemvita Factory Inc., ChainCraft, Checkerspot, Chitose Bio Evolution Pte Ltd., CinderBio, Circe, CJ Biomaterials Inc., Clean Food Group, Codagenix, Codexis, Colossal Biosciences, Colipi, Colorifix, Conagen, Constructive Bio, Cysbio, Danimer Scientific, Debut Biotechnology, Deep Branch Biotechnology, Demetrix, Dispersa, DMC Biotechnologies, DNA Script, Domsjo Fabriker AB, DoriNano, DuPont, Earli, Ecovative Design LLC, Eco Fuel Technology Inc, Eden Brew, EggPlant Srl, Eligo Bioscience, Elo Life Systems, Emerging Fuels Technology EFT, Enduro Genetics, EnginZyme AB, Eni S.p.A., EnPlusOne Biosciences, Enzymaster, Enzymit, Erebagen, Esphera SynBio, Euglena Co. Ltd., Eversyn, Evozyne, FabricNano, Fermentalg, eniferBio, ENOUGH, Epoch Biodesign, Evolved By Nature, Evonetix Limited, Evonik Industries AG, EV Biotech, Farmless, Fermelanta and more......
  • Investment Analysis & Market Forecasts: insights into funding trends, valuation metrics, and growth opportunities across synthetic biology segments. The report examines venture capital flows, public market performance, and strategic acquisition activity, delivering essential intelligence for investment decision-making.
  • Market sizing and growth projections through 2036
  • Technology readiness levels and commercialization timelines
  • Risk assessment and regulatory consideration
  • Strategic partnership opportunities and M&A activity
  • Technology Roadmap & Future Outlook
  • Future market outlook:
    • Emerging applications in space biotechnology and climate engineering
    • Convergence with artificial intelligence and nanotechnology
    • Regulatory evolution and standardization frameworks
    • Global market expansion and democratization trends

This essential market intelligence report serves as the definitive guide for understanding synthetic biology's transformative potential, providing actionable insights for strategic planning, investment decisions, and market positioning in one of biotechnology's most dynamic sectors.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview of the global synthetic biology market
  • 1.2. Difference between synthetic biology and genetic engineering
  • 1.3. Market size and growth projections
    • 1.3.1. By Technology
    • 1.3.2. By Product Type
    • 1.3.3. By Market
    • 1.3.4. By Region
  • 1.4. Major trends and drivers
  • 1.5. Investments in synthetic biology
  • 1.6. Technology roadmap
  • 1.7. Industrial biotechnology value chain

2. INTRODUCTION

  • 2.1. What is synthetic biology?
  • 2.2. Comparison with conventional processes
  • 2.3. Applications
  • 2.4. Advantages
  • 2.5. Sustainability
  • 2.6. Synthetic Biology for the Circular Economy

3. TECHNOLOGY ANALYSIS

  • 3.1. Biomanufacturing processes
    • 3.1.1. Batch biomanufacturing
    • 3.1.2. Continuous biomanufacturing
    • 3.1.3. Fermentation Processes
    • 3.1.4. Cell-free synthesis
    • 3.1.5. Biofilm-based production
    • 3.1.6. Microfluidic systems
    • 3.1.7. Photobioreactors
    • 3.1.8. Membrane bioreactors
    • 3.1.9. Plant cell culture
    • 3.1.10. Mammalian cell culture
    • 3.1.11. Bioprinting
  • 3.2. Cell factories for biomanufacturing
  • 3.3. Technology Overview
    • 3.3.1. Metabolic engineering
    • 3.3.2. Gene and DNA synthesis
    • 3.3.3. Gene Synthesis and Assembly
    • 3.3.4. Genome engineering
      • 3.3.4.1. CRISPR
        • 3.3.4.1.1. CRISPR/Cas9-modified biosynthetic pathways
        • 3.3.4.1.2. TALENs
        • 3.3.4.1.3. ZFNs
    • 3.3.5. Protein/Enzyme Engineering
    • 3.3.6. Synthetic genomics
      • 3.3.6.1. Principles of Synthetic Genomics
      • 3.3.6.2. Synthetic Chromosomes and Genomes
    • 3.3.7. Strain construction and optimization
    • 3.3.8. Smart bioprocessing
    • 3.3.9. Chassis organisms
    • 3.3.10. Biomimetics
    • 3.3.11. Sustainable materials
    • 3.3.12. Robotics and automation
      • 3.3.12.1. Robotic cloud laboratories
      • 3.3.12.2. Automating organism design
      • 3.3.12.3. Artificial intelligence and machine learning
    • 3.3.13. Bioinformatics and computational tools
      • 3.3.13.1. Role of Bioinformatics in Synthetic Biology
      • 3.3.13.2. Computational Tools for Design and Analysis
    • 3.3.14. Xenobiology and expanded genetic alphabets
    • 3.3.15. Biosensors and bioelectronics
    • 3.3.16. Feedstocks
      • 3.3.16.1. C1 feedstocks
        • 3.3.16.1.1. Advantages
        • 3.3.16.1.2. Pathways
        • 3.3.16.1.3. Challenges
        • 3.3.16.1.4. Non-methane C1 feedstocks
        • 3.3.16.1.5. Gas fermentation
      • 3.3.16.2. C2 feedstocks
      • 3.3.16.3. Biological conversion of CO2
      • 3.3.16.4. Food processing wastes
      • 3.3.16.5. Lignocellulosic biomass
      • 3.3.16.6. Syngas
      • 3.3.16.7. Glycerol
      • 3.3.16.8. Methane
      • 3.3.16.9. Municipal solid wastes
      • 3.3.16.10. Plastic wastes
      • 3.3.16.11. Plant oils
      • 3.3.16.12. Starch
      • 3.3.16.13. Sugars
      • 3.3.16.14. Used cooking oils
      • 3.3.16.15. Green hydrogen production
      • 3.3.16.16. Blue hydrogen production
    • 3.3.17. Marine biotechnology
      • 3.3.17.1. Cyanobacteria
      • 3.3.17.2. Macroalgae
      • 3.3.17.3. Companies

4. MARKET ANALYSIS

  • 4.1. Market trends and drivers
  • 4.2. Industry challenges and constraints
  • 4.3. Synthetic biology in the bioeconomy
  • 4.4. SWOT analysis
  • 4.5. Synthetic biology markets
    • 4.5.1. Biofuels
      • 4.5.1.1. Solid Biofuels
      • 4.5.1.2. Liquid Biofuels
      • 4.5.1.3. Gaseous Biofuels
      • 4.5.1.4. Conventional Biofuels
      • 4.5.1.5. Advanced Biofuels
      • 4.5.1.6. Feedstocks
        • 4.5.1.6.1. First-generation (1-G)
        • 4.5.1.6.2. Second-generation (2-G)
          • 4.5.1.6.2.1. Lignocellulosic wastes and residues
          • 4.5.1.6.2.2. Biorefinery lignin
        • 4.5.1.6.3. Third-generation (3-G)
          • 4.5.1.6.3.1. Algal biofuels
            • 4.5.1.6.3.1.1. Properties
            • 4.5.1.6.3.1.2. Advantages
        • 4.5.1.6.4. Fourth-generation (4-G)
        • 4.5.1.6.5. Energy crops
        • 4.5.1.6.6. Agricultural residues
        • 4.5.1.6.7. Manure, sewage sludge and organic waste
        • 4.5.1.6.8. Forestry and wood waste
        • 4.5.1.6.9. Feedstock costs
      • 4.5.1.7. Synthetic biology approaches for biofuel production
      • 4.5.1.8. Bioethanol
        • 4.5.1.8.1. Ethanol to jet fuel technology
        • 4.5.1.8.2. Methanol from pulp & paper production
        • 4.5.1.8.3. Sulfite spent liquor fermentation
        • 4.5.1.8.4. Gasification
          • 4.5.1.8.4.1. Biomass gasification and syngas fermentation
          • 4.5.1.8.4.2. Biomass gasification and syngas thermochemical conversion
        • 4.5.1.8.5. CO2 capture and alcohol synthesis
        • 4.5.1.8.6. Biomass hydrolysis and fermentation
        • 4.5.1.8.7. Separate hydrolysis and fermentation
          • 4.5.1.8.7.1. Simultaneous saccharification and fermentation (SSF)
          • 4.5.1.8.7.2. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
          • 4.5.1.8.7.3. Simultaneous saccharification and co-fermentation (SSCF)
          • 4.5.1.8.7.4. Direct conversion (consolidated bioprocessing) (CBP)
      • 4.5.1.9. Biodiesel
      • 4.5.1.10. Biogas
        • 4.5.1.10.1. Biomethane
        • 4.5.1.10.2. Feedstocks
        • 4.5.1.10.3. Anaerobic digestion
      • 4.5.1.11. Renewable diesel
      • 4.5.1.12. Biojet fuel
      • 4.5.1.13. Algal biofuels (blue biotech)
        • 4.5.1.13.1. Conversion pathways
        • 4.5.1.13.2. Market challenges
        • 4.5.1.13.3. Prices
        • 4.5.1.13.4. Producers
      • 4.5.1.14. Biohydrogen
        • 4.5.1.14.1. Biological Conversion Routes
          • 4.5.1.14.1.1. Bio-photochemical Reaction
          • 4.5.1.14.1.2. Fermentation and Anaerobic Digestion
      • 4.5.1.15. Biobutanol
      • 4.5.1.16. Bio-based methanol
        • 4.5.1.16.1. Anaerobic digestion
        • 4.5.1.16.2. Biomass gasification
        • 4.5.1.16.3. Power to Methane
      • 4.5.1.17. Bioisoprene
      • 4.5.1.18. Fatty Acid Esters
    • 4.5.2. Bio-based chemicals
      • 4.5.2.1. Acetic acid
      • 4.5.2.2. Adipic acid
      • 4.5.2.3. Aldehydes
      • 4.5.2.4. Acrylic acid
      • 4.5.2.5. Bacterial cellulose
      • 4.5.2.6. 1,4-Butanediol (BDO)
      • 4.5.2.7. Bio-DME
      • 4.5.2.8. Dodecanedioic acid (DDDA)
      • 4.5.2.9. Ethylene
      • 4.5.2.10. 3-Hydroxypropionic acid (3-HP)
      • 4.5.2.11. 1,3-Propanediol (1,3-PDO)
      • 4.5.2.12. Itaconic acid
      • 4.5.2.13. Lactic acid (D-LA)
      • 4.5.2.14. 1,5-diaminopentane (DA5)
      • 4.5.2.15. Tetrahydrofuran (THF)
      • 4.5.2.16. Malonic acid
      • 4.5.2.17. Monoethylene glycol (MEG)
      • 4.5.2.18. Propylene
      • 4.5.2.19. Succinic acid (SA)
      • 4.5.2.20. Triglycerides
      • 4.5.2.21. Enzymes
      • 4.5.2.22. Vitamins
      • 4.5.2.23. Antibiotics
    • 4.5.3. Bioplastics and Biopolymers
      • 4.5.3.1. Polylactic acid (PLA)
      • 4.5.3.2. PHAs
        • 4.5.3.2.1. Types
          • 4.5.3.2.1.1. PHB
          • 4.5.3.2.1.2. PHBV
        • 4.5.3.2.2. Synthesis and production processes
        • 4.5.3.2.3. Commercially available PHAs
      • 4.5.3.3. Bio-PET
      • 4.5.3.4. Starch blends
      • 4.5.3.5. Protein-based bioplastics
    • 4.5.4. Bioremediation
    • 4.5.5. Biocatalysis
      • 4.5.5.1. Biotransformations
      • 4.5.5.2. Cascade biocatalysis
      • 4.5.5.3. Co-factor recycling
      • 4.5.5.4. Immobilization
    • 4.5.6. Food and Nutraceutical Ingredients
      • 4.5.6.1. Alternative Proteins
      • 4.5.6.2. Natural Sweeteners
      • 4.5.6.3. Natural Flavors and Fragrances
      • 4.5.6.4. Texturants and Thickeners
      • 4.5.6.5. Nutraceuticals and Supplements
    • 4.5.7. Sustainable agriculture
      • 4.5.7.1. Crop Improvement and Trait Development
      • 4.5.7.2. Plant-Microbe Interactions and Symbiosis
      • 4.5.7.3. Biofertilizers
        • 4.5.7.3.1. Overview
        • 4.5.7.3.2. Companies
      • 4.5.7.4. Biopesticides
        • 4.5.7.4.1. Overview
        • 4.5.7.4.2. Companies
      • 4.5.7.5. Biostimulants
        • 4.5.7.5.1. Overview
        • 4.5.7.5.2. Companies
      • 4.5.7.6. Crop Biotechnology
        • 4.5.7.6.1. Genetic engineering
        • 4.5.7.6.2. Genome editing
        • 4.5.7.6.3. Companies
    • 4.5.8. Textiles
      • 4.5.8.1. Bio-Based Fibers
        • 4.5.8.1.1. Lyocell
        • 4.5.8.1.2. Bacterial cellulose
        • 4.5.8.1.3. Algae textiles
      • 4.5.8.2. Bio-based leather
        • 4.5.8.2.1. Properties of bio-based leathers
          • 4.5.8.2.1.1. Tear strength
          • 4.5.8.2.1.2. Tensile strength
          • 4.5.8.2.1.3. Bally flexing
        • 4.5.8.2.2. Comparison with conventional leathers
        • 4.5.8.2.3. Comparative analysis of bio-based leathers
      • 4.5.8.3. Plant-based leather
        • 4.5.8.3.1. Overview
        • 4.5.8.3.2. Production processes
          • 4.5.8.3.2.1. Feedstocks
          • 4.5.8.3.2.2. Agriculture Residues
          • 4.5.8.3.2.3. Food Processing Waste
          • 4.5.8.3.2.4. Invasive Plants
          • 4.5.8.3.2.5. Culture-Grown Inputs
          • 4.5.8.3.2.6. Textile-Based
          • 4.5.8.3.2.7. Bio-Composite
        • 4.5.8.3.3. Products
        • 4.5.8.3.4. Market players
      • 4.5.8.4. Mycelium leather
        • 4.5.8.4.1. Overview
        • 4.5.8.4.2. Production process
          • 4.5.8.4.2.1. Growth conditions
          • 4.5.8.4.2.2. Tanning Mycelium Leather
          • 4.5.8.4.2.3. Dyeing Mycelium Leather
        • 4.5.8.4.3. Products
        • 4.5.8.4.4. Market players
      • 4.5.8.5. Microbial leather
        • 4.5.8.5.1. Overview
        • 4.5.8.5.2. Production process
        • 4.5.8.5.3. Fermentation conditions
        • 4.5.8.5.4. Harvesting
        • 4.5.8.5.5. Products
        • 4.5.8.5.6. Market players
      • 4.5.8.6. Lab grown leather
        • 4.5.8.6.1. Overview
        • 4.5.8.6.2. Production process
        • 4.5.8.6.3. Products
        • 4.5.8.6.4. Market players
      • 4.5.8.7. Protein-based leather
        • 4.5.8.7.1. Overview
        • 4.5.8.7.2. Production process
        • 4.5.8.7.3. Commercial activity
      • 4.5.8.8. Recombinant Materials
      • 4.5.8.9. Sustainable Processing
    • 4.5.9. Packaging
      • 4.5.9.1. Polyhydroxyalkanoates (PHA)
      • 4.5.9.2. Applications
        • 4.5.9.2.1. Vials, bottles, and containers
        • 4.5.9.2.2. Disposable items and household goods
        • 4.5.9.2.3. Food packaging
        • 4.5.9.2.4. Wet wipes and diapers
      • 4.5.9.3. Proteins
      • 4.5.9.4. Algae-based
      • 4.5.9.5. Mycelium
      • 4.5.9.6. Antimicrobial films and agents
    • 4.5.10. Healthcare and Pharmaceuticals
      • 4.5.10.1. Drug discovery and development
      • 4.5.10.2. Gene therapy and regenerative medicine
      • 4.5.10.3. Vaccine production
      • 4.5.10.4. Personalized medicine
      • 4.5.10.5. Diagnostic tools and biosensors
      • 4.5.10.6. Companies
    • 4.5.11. Cosmetics
    • 4.5.12. Surfactants and detergents
    • 4.5.13. Construction materials
      • 4.5.13.1. Bioconcrete
      • 4.5.13.2. Microalgae biocement
      • 4.5.13.3. Mycelium materials
  • 4.6. Global market revenues 2018-2036
    • 4.6.1. By Technology
    • 4.6.2. By Product Type
    • 4.6.3. By Market
    • 4.6.4. By Region
  • 4.7. Future Market Outlook

5. COMPANY PROFILES (321 company profiles)

6. APPENDIX

  • 6.1. Research Methodology
  • 6.2. Glossary of Terms

7. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제